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INTRODUCTION 

In the last two units we focussed on concepts that are pre-requisites for studying 
calculus. In this unit, we deal with problems students face in understanding 
differentiability. As we have said earlier, the understanding of 'derivative' is 
dependent on how well 'limit' has been understood by the leamer. Therefore, much of 
what has been discussed in the previous unit, is relevant to the issues taken up in the 
present unit. 

We begin this unit with suggesting ways of helping students becorrie comfortable with 
the notion of differentiation. Here, a remark made by an NVS teacher is relevant. He 
said, "My students can differentiate most functions, but they do i t  mechanically. They 
don't uaderstand the underlying process." In Sec. 6.2, we look at ways of helping 
students assimilate this underlying process. 

There are several misconceptions regarding when a function is differentiable and when 
it is continuous. In Sec. 6.3, we look at some examples that may help in removing 
these misconceptions. 

Finally, in Sec. 6.4, we take up the use of the derivative for curve tracing and 
analysing the behaviour of a function. Students often miss the significance of the first 
and second derivatives in this context. They also get confused between concepts'like 
'critical (or stationary) point' and 'point of inflection'. We have suggested an 
approach that has been found helpful by some teachers in alleviating this problem. 

- 

As in the previous units, this unit will be of use only if you actually try the exercises 
and activities with your learners. You must follow this up with analysing the students' 
responses. You could then alter your strategies, if neces'sary, based on the assessment 
you make. 

Here, now, is an explicit,list of the broad objectives of this unit. 

Objectives 

After studying this unit, you should be able to develop the ability of your learners to 

explain the meaning of 'derivative', and give its geometric and physical 
interpretation; 
explain when a continuous function need not be differentiable; 
use the first and second derivatives of a differentiable fupction for analysing its 
behaviour and for tracing its graph. 
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6.2 WHAT IS DIFFERENTIATION? 

Let me start by bringing you a quote from an article by Judith Grabiner in 
Mathematics Magazine, Vol. 56, 1983. She writes : 

"Historically speaking, there were four steps in the development of today's concept of 
the derivative, which I list here in chronological order. The derivative was first used; 
it was then discovered; it was then explored and developed; and it was finally 
defined. That is, examples of what we now recognize as derivatives were first used on 
an ad hoc basis in solving particular problems; then the general concept lying behind 
these uses was identified (as part of the invention of calculus); then many properties of 
the derivative were explained and developed in applications to mathematics and to 
physics; andfinally, a rigorous definition was given and the concept of derivative was 
embedded in a rigorous theory." 

Please think about this order carefully. Is it the same order in which we expose our 
learners to the derivative? If not, shouldn't we help our learners to arrive at the 
concept in a more intuitive and less formal manner, as it has been developed 
historically? Because we don't do this, most students react to the question given in the 
title of this section with the response. "It is d by dx." If probed further, they give an 

d 
example like - (xn) = nxn-I, or some other examples. Very rarely do I find a student 

dx 
who tries to explain its mathematical meaning, or its geometric or physical 
interpretation. 

Even though most teachers usually tell students that the derivative gives the slope of 
the tangent to a curve, and draw a diagram to explain it, students don't understand 
what is happening. Even students in college have a problem with this. Maybe drawing 
a diagram, giving some solved examples and many practice examples as homework is 
not the way to help the learner learn the concept. We need to present this aspect, as 
well as differentiation as a measure of the instantaneous rate of change, differently. 

In this context, it would be useful to note that students even have problems with 
understanding the difference between average and instantaneous rates of change. How 
would you address this problem? Rather than explaining this mathematically, you 
could give them examples of, say, movement of a vehicle. 

To start with, it may be useful, to clarify the student's understanding of 'average rate 
of change'. You could ask your students what it means if a car travelled from Ajmer 
to Jaipur with an average speed of 50 kmlhr. Does this mean that at each point of time 
during the journey its speed was 50? What about the traffic light being red on the 
way? And the time the car was suddenly stopped by a truck driver? 

In fact, students make other mistakes regarding this concept. For instance, ask them 
the following problem: 

Ifyou travel at a speed of 40 km./hr. going from Cochin to Trichur, and at a speed of 
60 km./hr. coming back, what is the average speed for the round trip? 

Did you get the usual response I get from many students to such a question, namely, 
50 km./hr.? This happens because the students don't think about what 'average speed' 
really is. Here, you would need to give them some hints to work out why the average 
speed is 48 k d r .  In fact, if the students used their common sense, they would realise 
that more time is spent while going at 40 km./hr. than is spent coming back the same 
distance at 60 km./hr. 

Now, how would you help your students to think about the instantaneous rate of 
change as the average rate of change at that particular instant? They need to see 
that you are making your time interval smaller and smaller, and looking at the average 



value of the function over this smaller and smaller interval. This average is 
f(t0 +h) - f ( t0 )  . As h gets smaller and smaller, nearer and nearer to zero, the 

(to + h) -to 
limiting value of this quotient, if it exists, is what we call the instantaneous rate of 
change off  with respect to t at the instant to. In fact, one teacher put it to her students 

C very nicely, as given in the following example: 

I Example 1 : Ms. Grace regularly coaches senior students in mathematics. A question 
she is frequently asked by her students is 'How is the derivative useful?' She usually 

I responds by explaining, "Imagine you go on a car ride. Suppose you know your 
position at all times. In other words, at 8 a.m. you are in the garage, at 8 a.m. and 5 
seconds you are just outside the garage, at 8 a.m. and 10 seconds you are on the road 

I just in front of your house, and so on. At every moment during this ride, your 
speedometer showed the speed of your car. So, if you knew your position at all times, 
at the end of your trip can you work out what your speedometer showed at any 

i particular instant of time? The answer is, yes, you can. The derivative provides a 
method for doing this. 

She goes on to give them the siniplest situation where one can compute what the 

I speedometer reading is, that is, driving at the same speed over the entire distance. In 
this case, of course, the students do conclude that if you drive 50 kilometres in one 
hour throughout at the same speed, then your speedometer read 50 km. per hour 
throughout the trip. 

In the situation where the car is driven at different speeds, Grace tries to get the 
students to consider the whole trip as made up of several short trips, say, one trip 
involving taking the car out of the garage, another trip would be driving the car onto 
the road, 2nd so on. "Over each of these tiny trips, your speed doesn't change much", 
she tells them, "So, you can pretend that your speed didn't change at all. So, you 
know how to compute the speed for each tiny trip. This gives you a good idea of what 
your speedometer read for that part of the big trip. But, remember, the assumption 
that the speed didn't change over each tiny trip is geherally wrong, and so you only 
get an approximation to the correct answer. But, the main idea behind the derivative 
is that the smaller you make the tiny trips used in your computation, the more 
accurately you will be able to compute the actual speedometer reading." In this way 
Grace tries to help the students understand the average change in an infinitesimal time 
interval. 

Sometimes Grace explains the derivative to the 'Commerce Stream' students inthe 
following way: 

"When you see the sensex (sensitivity index) report of the stock market on the TV in 
the evening, it measures the change in the aggregate stock index per unit of time. This 
is best understood visually by the slope of the graph joining the various points 
showing the stock index (see Fig. 1). If we measure the closing stock price from one 
day to the next, we notice that the graph gets higher on days when the price change is 
positive, and lower when the stocks go down. The steeper the slope, the faster the 
change. 

Grace goes on to explain to her students that the basic part of the formula for the 
derivative is just the formula for the slope of the segment joining two points on the 
curve. The instantaneous part is where the limit comes in. Taking simple examples, 
she tells them, "If you want to find the derivative at x = xo, you need to look first at 
the graph for a clue. Is the curve going up or down? Imagine a tangent to the curve at 
x = xo (see Fig. 2). The slope of the tangent line is the slope of the curve at that point. 
How will you find it numerically?" She draws this tangent, and also the secant joining 
P(xo, f(%)) to a point on the curve near it, say Q(xo+h, f(xo+h)) (see Fig. 2). 

Looking at the Derivative 
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Fig. 2 

Then she asks them what happens to this secant as Q moves towards P along the 
curve. She traces this movement with her finger on the board to a nearer point (Q,) 
and nearer to (Q$, and so on, each time drawing a fresh secant. She points out that the 
interval [xo, xo+h] reduces to smaller and smaller intervals. When they realise this just 
means that xo+h is getting closer to xo, she explains that this is where the limit part 
comes in. As xb+h gets closer and closer to xo, the secant tends to merge with the 
tangent at x = xo. 

Sometimes Grace modifies the explanation a bit by asking the students to take a ruler 
and keep adjusting it to form secants at nearer and nearer points on the curve. Then 
they see the secants actually merging with the tangent. 

In the example abbve the teacher has chosen her way of making the derivative more 
understandable to students. Do you agree with it? Here's a telated exercise. 

E l )  i) Which situations from your own students' lives could you use to explain 
the basic ,idea behind differential calculus to your learners? 

ii) How would you introduce your students to 'derivative'? 

Let us now considsr a common source of confusion for students related to what we 
have just discussed. This is the relationship between continuity and differentiability. 

6.3 CONTINUITY VERSUS DIFFERENTIABILITY 

When I ask students of Class 12, or even first-year college students, if every 
continuous funaiotu is differentiable, invariably they say this is true, but not the other 
way around! This reaction is probably a result of the way we teach and assess them. 
The students simply mug up a result and its proof without understanding it. As a 
result, they know that one condition implies another, but which implies which is the 
problem. Possibly, a good way to help students relate the . two . conditions is to give 
several visual examples of functions that : 

i) are continuous, hut not differentiable at a point; 
ii) both continuous ;and differentiable; , 

iii) not continuous, hence not differentiable. 



Why don't you try some exercises about this now? Looking at the Derivative 

E2) Give the graphs of at least two functions for each of the three situations listed 
above. How would you use these examples to clarify your students' 
understanding regarding the connection between differentiability and 
continuity? 

In workshops I have asked teachers to do the exercise above. Some of them used the 
method they had worked out in the workshop quite successfully in their classrooms. 

They utilised examples like 1x1 and xX to show students situations in which a 

continuous function would not be differentiable. The thrust of their strategy was to 
give students examples of a variety of graphs which could be drawn without lifting 
pencil from paper - some that included sharp comers and some that were smooth 
throughout (see Fig. 3). 

(a) 
Fig. 3 : (a) y = 1x1 , (b) Y = xl' 

They used these examples to show the students that though all the graphs were 
continuous throughout, the ones with sharp comers (Fig. 3(a)) were not differentiable 
at the points at which the comers are formed. Also, some smooth curves were not 
differentiable at the points where the tangents to the curve were vertical (as in Fig. 
3(b)). And why is this so? 

Why this happens is where the students need to utilise their understanding of 
derivative as the 'slope of the curve', that is, the limit of the slope of the secant at the 
point as the secant gets smaller and smaller. Suppose you ask your students to 
consider the function f given by f(x) = 1x1 at the sharp comer, i.e., the point x = 0. 
There is no unique tangent line to the curve at x = 0. If we approach 0 from the left, 
it appears that the slope of the tangent line should be -1, that is, y + x = 0 is the 
tangent. But if we approach 0 from the right, it appears that the slope of the tangent 
should be +1 that is, y = x is the tangent. So, dfldx doesn't exist at x = 0. 

Now, let us consider the other situation, shown in Fig. 3(b). Here, the curve has a 
vertical tangent line at x = 0. This means that the limit of the slope does not exist (a 
case of infinite limits!) at such a point. Therefore, f is not differentiable at x = 0. 

To emphasise the fact that a function is certainly not differentiable at a point of 
discontinuity, you could give them several other examples (as suggested in Unit 5). 
In Fig. 4 below, we show various ways in which a derivative can fail to exist. - - - 
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I x-1 for 0 < x c 1  

iii) f (x) = forx=l 

iv) f (x) = (x - 1) % 

1 E5) Test each of the functions below for differentiability at the points mentioned 
alongside. Also graph the corresponding derivative function, if it exists. 

I 
I 

i) 
2 f(x) = x at x = 0. 

ii) f (x )=Ix - l I a tx=~andx=l .  
-- 

Now let us see how to help our learners see the utility of the derivative of a function 
for analysing the nature of its graph. 

6.4 THE UPS AND DOWNS 

Looking at the Derivative 

I 

As you know, the geometric interpretation of the derivative, and its derivative, are 
very useful for understanding a function. Helping students to see this aspect, by 
getting them to graph the functions with the help of the derivative will make this 
concept more meaningful to the students. 

Do your students realise the important role of the first and second derivatives for 
tracing curves? Ask them : Just by considering f ' and f " at different points, is it 
possible to trace the graph off? How? Examples, and several exercises, to answer 
these questions is what your learners need to be exposed to. 

The first derivative, f', shows us where the extreme points occur, and where the 
function f is increasing or decreasing. The second derivative, f"  , gives the 
instantaneous rate of change of the first derivative. So, it tells us how fast f is 
increasing or decreasing. For instance, if s(t) is the distance covered by a vehicle in 

ds d2s 
time t, v = - is its velocity, and a = -is the acceleration of the vehicle, that is, the 

dt dt2 
rate of increase or decrease in the speed of the vehicle. 

&-. What is really meaningful in the context of curve tracing is that the behaviour of f" 
affects the shape of the graph. Knowing f" , we can find out over which intervals f is  
concave upwards or downwards. To make this point clear to your students, you could 
ask theq, for instance, to graph the curve of f(x) = 2x3 - x2 - 20x - 10 on [-2,4]. 
They would need to first look for Critical points in 1-2,4[ (that is; the points x for 
which f'(x) = 0) and the points in [-2,4] where f'(x) does not exist. In this case, the 

-5  
critical points are x = - ,2, and f'(x) exists V XE [-2,4]. 

3 

To decide whether the critical points are extreme points, and of what kind, the students 
-5  -5  

would need to find f"  at these points. Since f" (2) > 0 and f" ( - ) c 0 ,2  and - 
3 3 

are a local minimum and maximum, respectively. The students should note that some 
local extrema can also be absolute extrema, as in the case of (2,f(2)). 

The students would also need to find the intervals in which f" c 0 and f" > 0 for 
deciding the kind of concavity the curve has. 
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1 
is concave upwards in 1 concave downwards in [-2, -[ . 

6 i 

qg. 6 : The graph off, defined by f(x) = 2x3-x2-20x-10 on [-2,4] 
We usually give our learners several 'curve tracing' exercises. Here are some 
exercises that are not usually given. But these would help your learners undeistand 
and appreciate this application of the derivative, as well as its use in real-life 

ii) By looking at the first derivative decide which of the curves in Fig. 7 could 
not be the graph of f(x) = x3 - 9x2 + 24x + 1 for x 1 0. 
(Hint : Factor the formula for f' (x).) 

iii) By looking at the second derivative, decide which of the curves in Fig. 7 

I 

1 1 
Since f" (x) = 2(6x-I), f" > 0 fgr XE ] - ,4[ and f" c 0 for XE [-2, - [ . So, the curve 

6 6 

C 

The students now need to see, with your help, how the information they have gathered 
can be used for drawing the curve, which is given in Fig. 6. 

absolute, minimum 

- - - - 
situations. 

E6) i) By looking at the second derivative, decide which of the curves in Fig. 7 
could be the graph of f(x) = xSn. 

could be the graph of f(x) = Jf; . 

Y Y 

I 

0 > 
X 0 X 0 X 

I 

(a) (b) (c) 

Fig. 7 

E7) Sketch the graph of a function f for which : 

i) f(2) = 1; f '  (2) = 0; f is concave upwards for all x; 
I 

ii) f ( 3 ) = 5 ; f ' ( x ) > O V x ~ ] - ~ , 3 [ ; f ' ( 3 ) = O ; f ' ( x ) > O ~ x ~ ] 3 , m [ .  

iii) f(3) = -2, f' (3) = 2, f " (3) = 3 (sketch in the neighbourhood of x = 3). I 



An enterprising (although unscrupulous) business student has managed to'get Looking at the Derivative g his hands on a copy of the out-of-print solutions manual for an applied 

calculus text. He plans to make photocopies of it and sell them to ether 
students. According to his calculations, he figures that the demand will be 
between 100 and 1200 copies, and he wants to minimize his average cost of 
production. After checking the cost of paper, duplicating, and the rental of a 
small van, he estimates that the cost in rupees to produce x hundred manuals is 
given by C(x) = x2 + 200x + 100. How many should he produce in order to 
make the average cost per unit as small as possible? What is the least amount 
he will have to charge to make a profit? 

E9) The number of salmon swimming upstream to spawn is approximated by 
S(x) = -x3 + 3x2 + 360x + 5000, 6 I x 5 20, 

where x represents the temperature of the water in degrees Celsius. Find-the 
water temperature that produces the maximum number of salmon swimming 
upstream. 

E10) A rope, 4 metres long, is cut into 2 pieces. One piece is shaped into a circle, 
and the other made into a square. Where should the cut be made in order to 
make the sum of the areas enclosed minimum? 

There are two concepts that show up while tracing curves with using derivatives. 
These are 'critical (or stationary) point"and 'point of inflection (or inflexion)'. 
Students often confuse them, andlor the relationship between them - Is a point of 
inflection a critical point? What about vice-versa? The students need clarifications on 
these questions. What is a good way for helping them in this hatter? 

One way to explain critical points is to geometrically show that those points at which 
the tangent to the curve exists and is parallel to the x-axis are critical points. Here, 
you could ask them to think about why they are called 'critical'. Then you could use 
several curves that they are familiar with to help them observe and'realise why these 
points are 'critical' -that a curve only attains a local maximum or minimum at a 
critical point, andlor at points at which the curve is not differentiable. 

Also , ask your students if the converse is true. To help them think about the 
converse, you could give them graphs of some functions like f(x) = x3, where 
f ' (0) = 0, but x = 0 is not an extreme point. 

Regarding 'point of inflection', ask your students to consider curves like those in Fig. 
8. 

A 
Y 

0 

inflection 

> 
X 

Fig. 8 
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Extreme values of the 
slope always occur at 
inflection points. 

I've been working for f-7 
( 4 hours. Now i'm too tired. \ 

think anymore. ,J 

Fig. 10 

- - 

Ask your studen$ if they notice any difference in the position of the curve relative to 
the tangents to the curve at any point between A and B, vis-a-vis the positi~n relative 
to the tangents drbwn a1 any point between B and C. The function lies belhw the 
tangents from A b B, and above the tangents from B to C. So, the curve is concave 
downwards fronl A to B and concave upwards from B to C. Because of this, B is a 
point of inflection for this curve. More examples and non-examples of such points 
can be given to students to explore. This will help them develop their understanding 
of the concept. 

Why don't you try an exercise now? 

El  1)  What method would you use for explaining 'critical point' and 'point of 
inflection' to your learners? Try it with them. How did you judge the 
effectiveness of your strategy? 

In the strategy you have just suggested, did you expose your learners to any real-life 
examples of points of inflection? We have suggested some such examples below. 

Point of Diminishing Returns : Let us start with considering Fig. 9. 

A 

I Input (rupees) 
Fig. 9 

The graph in this figure depicts the output of a factory worker over a period of time. 
To start with, the graph is not very steep. The steepness increases further on, until the 
graph reaches a point of maximum steepness (at C) after which the steepness begins to 
decrease. This tell$ us that at first, the worker's rate of production is low. The rate of 
production increases as the worker settles into a routine, and continues to increase 
until the worker is performing at maximum efficiency. Beyond this point fatigue sets 
in, and the rate of production begins to show a decline. m e  point of maximum 
efficiency is known in economics as the point of diminishing returns. 

The behaviour of the graph on either side of this point C can be described in terms of 
the slope. To the left of this point the slope of the tangent increases as t increases. 
(This indicates that the output is increasing at a faster rate with each additional hour 
spent by the worker.) To the right of the point C, the slope of the tangent decreases as 
t increases. (This indicates that the increase in output is smaller with each additional 
hour spent on the jab.) It is this increase and decrease of the slope on either side of 
this point that tells us that C is a point of inflection of this function. In this situation it 
shows us that C is the point of maximum efficiency, that is, the point of diminishing 
returns. Any input beyond this point of time corresponding to C will not be 
considered to be a mod use of this worker's labour. 

Point of Maximum Efficiency : Ask your students to think of their own situation 
when preparing for an exam. A couple of days before the exam they sit down to revise 
their syllabus. At first, they will be studying slowly. As they set their mind to do 
more, efficiency increases, and it increases up to a maximum level, say, 4 hours after 
beginning to study. After that point of time, the ability to concentrate slowly declines, 
and many say, "my mind is fully drained, and I can't think any more". This point, 



which is the point of maximum efficiency (the point of diminishing returns), is a point Looking at the Derivative 
of inflection in this situation. 

Point of Maximum Yield : The graph in Fig. 11 shows the population of catfish in a 
commercial catfish farm as a function of time. As the graph shows, the population 
increases rapidly up to a point, and then increases at a slower rate. The horizontal 
dashed line shows that the population will approach some upper limit determined by 
the capacity of the farm. The point at which the rate of population growth starts to 

Y 

................................................. 

population + 
0 Time X 

i fig. 11 

To produce the maximum yield of catfish, harvesting should take place at the point of 
fastest possible growth of the population. This is at the point of inflection. The rate of 
change of the population, given by the first derivative, is increasing up to the 
inflection point (on the interval where the second derivative is positive) and 
decreasing past the inflection point (on the interval where the second derivative is 
negative). 

Why don't you try the following exercise now? 

E12) List two real-life problem situations that you can give your learners to enable 
them to understand 'critical point' and 'point of inflection'. 

Let us now consider another question that students frequently wonder about regarding 
the shape of the graph of a function. The question is: 

Is there a relationship between concavity and the type of monotonicity of a curve? 
Through examples of the kind given in Fig. 12, you cogd help your students to note 
that a function can be either increasing or decreasing on an interval regardless of 
whether it is concave upwards or concave downwards on the interval. 

concave 
upward 

increasing concave 
downward 

1 Fig. 12 : A function that is (a) concave upwards in [a,b]; (b) concave upwards in [a,O], and concave 
Cow wards in [O,b]; (c) concave downwards in [a,b]. 4 



Calculus The following chart shows how a graph may combine the properties of increasing, 
decreasing, concave upwards and concave downwards. 1 

You should also ask your students to think of examples of each category in the chart 
above. 

Sign of f '  

+ 
+ 
- 
- 

Now, your students would have learnt that at a point of inflection of a function f, 
either f '= 0 or f " does not exist. But, have you ever asked them if the converse is 
true? That is, if f.'(x$ = 0, is xo a point of inflection off? You could give your 
students examvles like v = x4 that can h e l ~  them answer the auestion themselves. 1 

Sign of f' 
I 

+ 
- 
+ 
- 

Here, f '(0) = 0, but f * > 0 when x > 0 and when x < 0. So there is no change in 
concavity at x = 0. 

You also need to exmse vour learners to situations in which f "  (xo) does not exist. but 

Inbrease or 
Decrease in f 

Increasing 
Increasing 
Decreasing 
Decreasing 

. ", 
xo is a point of infl&tioh>or f. Think about these aspects while doing the following 
exercises. 

Concavity (C) 
of f  

C-up 
C-down 

C-up 
C-down 

E13) Give examples of functions f, defined on an interval [a,b], such that 

i) f ' and f " ellrist in [a,b]; 
ii) f ' exists in ~[a,b], but f ' does not exist at some points of [a,b]; 
iii) f ' does not ]exist on [a,b]. 

Also find the critical points of these functions, as well as points of inflection, 
if any. 

E14) Give two examples, with justification, of functions f for which 
i) f " (a) = 0 but a is not a point of inflection off  
ii) f is concave upwards on some interval, concave downwards on another 

interval, and yet f has no point of inflection. 
, I 

Let us sum up the essenca of what we have just discussed in the following remark. 

Remark : The first order critical points decide about the extremum of a function 
whereas the second order critical points determine the change in concavity off. This 
shows that critical points of the first order tell us the quantitative nature of a function, 
and second-order critical goints decide the shape of the graph (qualitative behaviour of 
the function f). The points of inflection off  are the extreme points off ' . At a point of 
i n f ldon ,  there is a change in concavity of the curve. But change in concavity itself 
will not lead to a point of inflection. 

Before ending the section, let me suggest an interest activity for your students that 
cover all the aspects of what you discuss with them in differential calculus. This also 
exposes the students to the names of several mathematicians. 



I 
Activity (Class, Take Your Seats) 

Canvou fill in the first initial of each student in this math teacher's seating chart using 
only the clues below? 4 
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CLUES: 

1. All students are located at integral coordinates in The xy-plane. The x- 
coordinates belong to the set (-2, -1,0, 1,2),  and the y-coordinates belong to 
the set {-1,0, 1,2,3).  

2. Wallis is seated on the line which is normal to the curve f(x) = x2 - 2x + 4 at 
its minimum point. 

32 
3. Newton is seated at a point of inflection of f(x) = 4x2 + - . 

X 

4: Euler sits at the point on the curve 2y = (x - 2)' which is nearest to Boole. 
, 

5.  MacLaurin is located at the relative maximum point of the function 
f(x) = x3 - 3x2 - 9x - 4. 

6. Saccheri is seated at the absolute maximum point of the function 
f(x)=-x244x - 1. 

7. Riemann's seat is one of the critical points of the curve 

k 
8 .  The function f(x) = x2 + - has a point of inflection at x = 1. Zeno sits at this 

X 

point. 

9. Boole is seated at the absolute maximum point on the curve (x - 212 + y2 = 1. 

10. Archimedes is located at one of the vertices of the rectangle with the largest 
area that can be drawn with its upper vertices on the line y = 1 and its lower 
vertices on the parabola y.= x2 - 2. 

1 1. Thales sits at a point on the curve f(x) = 2x3 - 6x2 + 43 where the slope is 48. 



Calculus 12. Leibniz sits at a point on the curve y = cos(x) where the 99th derivative of that 
curve is O: 

13. Kronecker sits on the line which is tangent to the curve y = 4x2 - 22x + 35 at 
the point (3,5). 

14. Fermat is seated at the point of inflection of the curve y = x3 - 6x2 + 33x - 51. 
D 

15. Descartes is located at one of the critical points of the curve y = -3x4 + 6x2. 

16. Cantor is located on the line tangent to the curve y = -x2 + lox - 25 at its 
maximum point. 

17. Gauss sits at the absolute maximum point on the curve 4y = -2x3 + 3x2 + 7 
over the interval [-1 ,2]. 

18. Viete's seat is collinear with those of Gauss and Kronecker. 

19. Heron is located at the point of inflection of the curve f(x) = x3 - 3x2 + 3x + 1. 

20. Pascal lies on the line tangent to the curve 12y = 16 - 6x2 - x3 at its point of 
inflection. 

(This activity is designed by David Pleacher, 1991 VCTM Mathematics Teacher.) 

The activity above catl also be done by the class as a whole, divided into teams. 

Let us now summarise what we have covered in this unit.' 

SUMMARY. 

In this unit we have discussed the following points. 

I. We have given some suggestions for relating the derivative to the students' 
real-life experiences. 

2. Examples have been given for clearing the confusion students have regarding 
the relationship between continuity and differentiability. In particular, we 
have spelt out various situations in which a function is not differentiable at a 
point. 

3. You have studied examples to help students realise the significance of f ' and 
f " for understanding the behaviour of f'4d the shape of its graph. 

4. We have particularly focussed on critical points and points of inflection, 
geometrically, algebraically and through real-life examples. 

5. Stress has been laid on encouraging students to think about whether any 
critical point is an extremum, and whether f " (Q) = 0 means that xo is a point 
of inflection. 

6. We have also sufgested that you discuss the fact with your students that there 
is no relationshie between monotonicity and type of concavity of a function. 



Looking at the Derivative 
6.6 COMMENTS ON EXERCISES 

El)  i) The examples would necessarily deal with movement of some kind. 
They could relate to profit or loss, movement of water in a stream, 
movement of vehicles around them, students running/walking/swirnming, 
etc. 

ii) You may find it interesting to note down in your logbook any changes in 
method of teaching the derivative that you have made now. Also, note 
down the consequences for the quality of learning. . 

E2) Your students must be familiar with several examples. But did they realise that 
these examples (like 1x1 ) would be appropriate? 

While writing your teaching strategy, note down the methods you used for 
assessing the usefulness of the strategy from the learning point of view. 

E3) For instance, did they realise that the graph in (a) is continuous over 
1-2, -11 u [1,3], and differentiable over ] -2, -11 u [1,3] \ {2,2.5,2.75)? 

E4) i) Continuous, not differentiable at x = 1 ; sharp comer at x = 1. 

ii) As in (i) above. 

iii) Discontinuous, and hence not differentiable, at x = 1. 

iv) Continuous, but not differentiable at x = 1; tangent is vertical at x = 1. 

i) ~ifferentiable at x = 0. The curve of f ' is the straight line y = 2x. 

ii) Differentiable at x = 0, but not at x = 1. The curve of f ' over R \ { 1 ) is 
the union of two half li8nes. 

i) Since f a r  0 V x > 0, f is concave upwards in [0, [. Therefore, of the 
graphs given, the one in (b) is the most appropriate. 

ii) Since f "  (x) = 3(x-4)(x-2), f is increasing in [4, = [ and 1- m ,2], and 
decreasing in [2,4]. Hence, (a) could be the graph off, not (b) or (c). 

(ji) 

Fig. 13 

(iii) 

E8) The average cost function is . This is minimum for x = 10. Remember, 

the unit of x is hundred manuals. So, to minimise the average cost, 10 hundred, 
i.e., 1000 manuals at least should be produced. 
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The cost of prodLcing these is ==Rs.2.20. So, he should charge more 

1000 
than RS. 2.20 to bake a profit. 

I 

E9) 12" Celsius. 
(Here note that $tudents often forget to write the unit. You need to insist on the 
units being written.) 

Remember to check the 
I endpoints also when 

looking for absolute 
E ~ O )  Suppose a portibn of length x cm. is formed into a circle and the length 

minima or maxima. 400 - x cm. is hade into a square. 

The sum of the, areas is n 

This is minimdm for x = (y ) : )  - cm. 
I 

E l  1) Here, you shobld try out methods based on the core course 'Teaching-Learning 
Process and Evaluation' that you have studied. 

E12) For instance, a small company that makes and sells bicycles determines that the 
cost and price functions for x ( 2 0) cycles per week are C(x) = 100 + 30x and 
P(x) = 90 - x, respectively. What are the possible values of x for which the cost 
would be miqiesed? 

Here, the quebtion only requires the critical points to be determined. However, 
it can be alteqed for finding maximum revenue, etc. 

Similarly, copsider the problem of drug concentration : The percent of 
concentration of a certain drug in the bloodstream x hours after the drug is given 

3x 
is K(x) = -----. Find the time at which concentration is a maximum. 

x"4 

There are selveral other problems that you can think of related to chemical 
reactions, vctlocity and acceleration, etc. 

E13) i) Any polynomial function, for example. 

ii) For instance, y = 1% in [-1.11. 

1, x rational 
iii) For ipstance, f(x) = on any interval. 

0, otherwise 

~usi:$y looking at the type of functions, ask your students if they can tell 
whether critical points or points of inflection exist. 

E14) i) For instance, take f(x) = x4 over [-1,1], Here f a  (0) = 0, but f a  (h) > 0 . . for h < 0 and h > 0. So x = 0 is not a point of inflection. 

1 
ii) For'instance, y s - is concave downwards at x = -1 and concave 

X 

upwards at x = 1. But there is no inflection point in between. 
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INTRODUCTION 

One of the chief abilities that a student of mathematics needs to develo~ is the ability 
to look for patterns and relationships, and to describe and generalise them.. One 

- 

concept that is necessary for their ability to describe relationships of change between - 
variables, explain parameter changes and interpret and analyse the graphs of such 
relationships is that of a 'function'. And, to describe and understand a functioi, the 
student must be clear about the concept of a 'set'. So, the concepts of 'set' and 
'function' are basic to mathematics. Therefore, the students must understand them 1 well. 

"'Sets' are not a problem. We know that chapter very well", said a Class 11 child to 
me. The teachers we met also told us the same. However, they pointed out that 
certain functions, and finding certain sets related to them, were not clear to the 
students. Through this unit. we aim to h e l ~  im~rove this situation. We suggest some - A A -- 
teaching strategies, exercises, activities and projects that may help the students in 
improving their understanding. 

In the unit, we start with supplementing the material on 'Sets' given in the NCERT 
textbook. Then we pick out certain functions that are connected with real world 
situations. We suggest that such functions should be used as a base for introducing the 
children to the concept of a function, its domain and range, and other properties of 

i functions. And, finally, we spend quite some time on ways of helping children use 

[ relationships between functions to draw their graphs. - 

- Objectives 

After studying this unit, you should be able to develop the ability of your learners to 

a give examples and non-examples of sets, with justification; 1 relate the geometric and algebraic representations of Cartesian products; 
a explain the difference between a function and a relation; 

r explicitly present @e domain and range of functions that they come across; 
a correlate the algebraic and geometric representations of a function; 
a construct the graphs of ffg, fg, f k c, (fl if the graphs of the functions f and g 

are given, where c is a.constant; 
r 

a define the inverse of a bijective function, and show the graphs of such a 
function and its inverse. 
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Fig. 1 : John Venn 
(1834-1923) 

Y 

Fig. 2 

4.2 SOME THOUGHTS ON SETS 

Usually, when introducing a learner to the concept of a set, we give them examples of 
the various number systems and their subsets. As non-examples, we give collections 
of object~which are not well-defined. This concept of 'well-defined', though, remains 
very unclear to the students. When talking to them, one of the common 
misconceptions I have found is that a set is any collection of numbers (or letters) only. 
So, for example, for such a student the collection of Navodaya Vidyalaya mathematics 
teachers is not a set. 

Why don't you try some exercises now? 
- 

El)  In your discussions with your learners on 'Sets', which other learning 
difficulties and misconceptions have you found? 

E2) Is (N, India, A, IGNOU] an example of a set? Give reasons for your 
answer. 

You must have tried E2. ~ i ' d  you also ask your students to try it? What were their 
answers? Did most of them say it wasn't a set? This is not surprising because such 
examples of sets are very rarely presented to the students. They need to be helped to 
realise that this is ao example of a set presented in roster form with its 4 elements 
clearly listed. The criterion for an element to belong to this set is that it should be one 
of these four only. So, this.is a well-defined collection. 

Now let us take a quick look at some pictorial representations of sets, that is, Venn 
diagrams. (Here, a note on who Venn is may interest your learners.) Students often 
use them to 'prove' that, for example, (A n B)' = A'uB' , where A and B are two sets 

and A' denotes the complement of A. In fact, several children have given me 
'proofs" like the one in Fig. 2. 

When I ask these students how they can say this argument is true for any two sets, 
they get confused. They don't realise that just showing one situation does not 
constitute a proof - we hqve to check the statement for all possible cases like 
A c_ B, A n B = q ,  etc. Alternatively, we could show them how the algebraic way of 
proving such statements allows us to prove the general case at one go. An algebraic 

I 
proof, of course, also helps them learn about precision, the use of deductive logic, and 
using symbols correctly. 

You could try the following exercise with them now. 

1 E3) Give your students a real-life situation involving three sets, and ask them to 
check some property about these sets. Now, ask them to check this property 

, for all possible sets. Note down the way the children tried it. What kind of 
errors did they make? How did you help them rectify their 
rnisundar~tandings? 

Venn diagrams ar a schematic method of representing various sets. But there are 
certain sets that h ve conventional geometric repiesentations that we are familiar with. 
For instance, R is represented by the number line, R2 by the plane, etc. Interestingly, 

, very few students realise that R2 is the Cartesian product of R with itself. This is 
' because most tea 1 hers introduce their students to the Cartesian product of two sets A 
and B by defining it formally as AxB = {(a, b)l a~ A, b~ B] , followed by some 
formal examples and exercises. Very rarely are the students given real-life situations 



that are modelled by Cartesian products. What's worse, very few teachers bother to 
provoke their students to think about the geometric meaning of A x B. 

For instance, what is the geometric view of ( 1 )  x (3]? Isn't it just the point (1, 3) in 
R ~ ?  And, what about (- 1,1}x{2,5}? When I asked students this, many of them 
showed me the representation given in Fig.3(a). Some showed me the representation 
given in Fig.3(b). Very few, only two in fact, showed me the correct representation 

/ shown in Fig.3(c). 

What is the geometric representation of [0, 11 x R? The students shoulu be allowed 
to take their time to understand why it is the infinite shaded area shown in Fig. 4, 
namely, ( (x,y) I x~ [O, 11, YE Rl. 

You could slowly build up their understanding by asking them to give the geometric 
representations of, say, ( 1 ) x R and R x (1 ). These are the lines x = 1 and y = 1, 
respectively, in the xy-plane. Such exeicises will also help thedrealise that 
A x B # B x A, that is, the Cartesian product is not commutative. (Is it associative? 
Check!) 

And, what is S' x [0, 11, where S' is the unit circle? Which of the figures in Fig. 5 
represent it? 

Sets and Functions ' 

Fig. 4 : lU, l ]  x R 

Fig. 5 



Calculus These are the kinds of questions that can help children see this connection between 
algebra and geometry. Think about this while trying the following exercises with your 
learners. 

E4) Give tlhree situations from the lives of your learners the mathematical models 
of which require the use of Cartesian products of sets. 

E5) Give the geometric representations of 

E6) . While wing E4 and E5, what types of difficulties did your students face? 
what kinds of errors did they make? 

Let us now discms some aspects of a related and very basic concept of mathematics 
about which quite a few students have conceptual problems. 

4.3 FUNCTIONS GALORE! 

Fig.6 : The path of a 
projectile is 
parabolic. 

To begin with, why don't you recall the strategy you use for introducing a function to 
children? Do you give them examples from their surroundings and/or from other 
subjects they're studying? The following exercise is about this. 

E7) List 5 situations related to your learners' daily lives that give rise to functions, 
Clearly define the functions in each situation, and their domains and ranges. 

Regarding the exercise above, one teacher gave me an interesting answer to it. She 
said, "There is an example which works beautifully. Consider the rule which 
associates every man with his wife. This would be a function from the set of all men 
into the set of all women provided that every man was married and polygamy was 
prohibited. In this case, bachelors would not exist, the range would be the set of all 
wives (i.e., married women). Some women could remain single (unless the function is 
made onto). Polyandry would be legal (unless the function was one-to-one)! 

Depending on the sebsibilities of the class, one could tell it like a story with 
embellishments: God created men, who got lonely. So God created women (without 
bothering to count), md asked each wan to choose, a wife, but only one, so as not to 
be greedy! Several men chose the same woman, and some women remained single. 
Later on the wives' association took a delegation to God and said, "One is bad 
enough! Why do be have to cope with more than one?'So God made the function 
one-to-one, and so on. 

I 

6or gender sensitivity purposes, the roles of men and women can be interchanged off 
and on!" - 

L 

O . Demand x 

Some people like to idtroduce their students to functions through graphs that the 
children may come across in their environment - on TV, in magazines, while 
studying other subject$, and so on. For instance, while studying projectiles, they see 
graphs like the one in Fig.6. While studying economics, they see demand and supply 

' curves like the one in Rg.7. In newspapers and magazines, they may see temperature 
curves as in Fig.8. 

Fig. 7 : D e n y d  curve 
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Using these pictorial representations, you can ask various questions that would nudge 
them towards arriving at the defining properties of a function. For instance, you 4 

could ask them to observe how many values of y (the dependent variable) correspond 6' 

to a given value of x (the independent variable), if there is a value of y corresponding L 
to every value of x, and so on. So, for example, for each demand point, we get a price 
corresponding to i t  (in Fig.7), and only one price. B 

68 
You could also use such graphs to clearly demonstrate the domain and range of the 
function. F r instance, in Fig.7, you can help them see that the domain is ( x ~  R 1 x > K i 
0 )  and the ra ge is {YE R I 0 < y 5 10). In fact, children can be helped to understand 
many aspects of functions Tn several ways. A glimpse into one such classroom 

- interaction is given below. 

Example 1 : A government school teacher, Ms.Kamla, had invited me over to i? IS 

- observe the teachingllearning processes in her classroom. When I arrived, she had 

present class with asking them a few review questions. Then she asked her students to 

30yk 
already introduced her students to functions and some related concepts. She began the 0 12 16 20 24 28 X 

Date 
do the following problem : 

Fig. 8 : Temperature 

Give me afunction f which has all the following properties : 

i) f is undeBned at x = -3 

ii) f has a zero at x = 2. 

I 
iii) the domain off is [- 6 ,  w[\ (-3) 

curve 

iv) fix) 2 0 V x  in the domain off  

v)  (5, 15) lies on the graph off 

Karnla allowed the children ta discuss the problem in groups. While their discussions 
were going on, she went around the groups, sitting with them and sharing their ideas. 
After 15 minutes, the groups were asked to present whatever ideas they had gathered 
till then. 

x - 2  
Group A started with giving f(x) = - . Karnla asked the presenter to explain the 

x + 3  
reason for this. He explained that the first property required f to have x+3 in the 
denominator, and the second property was satisfied by x - 2 in the numerator. Here, 
Kamla asked him how the other properties were satisfied. At this point many children 
started shouting out various answers. So, she asked Group B to come up and give 
their response. 

I This presenter modified the earlier function to f(x) = 1 - 1 )  . Bur, some 
.r 

I other students @jetted, saying that now property (v) was not satisfied because f(5) = 
I 

# 15. "So", asked Kamla, "how can we change f to get f(5) = 15?" Several 
, 

suggestions came forth, namely, add 

Each suggestion was tried out, modified or rejected. With more such discubsions, the 
final definition that the class agreed to was 

f(x) = */el for XE [- 6, w[\ (-3). J11 x + 3  

However, two children in Group D felt that they had another solution. Karnla asked 
them to present it also. According to them, since y = 5(x - 2) is the line passing 
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through (0.2) and (5,15),f(x) = x + 61 5:i32)/ is also a solution. But some children 

said that, again, (5 ,  15) did not lie on this. So, these two modified it to f(x) = 

. Ultimately, they got the same function. 

By now the class was ending. So, as homework, Kamla asked all the children to see 
if other functions could also be found with the same properties. 

Apart from interactions like the one above, real-life problems can be brought into the 
classroom for the children to try and analyse and solve. For instance, you may be 
interested in the following report from a teacher, Chitra. 

Example 2 : Chitra had given several examples of functions in daily life to her Class 
11 children, and asked them to think of many more. In this class she asked them to 

. consider the following problem : 

A tempo carrying many bags of rice to the district godown starts out along a straight 
road at 50 km.p.h. After a haw hour, the driver of a passing car tells the tempo 
driver that one bag fell ofithe tempo a few kilometres earlier. The tempo driver 
retraces his route at a speed of 30 km.p.h. After 10 minutes he finds the bag. He 
takes 5 minutes to Load it back on and tie the bags carefully. Then he rushes to the 
godown at 70 km.p.h. Three quarters of an hour later he has reached the godown. 

In the situation above, lets  be the function describing the distance of the truck from its 
starting point at time t. Give an algebraic rule for defining s, and sketch its graph. 

There was a lot of discussion among the children. All the students wanted to first 
draw up a table of values. So, this was finally done on the board with all the children 
giving their input. 

t(in min.) 0 30 40 45 90 01 
Here Chitra pointed out that this was only a table giving values at the times 
mentioned. Weren't other values needed for drawing the graph? Immediately, a 
student, Mahmooda, said that she could already draw the graph, which she did on the 
board (as shown in Fig.9). 

Fig. 9 



-- 

Some children expressed their doubts about this curve because they said she had only 
joined the points in the table. How did she know that the curve would behave like 
this in between also? 

At this point, the teacher asked all the children to divide up into groups. Then she 
asked all the groups to have a discussion and come up with the algebraic definition of 
the function. Half an hour later, and with a lot more of 'buts and hows' and trying 
out and rejecting various rules, the children jointly came up with the following 

1 definition. 

Now, Chitra asked the children to carefully check what was written on the board. She 
10 wondered, for instance, how there can be two different rules in the interval 0 5  t < - ? 

-60 
Are there two different functions, she asked? As expected, this led to a lot of 
confusion. The children tried to sort out the problem in different ways, but to no avail. 
Finally, Chitra decided to teach them how to translate the interval. She told them that 

30 . 1 since the second interval should be from - , l.e., - onwards, she would add -1 to this 
60 2 2 

1 10 1 part of the interval so it would become I< t +-I-+- 
2 -  2 60 2 

(= 3). 
1 1 Now, call t + - = tf, then t = tf - - and 
2 2 

s(t') = 25 - 30(t' - L) for I 5  t ' s2  
2 2 3 

2 And then she reminded them that whether we write s(x) = 40 - 30x, I< x 5-, or s(t) 
2 -  3 

2 2 = 40 - 30t for 1 5 t 5- , or s( t' ) = 40 - 30 t' , I< t's- , the rule of definition remains 
3 2 -  3 

1 2 I the same. So we can write s(t) = 40 - 30t,-51t 5- . 
I 2 - 3  
I 

' Again, fo the last piece of the definition ~f s, she dsked the children to re-define it 4 5  I from t = - on. They did it similarly, and finally defined s throughout as below 
60 

Next, she got them to relate their definition, with the grbph Mahmooda had d r a w ~ a n d  
see if they tallied. Yhen the students did'so, they readily accepted her geometdc 
representation of s(t). 

X 

Sets and Functions 



Calculus Chitra just reported (one such interaction. Two sources of errors that were clarified 
during this discussicpn, but haven't been mentioned above, are commonly folSnd in 
children. They ara given below. 

I 

Most of the chilciren believe that the units taken along both the axes have to be the 
same. For instahce, Mahmooda and others, in the example above, couldn't 
understand that if 10 minutes are depicted by a 1 cm. length along the t-axis, then 
10 km. can be depicted along the s-axis by a 2 cm. length. 

Most children tend to ignore the units of measurement used or required in the 
problem. For instance, in the example above'the time interval had to be measured 
in hours if distance was to correspond to km. per hour. Otherwise, the distance 
values would nead to be altered to those corresponding to km./min. 

Such misunderstandings, and others, can be cleared by allowing the children many 
opportunities to apply their minds on these points. Each time we must get them to 
articulate the reason for choosing the same or different unit lengths (for instance). 

Many exercises need to be done to build the conceptual understanding of the learners, 
and, in particular, to help them relate the algebraic and graphical representations of 
functions. You may like to do the following ones yourself, and with your learners. 

Give an example, with justification, of a curve which does not represent a E81 function. 

E9) Give the algebraic and raphical representations of a function whose domain is 
{ X E R [ X < O ]  u {XER f x>5)  andrangeis {1 ,2 ,3 ,4 ) .  

~ 1 0 )  How would you help a-student realise that two different looking graphs can 
actually represent the same function? (e.g., if you use different unit lenths 
&ong either axis, the graph changes.) 

One of the difficulties that learners face in the context of functions is related to the 
composition of functions - when can two functions be composed? They are usually 
given a rule that for two functions f and g, g o f is defined if 

(range off) c (domaiq of g). But, then, if g o f and f o g are both defined, is 

1.1 ind f o g = g o f ? For insance, consider f : R --+ [ O ,  1 ] : f(x) = - 
x2 +1 

g :  [ O ,  I] + R :  g(x) =x. Thengo f(x) = - 1x1 I x '  and fog  (x) = -. 
x2 + I  x2 +1 

However, domain (g o9 f) = R, and domain (f o g) = [O, 11. 

So, though it appears lhat g o f = f o g b' x, this is not true. This is only true for every 
x in the intersection of their domains, i.e., [0, 11. Since the domains of 
g o f a n d f o g  arenotequal , fog+gof .  . 

Here's a nice exercise for you now. 

El  1) Ask your learners to do the following exercise. . 
Give the graphs of twofunctions f and g chosen by you in a manner that f o g 
is defined. Aldo give the graph off o g .  What, if any, pattern do Gufind that 
relates the graphs of5 g and f o g ?  



Analyse their  solution^.^ What insight has this exercise given you about their 
understanding of the concepts concerned? 

There is one type of function that students rarely think of as a function, namely, a 
sequence. As you know, a real sequence (a,), is actually a function cp : N -+ R : cp(n) 
= a,. Students are familiar with arithmetic and geometric sequences, so they can be 
helped to see these objects as functions. You could do this through exposing them to 
real-world problems like the following : 

Q) Suppose you have Rs.500/- saved in your drawer at home. Now suppose, you 
need to help a friend of yours by giving her Rs.50/- each week. 

i )  How much money will you have at the end of the 3rd week? The nth 
week? 

ii) What type of sequence is being generated? 
iii) Whatfunction is dejined by this sequence, and what are its domain 

and range? 
iv) Graph thefinction. What shape is the graph? 

Similar questions can be asked for situations that generate geometric sequences, and 
hence exponential functions. 

Why don?t you do the following exercise now? 

Sets and Functions 

El  2) Ask your students to find a recurslve formula for representing the following 
situation. Also ask them Questions (ii), (iii), (iv) above for this situation. 

Suppose you hold a ball 2 metres above the ground, and let it go. Each timeit 
bounces, it returns to a height that is 80% of the height from which it started. 

Note down the types of errors the students made. Also, talk to them to find out 
what their reasoning was behind making such errors. 

There is a'very important aspect of any teachingnearning process that many of us tend 
to ignore, namely, continuously assessing the level and kind of understanding that the 
learners have developed. In several studies carried out with children in Class 10 and 
above, it was found that students had very narrow or erroneous views of what a 
function is. For instance, many of them believe that 

a function should only be given by a single rule. So, for example, a piecewise 
2x, x 2 0 

function like f(x) = is often considered as two functions. 
-3x,x<O 

the graph of a function must be continuous. So, for example, the graph in Fig. 10 
doesn't represent a function for them. 

" 
a function is always one-one. So, for example, f(x) = 0 t/ x E R does not define a o 1 2 3 4 5 6 3( 
function because for xl # x2, f(xl) = f(x2). This is due to a confusion arising from ~~~PILIL- 

the defining property of a single-valued function. Fig. 10 

any algebraic formula will define a function. So, for example, these students 

believe that f(x) = * Jx defines a function f, and many believe that f(x) = 3 
doesn't define a function 'because there is no x on the right-hand2ide'. 

I. 



Calculus This variety of conceptual problems about 'function' has been discovered by giving 
the students vdous  assessment items to do. This is followed by interviewing some 
of the students to find out their reasoning behind their right or wrong responses, 
rather than just marking them right or wrong. After all, errors open windows for us 
into our students' minds! They offer us an opportunity to see how the students 
reason and what their understanding is. We suggest that you do the same with your 
students, which is what the following exercise is about. 

E13) Draw up about 5 or 6 assessment items to give to your students for assessing 
their understanding of functions. Analyse the results. What are your 
conclusions about their conceptual clarity of this concept? How different are 
they from the 4 points we have just given above from the other study? 

Now, interview 5 of these students regarding their responses. What insight 
did this give you about their reasoning about functions, and your teaching 
method? 

In this section, we have spent a fair amount of time on the geometric representations 
of functions. Let us now consider an interesting aspect of this that is often ignored in 
our classrooms. 

* 

GRAPHS OF RELATED FUNCTIONS 

Let me start with a small 'anecdote, which may seem unrelated to you. I asked a Class 
3 child who had studied multiplication what 18 x 5 was. She used the algorithm and 
gave me the correct answer. So I asked her what 18 x 6 was, and she started doing 
the algorithm again. She had clearly not been taught to look for relationships between 
18x5and  18x6. 

Why I've related this incident is because this is the same problem that our older 
students face. Do we encourage the* to see relationships between the graphs of, say, 
f and -f ? Or, the graphs of f  and I f I ? Or, the graphs o f f  and f -', where f is a 
bijective function? Since we don't, even though a child may have drawn the graph 
of x2 from scratch, she'd start all over again if asked to draw the graph of x2 - 10, 
rather than just translating the earlier curve. Let us look at what we can do to improve 
the situation through a few problems of the kind we need to get our students to solve 
collectively and individually. 

Problem 1 : Draw the graphs of the function f, given by f(x) = x, and 1 f 1 in one 
diagram. Using the graph of I f I , obtain the graphs of g and h given by 
g(x) = 1 x - 1 1 and h(x) = 1 x 1 - 2. 

Solution: Since f and I f 1 coincide for x 2 0, the graph of I f 1 is the same as that off 
in the first quadrant. Again, since 1 f 1 (x) = - f (x) for x < 0, the graph of 1 f 1 is the 
reflected image of the graph off  in the x-axis in the second and third quadrants. So, 
their graphs are as in Fig. 11. 

yt 

4 . ,- - -*. . - I 
Fig. 11 : The graphs off and I f I, where f(x) = x 'd x E R. 



- - - -- - -- - 

Sets and Functions 
In Fig.12, we see that the graph of g is obtained from the graph off  just by translating 
it through 1 unit to the right. Again, the graph of h is obtained from that of 1 f I by 
translating it downwards through 2 units. 

Fig.12: Thegraphsof I f ( ,g= If-11 a n d h =  If1 -2,wheref(x)=r X E  R. 

Problem 2 : Construct the graph off  given by f(x) = I x + 1 1 + I x - 1 I , knowing the 
graphs of fl and f2 given by f~(x) = I x + I I and f2(x) = I x - 1 1 'd x E R. 

Solution : The idea of this example is to relate the graphs of two functions with the 
graph of their sum function. ,So, yau can ask your students to construct the graphs of 
f, and f2 first (as in Fig.13). From these graphs let them find out how to find the 
graphs off. Through peer group disdussions, or on their own, they may realise that 
any point on the graph off is obtained by adding the ordinates of the two graphs at the 
same abscissa point. 

So, to get f from f l  and f2, @e.poini A, for instance, is found by adding the ordinate 
values corresponding to x = OD, which are BD and Cd. In other words, they would 
find the corresponding point on f by adding the vertical length equal to CD at B, 
which is AB. In this way they would get all the points. (Did they note that at x = 1 
and x = -1, f2 (respectively f,) has ordinate O? Hence, they don't contribute to f.) 

A 
Problem 3 : Construct the graph off  defined by f(x) = - . Hence construct the 

x2  + 1  

Solution : You can ask your learners to apply their knowledge for finding the graph 
off  ( as in Fig.14). 

, 



Calculus, 

Fig. 14 . 
Next, they should look fof cues from this graph for obtaining the graph of g. For this, 
they need to fiad relationships between the two functions. For instance, do they see 
that for x > 0, g(x) = f(x)? If they do, they would know that the portion of the graph 
of f  in the 1st md 4th quadrants will also represent g. 

* 
Next, do they note that g is an even function? .Using this, they can see that the left half, 
of g is obtained by reflecting the right half in the y-axis. Hence g is as given in ~i~.l5. '  

4 

I 
Fig. 15 

Why don't you try the following exercises with your learners now? 

E14) Graph the functions f, g, h and 9, defined by f(x) = [XI, g(x) = f( I x I ), h(x) = 
f(x + 3), 9(x) = -f(x). Also give the domain and range of each of these 
functions. 

While doing the problem what kinds of difficulties, if any, did your learners 
face? What methods did you use for resolving their difficulties? ' ,  

In our interaction with teachers and students, we found that a common problem was 
how to find whether a function is invertible. And, if it is, then what is its inverse, and 
how are the graphs of the two functions related? One such interesting discussion is 
narrated belcw . 

Ms.Azra was interacting with high school teachers. They were discussing 
trigonometricfinctions. She drew the graph of the sinefirnction (Fig. 16(a)), and 
asked them if this function was bijective. One of the participants immediately marked - - 1 :, :I, and said that this pan ofSthe portion in the graph restricted to the domain -- - 

was bijective. Then Azra took its reflection in the line y = x, and said that this was - - 
now the graph of sin-'restricted to -- , - (see Fig. 16(b)). 1 41 



(b) 
Fig. 16 

At this point a teacher in the group objected saying, "This can't be the graph of sin-' 

1 because its values are numbers, and whut you have along the x-axis are angles. " 

1 Do you think this person's objection is valid? Why? How would you explain to him 
I that [o, 7~ [ is a subset of R? 

And now let us continue with problems of the kind that our students need to be 
exposed to regarding connections between f and f-'. 

Problem 4 : Given the graph of a bijective function f (as in Fig. l7), construct the 
graph off " 

I Solution: The inverse g of the function f is the reflection of f in  the line y = x. (Why?) 

I/--# 
So, let us draw both the graphs in Fig.18. 

Sets and Functions 





1 UNIT 5 LIMITS AND CONTINUITY 

1 Structure Page Nos. 

5.1 Introduction 2 1 
Objectives 

5.2 Introducing Limits 21 
5.3 Introducing Discontinuity 30 
5.4 Summary 3 3 
5.5 Comments on Exercises 3 3 

5.1 INTRODUCTION 
- -- - - - - - 

The passage to calculus and analysis is through the gateway of 'limits'. 
Unfortunately, this concept is a common stumbling point for most fresh calculus 
students. Therefore, they somehow manage to cope with calculus without-really 
trying to understand this concept, and its allied concept of 'continuity'. In particular, 
students usually confuse the limit with the value of a function. In this unit, in Sec.5.2, 
we give some suggestions and strategies to help students get over such 
misunderstandings. We also suggest some teaching strategies /classroom activities 
that may help the students understand the concept in a better way. 

In the next section, Sec.5.3, we discuss continuity. The focus of the discussion is 
teaching strategies for overcoming students' confusions and errors regarding this 
concept and its complement, 'discontinuity'. 

Apart from this unit, we have developed a related CD, 'Limits - A Glance Through 
History', which you can see at the Extended Contact Programme, or when it is 
broadcast on DD-I. 

Objectives 

After studying this unit, you should be able to develop the ability of your learners to ', 

explain why the limit of a function at a point in its domain exists, and to find it 
if it exists; 

explain why a function is continuous (or otherwise) at a given point. 

5.2 INTRODUCING LIMITS 

-When we use the word 'limit' in ordinary conversation, we m6an 'boundary' or 
/ 'extreme'. Is this the meaning in the mathematical context? Can we help students to 

relate the two meanings so that they can develop an intuitive understanding of this so- 
, called 'difficult' concept? Giving our learners real-life examples from the world 

around us, like the following ones, may help in this matter. 
I 
I 

You could ask your students to consider the time duration for running a 100 metre 
race. There have been many world records created and broken in this. It has been 
run in a record time of 9.79 seconds. Maybe the record is bettered in future - 9.78 
secs., 9.77 secs., etc. But, it is likely that no one will ever be able to finish the race in, 
say, 3 seconds. So, there is a duration that no one will be able to better, but records Fig. 1 
will get closer and closer to it. Let us assume that this duration is 9.7 seconds. This 
would be the minimum possible duration for completing the race. In a sense, 9.7 

21 



One of the difficulties students face is dealing with infinity. And, this is compounded 
when they are required to deal with limits involving infinity. The students can be 
greatly helped ih this matter with a visualisation of.how a function behaves at larger 
and larger values of its domain. 

How do we explain to them what a limit is as x + m ? Since = is not a real number, 
we cannot describe closeness to m in terms of intervals around-, as there is nothing to 
the right of =. But we can describe the closeness in terms of open intervals of the 
form ]k,m[ = {XE R:x>k]. Clearly, the larger k is, the 'closer' we are to m. So, we 
can help them interpret lim f (x) = L to mean that f(x) can be brought arbitrarily close 

5+- 

to L, provided x is sufficiently close to m, i.e., f(x) can be brought arbitrarily close to 
L, provided x is sufficiently large. 

Diagrammatically, we can show them the asymptotes, as in Fig. 6, to make the point. 

Limits and Continuity 

Fig. 6 : Graph of f(x) = - , x E R \ { ~ ) .  
x - 2  

You could ask your students to study the graph and discuss what happens to f(x) as 
x+-  o r a s x + m .  

Using examples as shown in Fig. 6, you could also help the students to clarify their 
understanding of infinite limits. Here, the student needs to understand that the 
statement ' lim f (x) ==. ' is really saying that 'as x gets closer to 2,the functionrf(x) 

x-12 

becomes larger and larger.' Since ' m ' is not a number, we cannot say that the 
limit exists, in the w>y we can for a number by taking a neighbourhood of the 
number. The stud'lnts need to understand (and see) that as x approaches 2, 

1 
1 

-becomes arbitrarily large, and it can't stay close to any finite number L. So, in 
r.- 2 

- effect, - has no limit as x approaches 2. 
x - 2  

Another example to make the point could be of a polynomial function of degree 1 or 
greater, which will eventually take off to infinity as x tends to - or -. 

Why don't you try an exercise with your learners now? 

E6) Give the students some examples of functions to explore the limits to infinity 
of a function and draw conclusions about vertical and horizontal asymptotes. 
What kind of errors did they make? What was their reasoning behind these 
errors? 
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(c) 

Fig. 7 

A major activity that may help the students to become comfortable with 'infinity' is 
given below. \In fact, doing this activity can help in reinforcing several concepts and 
processes like\ learning about fractals, inductive reasoning, spatial understanding, etc. 

Activity (Gdnerating Fractals) 
I 

In thik activity,, students are introduced to a method of generating fractal curves. They 
apply this method 'by hand', using pencils and graph paper to generate the first few 
iterations of a fractal curve. Various concepts about the curve's properties are 
investigated. 'What if ' questions lead to discovering patterns, relationships, and 
investigating the idea of a limit involving infinity. 

Materials : Gdaph paper, pencils, the computer programme application "Snowflakes" 
(if a computerlon which to run this application is available). 

Steps in the Adtivity 
I 

1. Ask each student to draw a horizontal line segment 9 units long on the graph paper 
(see Fig. 7(8)). (For convenience, let one unit be equal to the length of a side of 

I one square on the graph paper.) After they go through a couple of more steps, the 
students nedd to be asked why they started with 9 units, and not 5 (say). 

2. Next, the stqdents should divide this segment into three equal parts, and replace 
the middle part by three segments, each of length 3 units - moving vertically 
upwards 3 units, then rightwards 3 more units, then downwards 3 units. In effect, 
they place three sides of a square with side 3 units instead of the middle segment 
(see Fig. 7(b>) on the middle of the original line segment. 

3. Repeat Step 2 with each of the five segments obtained in Step 2. That is, the 
middle third ~f each segment from the first iteration is replaced with a similar 
square bump (see Fig. 7(c)). 

4. And continua repeating Step 2 with each segment formed. 

Each step should be drawn separately. 

To help the studeats focus on the point you want them to, you could do the following: 

After, say, 4 iteradons, you could ask them how many line segments they drew at each 
step. Do they see la pattern emerging in the number of line segments at each iteration? 
How many line segments would it take to draw the next iteration? You can ask 
similar questions about the length of the curve at each iteration. In fact, ask them to 
make a table like the following one. This would be helpful in organizing the 
information, as well as helping the students identify patterns. .. 

Each of the last thrae columns are geometric sequences. You could encourage your 
students to discover this themselves, in groups, or as a class. The last column in 
particular can be useful as,an exercise in number sense. The following are some 
possible discussion questions. 

What will the nekt row of the table look like? 
What patterns d o  you notice in the columns? 



What would the tenth row of the table look like? 
What is happening to the total length? How much is the,length changing each 
time? (It changes by a different amount each time. The amount it changes by is 
increasing.) 
How else might we quantify the rate of increase? (If they got the patterns for the 
first two columns, you might help them see that they increase and decrease, 
respectively, by a constant ratio. How might they figure out if that is happening in 
the third column? Some students may need a hint like "Try dividing length one by 
length zero, and length two by length one. Do you notice anything?") 
If you want to extend the students further, once they work out what the ratio is for 
the third column, you could ask them to discuss what would happen if it were 315 
instead of 5/3,  etc. 

There are computer programmes like 'Snowflake' that students can use also to see 
how the curve changes with each iteration. Such a programme very easily shows them 
several interactions. 

To help them get used to 'limit as x + =', ask the students what would happen 
eventually to the area under the curve if we kept increasing the number of iterations. 
They can experiment by increasing the iterations. What do they notice? Will the total 
area under the curve and above the line in Step 1 keep getting bigger (see Fig. 8)? 

Fig. 8 : Last iteration using 'Snowflake' in which the shape of the curve is still clearly visible 

The area will continue to increase, but it increases by a smaller amount each time. 

I 
Notice how, as the iterations increase, the overall shape of the pattern seems to be 
"filling" a triangle. What is the area of that triangle? Will the area bounded by the 
curve ever get bigger than the area of the triangle? 

I Further discussions in this activity include: 0 
Calculating the difference between the area bounded by the curve and the area of 
the limiting triangle by drawing the triangle around the variops iterations and 
adding up the area of the remaining spaces. 

1 Discussing the fact that the length of the curve goes to infinity as the number of 
I iterations goes to infinity. 

Here's a related exercise now. 

E7) Design an activity for your learners with the objective of helping them 
develop an understanding of lim f (x) =L. Try it out with your learners, and 

x--f= 

note down their reactions and other outcomes. 

I Let us now discuss ways of connecting the understanding of limits you would have 
developed in your learners with the idea of continuity. 

Limits and Continuity 
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Here you need to be 
very careful in your 
choice of examples 
and non-examples of a 
concept. Otherwise 
some other unintended 
dommon features may 
show up which are not 
part of the definition o f  
the concept. 

By the time you wadt to introduce your students to the notion of continuity, they 
would be familiar with many kinds of functions and their graphs. While studying 
'limits' they would have come across functions that have gaps, breaks or jumps in 
their graphs, as well as those that don't have such features. You can use these 
examples and non-ekamples to introduce them to the idea of continuity. 

I 

As we have often suggested throughout the course, a good way of helping the learner 
to learn a concept islto allow her to construct her own understanding of it. The 
following situation may interest you, in this regard. 

Example 2 : The teacher, Kumar, was quite confident about his students' 
understanding of limits. A few of them also seemed to be familiar with 'continuous 
functions', as he discovered when he chatted with them. However, he wanted to 
introduce all the students to this concept. So he drew several figures on the board (see 
Fig. 9), and told thejchildren, "This (pointing to (b)) is a continuous function, and 
these (pointing to (4) and (c) )  are not continuous. Why do you think 1 have called (b) 

(b) -. 

Fig. 9 

continuous? What is the property it has that the other two don't have?" 

A 
Y Y4 . Y 

After looking at the graphs several students spoke out together. Kumar asked one of 
them, Karnla, to shsre her understanding with the others. She said that 'continuous' 
means one line. The middle one is a line, while the others are two lines. 

/. 

Here is when Kum& realised that unwittingly he had given diagrams that were giving 
some children misconcepts. So, he immediately drew some more diagrams (see Fig. 
lo), and again pointed out the continuous ones. 

,/ 

Fig. 10 1 . .  
Again he asked the children the same question. discussion, the children 
concluded that "if there is only one curve, with one it is a continuous 
function. If the curve is in many pieces, then it is 

One student yelled out that it is a graph drawn without lifti g pencil from paper. i Using such reactions, Kumar gradually led his learners to e formal definition of 

F 
X b 

X 0 0 
b 

X 0 



continuity of a function. He also helped the students realize how they needed to use 
their knowledge of limits studied earlier to proceed with checking a function for 
continuity or discontinuity. 

As a next step, he asked the students to divide up into groups. Each group was given a 
function to graph and find, geometrically as well as algebraically, whether it was 
continuous at a point. 

Through such exercises, and full class discussions of the solutions, the students 
realized that the continuity of a function at a point a means that f(x) gets closer and 
closer to f(a) as x gets closer and closer to a, i.e. , the function moves continuously 
towards its actual value at a as x moves towards a. Hence the word "continuous". 

Kumar ended the session with asking the children to note down, as homework, where 
they see continuous curves and discontinuous curves in their homes or outside. 

These types of activities help the students to learn the subject in an informal manner. 
This helps in interesting them in the subject. 

The important point that you need to help your learners realise during your interaction 
with them is that there are two numbers we consider when we consider lim f(x). 

x+a 

One is the number that f(x) is getting closer and closer to as x moves towards a. The 
other is the value of the function at the point a. These two numbers are distinct 
unless the function is continuous at x = a. 

*AI~O,  the students need to realise that the symbol f(a) tells us nothing about the 

function at any point other than a. Therefore, the two expressions lirn f(x) and f(a) 
x+n 

are independent of each other. The students need to understand that the value of 
one has no bearing on the value of the other. 

Here's an exercise about this now. 

. E8) List at least two examples each to illustrate the following possibilities to your 
learners, where f is a function. 

i) lirn f (x) exists but f is not defined at a. 
x+a 

ii) f(a) is defined, but lirn f (x) does not exist. 
x+a 

iii) Both lirn f (x) and f(a) exist, but are not equal. 
x+a 

iv) lim f (x) exists and equals f(a) 
x+a 

v) Neither lim f (x) nor f(a) are defined. 
x +a 

Hand in hand with 'continuity' goes 'discontinuity'. The different situations in which 
a function is discontinuous have been suggested in E8. Your students could be 
familiarised with different kinds of discontinuities like 'jump' and 'removable', along 
with explanations for why these names are used. Appropriately chosen examples 
would help you to make your point. 

For instance, you could tell them why-x = -1 is a removable discontinuity of f defined 

Llrnlts and Contlnulty 

4x+4 
by f(x) = - Vx E R \.{-1,l) . Ask them to draw the graph (see Fig. 1 1) and 

x2 -1 
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4x + 4  
Fig. 11 : Graph of - , x # f  1. 

x2 -1 

observe what happens as x +-1, Do they see the small gap or hole at x = -l? Do 
they realise that this means that f(-1) does not exist, but the function approaches -2 as 
x gets closer and closer to -1. In other words, the limit of the function as x tends to -1 
exists and is equal to -2, but f(-1) does not exist. However, if we define f at x = -1, 
by f(-1) = -2, then this point of discontinuity would be removed. This is why x = -1 
is a removable discontinuity. 

A question may arise in the mind of the students -can all discontinuous functions be 
made continuous in this way? Doing the following exercises will help you to explain 
to them why the answer is 'No'. 

E9) Give an example to your learners that would clarify to them what a 'jump 
discontinuity' is. 

E10) Determine whether the following functions are continuous at the points x = -3 
and x = 1. At the discontinuous points, indicate which condition of continuity 
does not hold. 

(a) 
Fig. 12 

El  1) i) Design an activity for your learners to help them improve their 
understanding af 'discontinuity'. 

ii) What questions did you keep in niind while designing it? 

iii) To what extent did the activity not achieve its aim, when you tried 
it out with your learners? 



Limits and Continuity 



Calculus Regarding mea$urable limits, there is, for instance, an upper limit to the 
amount of rice 8 given student can eat at one meal. Think of other examples 
that your studerjts can relate to. 

E2) From high schopl geometry, you would recall the result: 

Ifan n-sided regular polygon is inscribed in a circle of radrus I ,  and a second 
circle is inscribed in the polygon, then the inner circle has radius cos (7u'n). 

In this pattern, the radii of the circles are 
cos-d3, cosZ (d3), cos3(n 13) , . . . 
Hence, the radills of the nth circle is cos"(d3), i.e., (1/2)" . 

\ 
As n tends to infinity, the resulting radius tends to 0. 

What were the dther patternslrelationships that your students found? Did they 
think of other extensions of this exercise? If so, what were they? 

E3) Ask your student to look at the graph of the function (see Fig.13). 

A 
Y -  

Fig. 13 

Do they observe any holes in the curve? What happens at x = 2? The value of 
the function at x t 2 is not defined. However, the function value approaches 
-2. Therefore, the limit of the function as x tends to 2 is -2. 

E4) F Q ~  instanc 

E5) f(x) = cos nlx is an oscillating function and it oscillates between -1 and +l. 
What happens in the case of x cos nlx? The students need to consider both 
the cases, namely, x > 0 and x < 0. 
Let them draw the graphs in both cases and see what happens (Fig. 14). 

i) x > O :  -1 6 cosdx  5 +  1. Therefore, -x I xcosnlx Sx. 



n By the sandwich theorem, we find that lirn x cos - = 0 
x+o X 

n 
ii) x < 0 : They can proceed as before to find that lirn x cos- is the 

x+o X 

same, namely, 0. 

aE6) For instance, you could take the functions f defined by 

How did they go about the task? Did they observe that y = 0 and y = 1 are 
horizontal asymptotes for the second function? 

A common mistake regarding the third function often made by the students is 

that they take 0 = x, not f x. So, they ignore the case when x c 0. 
Record other errors they make. 

E7) For instance, ask them to draw regular polygons of more and more sides. Do 
they note that the n-gon tends to a circle in the limiting case as n + w ? The 
students can also be asked to work on it on a computer where this can be 
clearly seen. 

E8) It will be helpful for your learners if you give them the geometric and 
algebraic representations of the less simple functions. 

1 x2 + 5  x<-1 

E9) Consider the function f(x) = 6x x = - 1 . Check the function for 

2x+3 x>-1 

continuity at x = -1. Using its graph, explain why it is a 'jump' discontinuity. 
There is no way in which the function can be redefined at x = -1 so that it 
becomes continuous. 

E10) (a) The function is continuous at x = -1, but not at x = 1 as there is a 
small gap there, i.e., the function is not defined at x = 1. So, x = 1 is a 
removable discontinuity. 

(b) x = -3 is an asymptote. The function has a limit as x -+ -3, but the 
function is not defined at x = -3. Hence the function is not 
continuous at x = -3. This is a non-removable discontinuity. 
At x = 1, it is continuous, since lim f (x)=f (1). 

x-1- 

E l  1) Your design would depend on your answer to (ii). Questions like the 
following need to be answered. 

What is its objective? 
What is the nature and quality of the students' participation? 
What materials are required? 
How much time is required? 

You q y  choose to just give a variety of exercises, or a game that can draw 
the whole class into an animated discussion on the concept, or'another 
activity. 

Llmlta and ContInulty 



Calculus i + 1, xis rational 
E12) For example, f(x) = 

0, xis irrational 

Ask your students to pick any point in the interval, say xo. Ask them to find 
lim f(x). 

X 3 X 0  

How did the students go about it? Did you allow a peer group discussion to 
take place? What kind of conceptual errors showed up in such discussions? 

Upon reflection, in what way has this helped you assess your teaching 
strategy? Please record all these points in your logbook. 

E13) Let us draw the graph of f(8) = sec 8 for 8~ [0,- [ (see Fig. 15). The students 
should be able to explain why f is not continuous at 8 = n / 2 or 371 / 2. They 
should also explain why it is continuous at every other point in the interval. 

Fig. 15 
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INTRODUCTION 

In the last two units we focussed on concepts that are pre-requisites for studying 
calculus. In this unit, we deal with problems students face in understanding 
differentiability. As we have said earlier, the understanding of 'derivative' is 
dependent on how well 'limit' has been understood by the leamer. Therefore, much of 
what has been discussed in the previous unit, is relevant to the issues taken up in the 
present unit. 

We begin this unit with suggesting ways of helping students becorrie comfortable with 
the notion of differentiation. Here, a remark made by an NVS teacher is relevant. He 
said, "My students can differentiate most functions, but they do i t  mechanically. They 
don't uaderstand the underlying process." In Sec. 6.2, we look at ways of helping 
students assimilate this underlying process. 

There are several misconceptions regarding when a function is differentiable and when 
it is continuous. In Sec. 6.3, we look at some examples that may help in removing 
these misconceptions. 

Finally, in Sec. 6.4, we take up the use of the derivative for curve tracing and 
analysing the behaviour of a function. Students often miss the significance of the first 
and second derivatives in this context. They also get confused between concepts'like 
'critical (or stationary) point' and 'point of inflection'. We have suggested an 
approach that has been found helpful by some teachers in alleviating this problem. 

- 

As in the previous units, this unit will be of use only if you actually try the exercises 
and activities with your learners. You must follow this up with analysing the students' 
responses. You could then alter your strategies, if neces'sary, based on the assessment 
you make. 

Here, now, is an explicit,list of the broad objectives of this unit. 

Objectives 

After studying this unit, you should be able to develop the ability of your learners to 

explain the meaning of 'derivative', and give its geometric and physical 
interpretation; 
explain when a continuous function need not be differentiable; 
use the first and second derivatives of a differentiable fupction for analysing its 
behaviour and for tracing its graph. 
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6.2 WHAT IS DIFFERENTIATION? 

Let me start by bringing you a quote from an article by Judith Grabiner in 
Mathematics Magazine, Vol. 56, 1983. She writes : 

"Historically speaking, there were four steps in the development of today's concept of 
the derivative, which I list here in chronological order. The derivative was first used; 
it was then discovered; it was then explored and developed; and it was finally 
defined. That is, examples of what we now recognize as derivatives were first used on 
an ad hoc basis in solving particular problems; then the general concept lying behind 
these uses was identified (as part of the invention of calculus); then many properties of 
the derivative were explained and developed in applications to mathematics and to 
physics; andfinally, a rigorous definition was given and the concept of derivative was 
embedded in a rigorous theory." 

Please think about this order carefully. Is it the same order in which we expose our 
learners to the derivative? If not, shouldn't we help our learners to arrive at the 
concept in a more intuitive and less formal manner, as it has been developed 
historically? Because we don't do this, most students react to the question given in the 
title of this section with the response. "It is d by dx." If probed further, they give an 

d 
example like - (xn) = nxn-I, or some other examples. Very rarely do I find a student 

dx 
who tries to explain its mathematical meaning, or its geometric or physical 
interpretation. 

Even though most teachers usually tell students that the derivative gives the slope of 
the tangent to a curve, and draw a diagram to explain it, students don't understand 
what is happening. Even students in college have a problem with this. Maybe drawing 
a diagram, giving some solved examples and many practice examples as homework is 
not the way to help the learner learn the concept. We need to present this aspect, as 
well as differentiation as a measure of the instantaneous rate of change, differently. 

In this context, it would be useful to note that students even have problems with 
understanding the difference between average and instantaneous rates of change. How 
would you address this problem? Rather than explaining this mathematically, you 
could give them examples of, say, movement of a vehicle. 

To start with, it may be useful, to clarify the student's understanding of 'average rate 
of change'. You could ask your students what it means if a car travelled from Ajmer 
to Jaipur with an average speed of 50 kmlhr. Does this mean that at each point of time 
during the journey its speed was 50? What about the traffic light being red on the 
way? And the time the car was suddenly stopped by a truck driver? 

In fact, students make other mistakes regarding this concept. For instance, ask them 
the following problem: 

Ifyou travel at a speed of 40 km./hr. going from Cochin to Trichur, and at a speed of 
60 km./hr. coming back, what is the average speed for the round trip? 

Did you get the usual response I get from many students to such a question, namely, 
50 km./hr.? This happens because the students don't think about what 'average speed' 
really is. Here, you would need to give them some hints to work out why the average 
speed is 48 k d r .  In fact, if the students used their common sense, they would realise 
that more time is spent while going at 40 km./hr. than is spent coming back the same 
distance at 60 km./hr. 

Now, how would you help your students to think about the instantaneous rate of 
change as the average rate of change at that particular instant? They need to see 
that you are making your time interval smaller and smaller, and looking at the average 



value of the function over this smaller and smaller interval. This average is 
f(t0 +h) - f ( t0 )  . As h gets smaller and smaller, nearer and nearer to zero, the 

(to + h) -to 
limiting value of this quotient, if it exists, is what we call the instantaneous rate of 
change off  with respect to t at the instant to. In fact, one teacher put it to her students 

C very nicely, as given in the following example: 

I Example 1 : Ms. Grace regularly coaches senior students in mathematics. A question 
she is frequently asked by her students is 'How is the derivative useful?' She usually 

I responds by explaining, "Imagine you go on a car ride. Suppose you know your 
position at all times. In other words, at 8 a.m. you are in the garage, at 8 a.m. and 5 
seconds you are just outside the garage, at 8 a.m. and 10 seconds you are on the road 

I just in front of your house, and so on. At every moment during this ride, your 
speedometer showed the speed of your car. So, if you knew your position at all times, 
at the end of your trip can you work out what your speedometer showed at any 

i particular instant of time? The answer is, yes, you can. The derivative provides a 
method for doing this. 

She goes on to give them the siniplest situation where one can compute what the 

I speedometer reading is, that is, driving at the same speed over the entire distance. In 
this case, of course, the students do conclude that if you drive 50 kilometres in one 
hour throughout at the same speed, then your speedometer read 50 km. per hour 
throughout the trip. 

In the situation where the car is driven at different speeds, Grace tries to get the 
students to consider the whole trip as made up of several short trips, say, one trip 
involving taking the car out of the garage, another trip would be driving the car onto 
the road, 2nd so on. "Over each of these tiny trips, your speed doesn't change much", 
she tells them, "So, you can pretend that your speed didn't change at all. So, you 
know how to compute the speed for each tiny trip. This gives you a good idea of what 
your speedometer read for that part of the big trip. But, remember, the assumption 
that the speed didn't change over each tiny trip is geherally wrong, and so you only 
get an approximation to the correct answer. But, the main idea behind the derivative 
is that the smaller you make the tiny trips used in your computation, the more 
accurately you will be able to compute the actual speedometer reading." In this way 
Grace tries to help the students understand the average change in an infinitesimal time 
interval. 

Sometimes Grace explains the derivative to the 'Commerce Stream' students inthe 
following way: 

"When you see the sensex (sensitivity index) report of the stock market on the TV in 
the evening, it measures the change in the aggregate stock index per unit of time. This 
is best understood visually by the slope of the graph joining the various points 
showing the stock index (see Fig. 1). If we measure the closing stock price from one 
day to the next, we notice that the graph gets higher on days when the price change is 
positive, and lower when the stocks go down. The steeper the slope, the faster the 
change. 

Grace goes on to explain to her students that the basic part of the formula for the 
derivative is just the formula for the slope of the segment joining two points on the 
curve. The instantaneous part is where the limit comes in. Taking simple examples, 
she tells them, "If you want to find the derivative at x = xo, you need to look first at 
the graph for a clue. Is the curve going up or down? Imagine a tangent to the curve at 
x = xo (see Fig. 2). The slope of the tangent line is the slope of the curve at that point. 
How will you find it numerically?" She draws this tangent, and also the secant joining 
P(xo, f(%)) to a point on the curve near it, say Q(xo+h, f(xo+h)) (see Fig. 2). 

Looking at the Derivative 

I * ,  , , , , .  
0 

Days 
X 

Fig. 1 : A sensex 
graph over 
a month 



Calculus 

Fig. 2 

Then she asks them what happens to this secant as Q moves towards P along the 
curve. She traces this movement with her finger on the board to a nearer point (Q,) 
and nearer to (Q$, and so on, each time drawing a fresh secant. She points out that the 
interval [xo, xo+h] reduces to smaller and smaller intervals. When they realise this just 
means that xo+h is getting closer to xo, she explains that this is where the limit part 
comes in. As xb+h gets closer and closer to xo, the secant tends to merge with the 
tangent at x = xo. 

Sometimes Grace modifies the explanation a bit by asking the students to take a ruler 
and keep adjusting it to form secants at nearer and nearer points on the curve. Then 
they see the secants actually merging with the tangent. 

In the example abbve the teacher has chosen her way of making the derivative more 
understandable to students. Do you agree with it? Here's a telated exercise. 

E l )  i) Which situations from your own students' lives could you use to explain 
the basic ,idea behind differential calculus to your learners? 

ii) How would you introduce your students to 'derivative'? 

Let us now considsr a common source of confusion for students related to what we 
have just discussed. This is the relationship between continuity and differentiability. 

6.3 CONTINUITY VERSUS DIFFERENTIABILITY 

When I ask students of Class 12, or even first-year college students, if every 
continuous funaiotu is differentiable, invariably they say this is true, but not the other 
way around! This reaction is probably a result of the way we teach and assess them. 
The students simply mug up a result and its proof without understanding it. As a 
result, they know that one condition implies another, but which implies which is the 
problem. Possibly, a good way to help students relate the . two . conditions is to give 
several visual examples of functions that : 

i) are continuous, hut not differentiable at a point; 
ii) both continuous ;and differentiable; , 

iii) not continuous, hence not differentiable. 



Why don't you try some exercises about this now? Looking at the Derivative 

E2) Give the graphs of at least two functions for each of the three situations listed 
above. How would you use these examples to clarify your students' 
understanding regarding the connection between differentiability and 
continuity? 

In workshops I have asked teachers to do the exercise above. Some of them used the 
method they had worked out in the workshop quite successfully in their classrooms. 

They utilised examples like 1x1 and xX to show students situations in which a 

continuous function would not be differentiable. The thrust of their strategy was to 
give students examples of a variety of graphs which could be drawn without lifting 
pencil from paper - some that included sharp comers and some that were smooth 
throughout (see Fig. 3). 

(a) 
Fig. 3 : (a) y = 1x1 , (b) Y = xl' 

They used these examples to show the students that though all the graphs were 
continuous throughout, the ones with sharp comers (Fig. 3(a)) were not differentiable 
at the points at which the comers are formed. Also, some smooth curves were not 
differentiable at the points where the tangents to the curve were vertical (as in Fig. 
3(b)). And why is this so? 

Why this happens is where the students need to utilise their understanding of 
derivative as the 'slope of the curve', that is, the limit of the slope of the secant at the 
point as the secant gets smaller and smaller. Suppose you ask your students to 
consider the function f given by f(x) = 1x1 at the sharp comer, i.e., the point x = 0. 
There is no unique tangent line to the curve at x = 0. If we approach 0 from the left, 
it appears that the slope of the tangent line should be -1, that is, y + x = 0 is the 
tangent. But if we approach 0 from the right, it appears that the slope of the tangent 
should be +1 that is, y = x is the tangent. So, dfldx doesn't exist at x = 0. 

Now, let us consider the other situation, shown in Fig. 3(b). Here, the curve has a 
vertical tangent line at x = 0. This means that the limit of the slope does not exist (a 
case of infinite limits!) at such a point. Therefore, f is not differentiable at x = 0. 

To emphasise the fact that a function is certainly not differentiable at a point of 
discontinuity, you could give them several other examples (as suggested in Unit 5). 
In Fig. 4 below, we show various ways in which a derivative can fail to exist. - - - 
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I x-1 for 0 < x c 1  

iii) f (x) = forx=l 

iv) f (x) = (x - 1) % 

1 E5) Test each of the functions below for differentiability at the points mentioned 
alongside. Also graph the corresponding derivative function, if it exists. 

I 
I 

i) 
2 f(x) = x at x = 0. 

ii) f (x )=Ix - l I a tx=~andx=l .  
-- 

Now let us see how to help our learners see the utility of the derivative of a function 
for analysing the nature of its graph. 

6.4 THE UPS AND DOWNS 

Looking at the Derivative 

I 

As you know, the geometric interpretation of the derivative, and its derivative, are 
very useful for understanding a function. Helping students to see this aspect, by 
getting them to graph the functions with the help of the derivative will make this 
concept more meaningful to the students. 

Do your students realise the important role of the first and second derivatives for 
tracing curves? Ask them : Just by considering f ' and f " at different points, is it 
possible to trace the graph off? How? Examples, and several exercises, to answer 
these questions is what your learners need to be exposed to. 

The first derivative, f', shows us where the extreme points occur, and where the 
function f is increasing or decreasing. The second derivative, f"  , gives the 
instantaneous rate of change of the first derivative. So, it tells us how fast f is 
increasing or decreasing. For instance, if s(t) is the distance covered by a vehicle in 

ds d2s 
time t, v = - is its velocity, and a = -is the acceleration of the vehicle, that is, the 

dt dt2 
rate of increase or decrease in the speed of the vehicle. 

&-. What is really meaningful in the context of curve tracing is that the behaviour of f" 
affects the shape of the graph. Knowing f" , we can find out over which intervals f is  
concave upwards or downwards. To make this point clear to your students, you could 
ask theq, for instance, to graph the curve of f(x) = 2x3 - x2 - 20x - 10 on [-2,4]. 
They would need to first look for Critical points in 1-2,4[ (that is; the points x for 
which f'(x) = 0) and the points in [-2,4] where f'(x) does not exist. In this case, the 

-5  
critical points are x = - ,2, and f'(x) exists V XE [-2,4]. 

3 

To decide whether the critical points are extreme points, and of what kind, the students 
-5  -5  

would need to find f"  at these points. Since f" (2) > 0 and f" ( - ) c 0 ,2  and - 
3 3 

are a local minimum and maximum, respectively. The students should note that some 
local extrema can also be absolute extrema, as in the case of (2,f(2)). 

The students would also need to find the intervals in which f" c 0 and f" > 0 for 
deciding the kind of concavity the curve has. 



Calculus 

1 
is concave upwards in 1 concave downwards in [-2, -[ . 

6 i 

qg. 6 : The graph off, defined by f(x) = 2x3-x2-20x-10 on [-2,4] 
We usually give our learners several 'curve tracing' exercises. Here are some 
exercises that are not usually given. But these would help your learners undeistand 
and appreciate this application of the derivative, as well as its use in real-life 

ii) By looking at the first derivative decide which of the curves in Fig. 7 could 
not be the graph of f(x) = x3 - 9x2 + 24x + 1 for x 1 0. 
(Hint : Factor the formula for f' (x).) 

iii) By looking at the second derivative, decide which of the curves in Fig. 7 

I 

1 1 
Since f" (x) = 2(6x-I), f" > 0 fgr XE ] - ,4[ and f" c 0 for XE [-2, - [ . So, the curve 

6 6 

C 

The students now need to see, with your help, how the information they have gathered 
can be used for drawing the curve, which is given in Fig. 6. 

absolute, minimum 

- - - - 
situations. 

E6) i) By looking at the second derivative, decide which of the curves in Fig. 7 
could be the graph of f(x) = xSn. 

could be the graph of f(x) = Jf; . 

Y Y 

I 

0 > 
X 0 X 0 X 

I 

(a) (b) (c) 

Fig. 7 

E7) Sketch the graph of a function f for which : 

i) f(2) = 1; f '  (2) = 0; f is concave upwards for all x; 
I 

ii) f ( 3 ) = 5 ; f ' ( x ) > O V x ~ ] - ~ , 3 [ ; f ' ( 3 ) = O ; f ' ( x ) > O ~ x ~ ] 3 , m [ .  

iii) f(3) = -2, f' (3) = 2, f " (3) = 3 (sketch in the neighbourhood of x = 3). I 



An enterprising (although unscrupulous) business student has managed to'get Looking at the Derivative g his hands on a copy of the out-of-print solutions manual for an applied 

calculus text. He plans to make photocopies of it and sell them to ether 
students. According to his calculations, he figures that the demand will be 
between 100 and 1200 copies, and he wants to minimize his average cost of 
production. After checking the cost of paper, duplicating, and the rental of a 
small van, he estimates that the cost in rupees to produce x hundred manuals is 
given by C(x) = x2 + 200x + 100. How many should he produce in order to 
make the average cost per unit as small as possible? What is the least amount 
he will have to charge to make a profit? 

E9) The number of salmon swimming upstream to spawn is approximated by 
S(x) = -x3 + 3x2 + 360x + 5000, 6 I x 5 20, 

where x represents the temperature of the water in degrees Celsius. Find-the 
water temperature that produces the maximum number of salmon swimming 
upstream. 

E10) A rope, 4 metres long, is cut into 2 pieces. One piece is shaped into a circle, 
and the other made into a square. Where should the cut be made in order to 
make the sum of the areas enclosed minimum? 

There are two concepts that show up while tracing curves with using derivatives. 
These are 'critical (or stationary) point"and 'point of inflection (or inflexion)'. 
Students often confuse them, andlor the relationship between them - Is a point of 
inflection a critical point? What about vice-versa? The students need clarifications on 
these questions. What is a good way for helping them in this hatter? 

One way to explain critical points is to geometrically show that those points at which 
the tangent to the curve exists and is parallel to the x-axis are critical points. Here, 
you could ask them to think about why they are called 'critical'. Then you could use 
several curves that they are familiar with to help them observe and'realise why these 
points are 'critical' -that a curve only attains a local maximum or minimum at a 
critical point, andlor at points at which the curve is not differentiable. 

Also , ask your students if the converse is true. To help them think about the 
converse, you could give them graphs of some functions like f(x) = x3, where 
f ' (0) = 0, but x = 0 is not an extreme point. 

Regarding 'point of inflection', ask your students to consider curves like those in Fig. 
8. 

A 
Y 

0 

inflection 

> 
X 

Fig. 8 
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Extreme values of the 
slope always occur at 
inflection points. 

I've been working for f-7 
( 4 hours. Now i'm too tired. \ 

think anymore. ,J 

Fig. 10 

- - 

Ask your studen$ if they notice any difference in the position of the curve relative to 
the tangents to the curve at any point between A and B, vis-a-vis the positi~n relative 
to the tangents drbwn a1 any point between B and C. The function lies belhw the 
tangents from A b B, and above the tangents from B to C. So, the curve is concave 
downwards fronl A to B and concave upwards from B to C. Because of this, B is a 
point of inflection for this curve. More examples and non-examples of such points 
can be given to students to explore. This will help them develop their understanding 
of the concept. 

Why don't you try an exercise now? 

El  1)  What method would you use for explaining 'critical point' and 'point of 
inflection' to your learners? Try it with them. How did you judge the 
effectiveness of your strategy? 

In the strategy you have just suggested, did you expose your learners to any real-life 
examples of points of inflection? We have suggested some such examples below. 

Point of Diminishing Returns : Let us start with considering Fig. 9. 

A 

I Input (rupees) 
Fig. 9 

The graph in this figure depicts the output of a factory worker over a period of time. 
To start with, the graph is not very steep. The steepness increases further on, until the 
graph reaches a point of maximum steepness (at C) after which the steepness begins to 
decrease. This tell$ us that at first, the worker's rate of production is low. The rate of 
production increases as the worker settles into a routine, and continues to increase 
until the worker is performing at maximum efficiency. Beyond this point fatigue sets 
in, and the rate of production begins to show a decline. m e  point of maximum 
efficiency is known in economics as the point of diminishing returns. 

The behaviour of the graph on either side of this point C can be described in terms of 
the slope. To the left of this point the slope of the tangent increases as t increases. 
(This indicates that the output is increasing at a faster rate with each additional hour 
spent by the worker.) To the right of the point C, the slope of the tangent decreases as 
t increases. (This indicates that the increase in output is smaller with each additional 
hour spent on the jab.) It is this increase and decrease of the slope on either side of 
this point that tells us that C is a point of inflection of this function. In this situation it 
shows us that C is the point of maximum efficiency, that is, the point of diminishing 
returns. Any input beyond this point of time corresponding to C will not be 
considered to be a mod use of this worker's labour. 

Point of Maximum Efficiency : Ask your students to think of their own situation 
when preparing for an exam. A couple of days before the exam they sit down to revise 
their syllabus. At first, they will be studying slowly. As they set their mind to do 
more, efficiency increases, and it increases up to a maximum level, say, 4 hours after 
beginning to study. After that point of time, the ability to concentrate slowly declines, 
and many say, "my mind is fully drained, and I can't think any more". This point, 



which is the point of maximum efficiency (the point of diminishing returns), is a point Looking at the Derivative 
of inflection in this situation. 

Point of Maximum Yield : The graph in Fig. 11 shows the population of catfish in a 
commercial catfish farm as a function of time. As the graph shows, the population 
increases rapidly up to a point, and then increases at a slower rate. The horizontal 
dashed line shows that the population will approach some upper limit determined by 
the capacity of the farm. The point at which the rate of population growth starts to 

Y 

................................................. 

population + 
0 Time X 

i fig. 11 

To produce the maximum yield of catfish, harvesting should take place at the point of 
fastest possible growth of the population. This is at the point of inflection. The rate of 
change of the population, given by the first derivative, is increasing up to the 
inflection point (on the interval where the second derivative is positive) and 
decreasing past the inflection point (on the interval where the second derivative is 
negative). 

Why don't you try the following exercise now? 

E12) List two real-life problem situations that you can give your learners to enable 
them to understand 'critical point' and 'point of inflection'. 

Let us now consider another question that students frequently wonder about regarding 
the shape of the graph of a function. The question is: 

Is there a relationship between concavity and the type of monotonicity of a curve? 
Through examples of the kind given in Fig. 12, you cogd help your students to note 
that a function can be either increasing or decreasing on an interval regardless of 
whether it is concave upwards or concave downwards on the interval. 

concave 
upward 

increasing concave 
downward 

1 Fig. 12 : A function that is (a) concave upwards in [a,b]; (b) concave upwards in [a,O], and concave 
Cow wards in [O,b]; (c) concave downwards in [a,b]. 4 



Calculus The following chart shows how a graph may combine the properties of increasing, 
decreasing, concave upwards and concave downwards. 1 

You should also ask your students to think of examples of each category in the chart 
above. 

Sign of f '  

+ 
+ 
- 
- 

Now, your students would have learnt that at a point of inflection of a function f, 
either f '= 0 or f " does not exist. But, have you ever asked them if the converse is 
true? That is, if f.'(x$ = 0, is xo a point of inflection off? You could give your 
students examvles like v = x4 that can h e l ~  them answer the auestion themselves. 1 

Sign of f' 
I 

+ 
- 
+ 
- 

Here, f '(0) = 0, but f * > 0 when x > 0 and when x < 0. So there is no change in 
concavity at x = 0. 

You also need to exmse vour learners to situations in which f "  (xo) does not exist. but 

Inbrease or 
Decrease in f 

Increasing 
Increasing 
Decreasing 
Decreasing 

. ", 
xo is a point of infl&tioh>or f. Think about these aspects while doing the following 
exercises. 

Concavity (C) 
of f  

C-up 
C-down 

C-up 
C-down 

E13) Give examples of functions f, defined on an interval [a,b], such that 

i) f ' and f " ellrist in [a,b]; 
ii) f ' exists in ~[a,b], but f ' does not exist at some points of [a,b]; 
iii) f ' does not ]exist on [a,b]. 

Also find the critical points of these functions, as well as points of inflection, 
if any. 

E14) Give two examples, with justification, of functions f for which 
i) f " (a) = 0 but a is not a point of inflection off  
ii) f is concave upwards on some interval, concave downwards on another 

interval, and yet f has no point of inflection. 
, I 

Let us sum up the essenca of what we have just discussed in the following remark. 

Remark : The first order critical points decide about the extremum of a function 
whereas the second order critical points determine the change in concavity off. This 
shows that critical points of the first order tell us the quantitative nature of a function, 
and second-order critical goints decide the shape of the graph (qualitative behaviour of 
the function f). The points of inflection off  are the extreme points off ' . At a point of 
i n f ldon ,  there is a change in concavity of the curve. But change in concavity itself 
will not lead to a point of inflection. 

Before ending the section, let me suggest an interest activity for your students that 
cover all the aspects of what you discuss with them in differential calculus. This also 
exposes the students to the names of several mathematicians. 



I 
Activity (Class, Take Your Seats) 

Canvou fill in the first initial of each student in this math teacher's seating chart using 
only the clues below? 4 
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CLUES: 

1. All students are located at integral coordinates in The xy-plane. The x- 
coordinates belong to the set (-2, -1,0, 1,2),  and the y-coordinates belong to 
the set {-1,0, 1,2,3).  

2. Wallis is seated on the line which is normal to the curve f(x) = x2 - 2x + 4 at 
its minimum point. 

32 
3. Newton is seated at a point of inflection of f(x) = 4x2 + - . 

X 

4: Euler sits at the point on the curve 2y = (x - 2)' which is nearest to Boole. 
, 

5.  MacLaurin is located at the relative maximum point of the function 
f(x) = x3 - 3x2 - 9x - 4. 

6. Saccheri is seated at the absolute maximum point of the function 
f(x)=-x244x - 1. 

7. Riemann's seat is one of the critical points of the curve 

k 
8 .  The function f(x) = x2 + - has a point of inflection at x = 1. Zeno sits at this 

X 

point. 

9. Boole is seated at the absolute maximum point on the curve (x - 212 + y2 = 1. 

10. Archimedes is located at one of the vertices of the rectangle with the largest 
area that can be drawn with its upper vertices on the line y = 1 and its lower 
vertices on the parabola y.= x2 - 2. 

1 1. Thales sits at a point on the curve f(x) = 2x3 - 6x2 + 43 where the slope is 48. 



Calculus 12. Leibniz sits at a point on the curve y = cos(x) where the 99th derivative of that 
curve is O: 

13. Kronecker sits on the line which is tangent to the curve y = 4x2 - 22x + 35 at 
the point (3,5). 

14. Fermat is seated at the point of inflection of the curve y = x3 - 6x2 + 33x - 51. 
D 

15. Descartes is located at one of the critical points of the curve y = -3x4 + 6x2. 

16. Cantor is located on the line tangent to the curve y = -x2 + lox - 25 at its 
maximum point. 

17. Gauss sits at the absolute maximum point on the curve 4y = -2x3 + 3x2 + 7 
over the interval [-1 ,2]. 

18. Viete's seat is collinear with those of Gauss and Kronecker. 

19. Heron is located at the point of inflection of the curve f(x) = x3 - 3x2 + 3x + 1. 

20. Pascal lies on the line tangent to the curve 12y = 16 - 6x2 - x3 at its point of 
inflection. 

(This activity is designed by David Pleacher, 1991 VCTM Mathematics Teacher.) 

The activity above catl also be done by the class as a whole, divided into teams. 

Let us now summarise what we have covered in this unit.' 

SUMMARY. 

In this unit we have discussed the following points. 

I. We have given some suggestions for relating the derivative to the students' 
real-life experiences. 

2. Examples have been given for clearing the confusion students have regarding 
the relationship between continuity and differentiability. In particular, we 
have spelt out various situations in which a function is not differentiable at a 
point. 

3. You have studied examples to help students realise the significance of f ' and 
f " for understanding the behaviour of f'4d the shape of its graph. 

4. We have particularly focussed on critical points and points of inflection, 
geometrically, algebraically and through real-life examples. 

5. Stress has been laid on encouraging students to think about whether any 
critical point is an extremum, and whether f " (Q) = 0 means that xo is a point 
of inflection. 

6. We have also sufgested that you discuss the fact with your students that there 
is no relationshie between monotonicity and type of concavity of a function. 



Looking at the Derivative 
6.6 COMMENTS ON EXERCISES 

El)  i) The examples would necessarily deal with movement of some kind. 
They could relate to profit or loss, movement of water in a stream, 
movement of vehicles around them, students running/walking/swirnming, 
etc. 

ii) You may find it interesting to note down in your logbook any changes in 
method of teaching the derivative that you have made now. Also, note 
down the consequences for the quality of learning. . 

E2) Your students must be familiar with several examples. But did they realise that 
these examples (like 1x1 ) would be appropriate? 

While writing your teaching strategy, note down the methods you used for 
assessing the usefulness of the strategy from the learning point of view. 

E3) For instance, did they realise that the graph in (a) is continuous over 
1-2, -11 u [1,3], and differentiable over ] -2, -11 u [1,3] \ {2,2.5,2.75)? 

E4) i) Continuous, not differentiable at x = 1 ; sharp comer at x = 1. 

ii) As in (i) above. 

iii) Discontinuous, and hence not differentiable, at x = 1. 

iv) Continuous, but not differentiable at x = 1; tangent is vertical at x = 1. 

i) ~ifferentiable at x = 0. The curve of f ' is the straight line y = 2x. 

ii) Differentiable at x = 0, but not at x = 1. The curve of f ' over R \ { 1 ) is 
the union of two half li8nes. 

i) Since f a r  0 V x > 0, f is concave upwards in [0, [. Therefore, of the 
graphs given, the one in (b) is the most appropriate. 

ii) Since f "  (x) = 3(x-4)(x-2), f is increasing in [4, = [ and 1- m ,2], and 
decreasing in [2,4]. Hence, (a) could be the graph off, not (b) or (c). 

(ji) 

Fig. 13 

(iii) 

E8) The average cost function is . This is minimum for x = 10. Remember, 

the unit of x is hundred manuals. So, to minimise the average cost, 10 hundred, 
i.e., 1000 manuals at least should be produced. 
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The cost of prodLcing these is ==Rs.2.20. So, he should charge more 

1000 
than RS. 2.20 to bake a profit. 

I 

E9) 12" Celsius. 
(Here note that $tudents often forget to write the unit. You need to insist on the 
units being written.) 

Remember to check the 
I endpoints also when 

looking for absolute 
E ~ O )  Suppose a portibn of length x cm. is formed into a circle and the length 

minima or maxima. 400 - x cm. is hade into a square. 

The sum of the, areas is n 

This is minimdm for x = (y ) : )  - cm. 
I 

E l  1) Here, you shobld try out methods based on the core course 'Teaching-Learning 
Process and Evaluation' that you have studied. 

E12) For instance, a small company that makes and sells bicycles determines that the 
cost and price functions for x ( 2 0) cycles per week are C(x) = 100 + 30x and 
P(x) = 90 - x, respectively. What are the possible values of x for which the cost 
would be miqiesed? 

Here, the quebtion only requires the critical points to be determined. However, 
it can be alteqed for finding maximum revenue, etc. 

Similarly, copsider the problem of drug concentration : The percent of 
concentration of a certain drug in the bloodstream x hours after the drug is given 

3x 
is K(x) = -----. Find the time at which concentration is a maximum. 

x"4 

There are selveral other problems that you can think of related to chemical 
reactions, vctlocity and acceleration, etc. 

E13) i) Any polynomial function, for example. 

ii) For instance, y = 1% in [-1.11. 

1, x rational 
iii) For ipstance, f(x) = on any interval. 

0, otherwise 

~usi:$y looking at the type of functions, ask your students if they can tell 
whether critical points or points of inflection exist. 

E14) i) For instance, take f(x) = x4 over [-1,1], Here f a  (0) = 0, but f a  (h) > 0 . . for h < 0 and h > 0. So x = 0 is not a point of inflection. 

1 
ii) For'instance, y s - is concave downwards at x = -1 and concave 

X 

upwards at x = 1. But there is no inflection point in between. 



Calculus seconds is aboundary which will not be crossed, but is nearly reached. This would be 
the limit of the duration for running a 100 metre race. 1 
As another example, you could ask your students to consider the speed at which a car 
moves. Thel greatest possible speed of the car is, say, 160 krdhr. As the car goes 
faster and faster, you see the needle of the speedometer moving from 100 to 120 
km/hr., and on to 130 km/hr., 140,. . ., 159 km/hr., and possibly 160 krdhr. But it can't 
go further. $0 the upper limit of the speed of the car is 160 krnhr. What is the lower 
limit? As a car slows, its speed moves to this level gradually, and finally attains this 
limit, namely, 0 kmlhr., when the car stops. 

I 
You can think of many other examples. Here are some related exercises. 

El)  Write down 3 other examples of limits related to the day-to-day life 
experiences of your students. 

E2) An equilateral triangle is inscribed in a circle of radius 1, and a circle is then 
inscribed in the triangle. This process continues, and we get the pattern 

Circle 2 Triangle 2 Circle 2 Triangle 2 Circle 2 

Ask your students to find if there is a pattern that emerges in the radii of the 
circles. What is t& limiting value as the radii become smaller and smaller? 

Understanding a concept is helped greatly if the students see why the concept is 
needed. YOU could give them an informal preview about how 'limits' are a basic 
concept for developing calculus, and for understanding the behaviour of functions in 
general. For example, they could be told why some series are meaningless because 
the sum doesn't converge. (For instance, you could use this fact to "prove" 1 = O!) 

You could help your learners to slowly build their understanding of limits, by using 
examples of functions that they have already dealt with. For example, let us go back to 
Example 2, in Unit 4. In that example, s is the function describing the distance of the 
truck from itb starting point at time t given by 

The students should draw the graph of the function (as shown in Fig. 9, Unit 4). With 
the help of the graph, they could try to calculate the limit of the function, say, at the 

point t = - 30 [= 1). What they need to understand is that it is the value that s(t) 
60 2 

1 
approaches as t moves closer and closer to - from the left or from the right. In this 

2 

case they see that it is 25, which is also s - . (:I 
Similarly, thky could find the limit of the function at several other points also. 

However, a misunderstanding may students have is that the limit of the function 
at a point is the value of the function at that point. This is probably because all the 
examples we1 expose them to seem to be of continuous functions, for which this is true.- 
kn the following example, we see how one teacher deals with this misconception. 



Example 1 : A school teacher, Amrita, was introducing the concept of limits to the 
students. She had given them examples of some polynomial functions, and asked 
them to find the limits at certain points of their domains. However, when she asked 

xZ, x f  1 
the students what limf (x) was, where f : R + R: , most of the 

x+I  

students answered '2'. On asking them their reasons, she realised that for them the 
limit was the value of the function at the point, i.e., f(1). 

In order to remove this rnisunderstanding,from the minds of the students, she decided 
to give them real-life problems involving discontinuities, like the one given below. 

A three-wheeled scooter charges a minimum of Rs.9-  for a distance upto thefirst 
kilometre travelled, and Rs. 2/- for every kilometre (or part of it) travelled after the 
first one. Define the costfinction, C, and draw its graph. Alsofind its limit at s = 3 
and s = 4.5, where s denotes the distance covered. 

The students were divided up into small groups, and asked to discuss the problem'with 
each other and give a solution.. As she went around the groups, she found that each 
group had defined C in different ways as: 

Arnrita decided to involve the whole class in this group's discussion. Arnrita asked 
the two children to explain their reasons for defining the function in this way. They 
did so, very cogently. When the other students were asked for the2 reactions, they 
agreed with this d'efinition. 

Only two childken in one group were arguing with the others about the following 
representation they had goti 

However, one child asked the teacher if this function couldn't be defined in one line. 
Amrita asked everyone to think about this. There was quite a bit of discussion on this, 
with students trying to see if the way they had defined it would work. Finally, after 
quite a bit of argument and modifications, the students agreed to the representation 

C(s) = 5+2n, n< s I n+l b' n = 0,1,2,. . . 
Now came the question of graphing the function. Some students volunteered to do 
this on the board. Amrita got three kinds of diagrams from them (see Fig. 2). 

C(s)= 

Limits and Continuity 

'5,0<sll  

5 + 2,l<s<2 

. 5 + 4 , 2 < ~ 1 3  

5 + 2 n , n < s I n + l .  



Calculus She asked tde students to explain why they thought their graphs were right. Each 
explanation generated a discussion. But, finally, Fig. 2(c) was accepted. 

Now came the part about the limit. Amrita, again, asked the students to discuss this 
in their groups. After about 10 minutes, she called a halt to their interchanges, and 
asked the groups to come up with what they had done, one by one. I 
The first group's representative, Rajan, came up to the board, and started with the 
calculations. Be wrote 
LimC(s)=Li 5+2n=5+2x3=11 .  
s-3 . - 

At once another child, Sukriti, objected to this. She said it should be 5+2x2, because 
this is the value at s = 3. The teacher asked other students to give their views. Many 
students supported Rajan, but there were a few who thought that Sukriti's calculations 
were correct. 

Now Amrita decided to ask them to look at the graph and tell her what happens to C(s) 
as s approaches 3 from the left. She moved her finger along the graph, so that thiy 
saw that C(s) gets closer and closer to 9, and hence the left hand limit at s = 3 is 9. So 
it was agreed that lim C(s) = 9. 

s-3- 

Now, Amrita aslqed for a volunteer to find the right hand limit at the same point. 
Shalu came up ta the board and traced the graph with her finger as she had seen the 
teacher do, and s ~ d  1 1. Here the other students started muttering loudly that this was 
wrong: It should be 9, because C(3) = 9. This made Shalu look uncertainly at the 
teacher. So, Arnrita stepped in and took this opportunity to point-out the difference 
between the limiting value and the value at the point. 

She reminded them that In the earlier examples it so happened that the two coincided. 
But this need not be so, as in this case. Here, the function had taken a jump at s = 3, as 
she showed them ftom the graph. So, the limit from the right was different from C(3). 
In fact, it was 11, as Shalu had said. "Since the limit of the function calculated from 
different directions are two different numbers, the limit of C(s) at s =3 does not exist," 
she told them. 

Now Amrita asked Ehe students to give her the limit at s = 4.5. The children managed 
to do this part easily, since there was no 'jump' at this point. 

Finally, Amrita took up the following problem for discussion in groups. 

I x, x<O 

Find the limit of thefinction g defined by g(x)= x 2 ,  0 5 x 5 2  

3x, x > 2  

atthepoint x=Oand x = 2 .  

After a moments hush, a lot of murmuring erupted in the class. The teacher helped the 
students to focus their talk into meaningful discussions. She participated in the group 
discussions, sharing their ideas, asking questions, etc. After 10 minutes, she asked the 
children to share the results of their discussion with everybody. 

She asked the students of Group A to explain to the others what happens to g(x) 
when x moves closer a d  closer to 0 from the left. A child from the group came to the 
board, drew the graph d g, and explained why the value of g(x) also gets closer to 0. 
Therefore, everyone agreed, the limit of g(x) as x tends to 0 from the left hand side is 
0. On similar lines, the students of Group B explained that as x moves towards 0 
from 7, g(x) also moves towards 0. 

24- , 



Now she asked the children if,this meant that the limit existed or didn't exist as x 
approached 0. The children agreed that it did exist because it was the same from both 

, the directions. 

t Again, to find the limit at x = 2 , she asked a Group C child to come forward. He 
explained why lim g(x) = 4 . 

x-2- 

But, for calculating the right hand limit at x = 2, there was lots of confusion in the 
class. None of the groups wanted to come forward. So the teacher started again by 
asking the students relevant questions. She proceeded by asking them to find g(x) for 
x = 2.5,2.25, 2.1'2.01. What was happening to g(x)? The students observed that it 
was decreasing, coming closer and closer to 6. "So, can we say that lim g(x) = 6?", 

x+2+ 

she asked. They agreed, and added that like in the last problem, the limit of the 
function as x tends to 2 does not exist. 

This remark made Arnrita feel that the concept had taken root somewhere, connections 
had been made, and now she had to build on this in the next few classes. 

In the example above, the teacher gave the learners many oppo~unities to apply their 
minds on the following points to remove misunderstandings regarding 'limit'. 

The limit of the function need not always exist. 
The value of the function at a point may not be equal to the limit of the function at 

I that point. 

You may now like to do the following exercises with your learners. 

x2-6x + 8  
E3) Draw the graph of the function f defined by f(x) = , and evaluate 

x-2 
its limit as x tends to 2. 

E4) Give your students a function that oscillates at x = 2 to graph. Ask them to 
find the limit at x = 2, if it exists. What are their reasons for their answers? 

A result that we use very often for finding limits is the 'sandwich' (or 'squeeze') 
theorem. Many students do not know why it is called this, and/or why it works. A 
pictorial representation of its utility may greatly help in this matter. For example, you 

1 
could ask them to consider the graph of the function f(x) = sin - (see Fig.3). 

5 > X 

Limits and Continuity 1 

1 
Fig. 3 : Graph of y = sin - 

X 



Calculus Looking at it, can thy'evaluate the limit of the function as x tends to O? Now give 
1 

them the graph of g(k) = x2 sin - (see Fig. 4), and ask them to compare the beliaviour 
X 

1 
Fig. 4 : Graph of y = x2sin - 

X 

off  and g in any neighbourhood of 0. Do they see that as x gets closer to 0, the 
function oscillates between -1 and +l? So, f fails to have a limit as x+O. 

Now, you can lead them from f to g. Let them graphically (as in Fig. 5) see that for 
2 2 any real number x, -x 5 x sin i x2. Do they see that as.x gets closer to 0, 

1 
Fig. 5 : y = x2 and y = x2 'squeeze' y = x2 sin -. 

, X 

x2 and -x2 becomivery small in magnitude? Therefore, any number in between 
becomes very small in magnitude. So, they see that x2 and -x2 'squeeze' x2 sin lix, 
forcing it to behaye like they do. This is why 

lim x2sin = lim x2 = lim (-x2) = 0. 
x+o x 4 0  x+o 
I 

Also try the following exercise with your learners. 

/ n 
E5) Use thb sandwich theorem to evaluate the limit, lim x cos -. ifit-exists. 

x +o X 



One of the difficulties students face is dealing with infinity. And, this is compounded 
when they are required to deal with limits involving infinity. The students can be 
greatly helped ih this matter with a visualisation of.how a function behaves at larger 
and larger values of its domain. 

How do we explain to them what a limit is as x + m ? Since = is not a real number, 
we cannot describe closeness to m in terms of intervals around-, as there is nothing to 
the right of =. But we can describe the closeness in terms of open intervals of the 
form ]k,m[ = {XE R:x>k]. Clearly, the larger k is, the 'closer' we are to m. So, we 
can help them interpret lim f (x) = L to mean that f(x) can be brought arbitrarily close 

5+- 

to L, provided x is sufficiently close to m, i.e., f(x) can be brought arbitrarily close to 
L, provided x is sufficiently large. 

Diagrammatically, we can show them the asymptotes, as in Fig. 6, to make the point. 

Limits and Continuity 

Fig. 6 : Graph of f(x) = - , x E R \ { ~ ) .  
x - 2  

You could ask your students to study the graph and discuss what happens to f(x) as 
x+-  o r a s x + m .  

Using examples as shown in Fig. 6, you could also help the students to clarify their 
understanding of infinite limits. Here, the student needs to understand that the 
statement ' lim f (x) ==. ' is really saying that 'as x gets closer to 2,the functionrf(x) 

x-12 

becomes larger and larger.' Since ' m ' is not a number, we cannot say that the 
limit exists, in the w>y we can for a number by taking a neighbourhood of the 
number. The stud'lnts need to understand (and see) that as x approaches 2, 

1 
1 

-becomes arbitrarily large, and it can't stay close to any finite number L. So, in 
r.- 2 

- effect, - has no limit as x approaches 2. 
x - 2  

Another example to make the point could be of a polynomial function of degree 1 or 
greater, which will eventually take off to infinity as x tends to - or -. 

Why don't you try an exercise with your learners now? 

E6) Give the students some examples of functions to explore the limits to infinity 
of a function and draw conclusions about vertical and horizontal asymptotes. 
What kind of errors did they make? What was their reasoning behind these 
errors? 
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(c) 

Fig. 7 

A major activity that may help the students to become comfortable with 'infinity' is 
given below. \In fact, doing this activity can help in reinforcing several concepts and 
processes like\ learning about fractals, inductive reasoning, spatial understanding, etc. 

Activity (Gdnerating Fractals) 
I 

In thik activity,, students are introduced to a method of generating fractal curves. They 
apply this method 'by hand', using pencils and graph paper to generate the first few 
iterations of a fractal curve. Various concepts about the curve's properties are 
investigated. 'What if ' questions lead to discovering patterns, relationships, and 
investigating the idea of a limit involving infinity. 

Materials : Gdaph paper, pencils, the computer programme application "Snowflakes" 
(if a computerlon which to run this application is available). 

Steps in the Adtivity 
I 

1. Ask each student to draw a horizontal line segment 9 units long on the graph paper 
(see Fig. 7(8)). (For convenience, let one unit be equal to the length of a side of 

I one square on the graph paper.) After they go through a couple of more steps, the 
students nedd to be asked why they started with 9 units, and not 5 (say). 

2. Next, the stqdents should divide this segment into three equal parts, and replace 
the middle part by three segments, each of length 3 units - moving vertically 
upwards 3 units, then rightwards 3 more units, then downwards 3 units. In effect, 
they place three sides of a square with side 3 units instead of the middle segment 
(see Fig. 7(b>) on the middle of the original line segment. 

3. Repeat Step 2 with each of the five segments obtained in Step 2. That is, the 
middle third ~f each segment from the first iteration is replaced with a similar 
square bump (see Fig. 7(c)). 

4. And continua repeating Step 2 with each segment formed. 

Each step should be drawn separately. 

To help the studeats focus on the point you want them to, you could do the following: 

After, say, 4 iteradons, you could ask them how many line segments they drew at each 
step. Do they see la pattern emerging in the number of line segments at each iteration? 
How many line segments would it take to draw the next iteration? You can ask 
similar questions about the length of the curve at each iteration. In fact, ask them to 
make a table like the following one. This would be helpful in organizing the 
information, as well as helping the students identify patterns. .. 

Each of the last thrae columns are geometric sequences. You could encourage your 
students to discover this themselves, in groups, or as a class. The last column in 
particular can be useful as,an exercise in number sense. The following are some 
possible discussion questions. 

What will the nekt row of the table look like? 
What patterns d o  you notice in the columns? 



What would the tenth row of the table look like? 
What is happening to the total length? How much is the,length changing each 
time? (It changes by a different amount each time. The amount it changes by is 
increasing.) 
How else might we quantify the rate of increase? (If they got the patterns for the 
first two columns, you might help them see that they increase and decrease, 
respectively, by a constant ratio. How might they figure out if that is happening in 
the third column? Some students may need a hint like "Try dividing length one by 
length zero, and length two by length one. Do you notice anything?") 
If you want to extend the students further, once they work out what the ratio is for 
the third column, you could ask them to discuss what would happen if it were 315 
instead of 5/3,  etc. 

There are computer programmes like 'Snowflake' that students can use also to see 
how the curve changes with each iteration. Such a programme very easily shows them 
several interactions. 

To help them get used to 'limit as x + =', ask the students what would happen 
eventually to the area under the curve if we kept increasing the number of iterations. 
They can experiment by increasing the iterations. What do they notice? Will the total 
area under the curve and above the line in Step 1 keep getting bigger (see Fig. 8)? 

Fig. 8 : Last iteration using 'Snowflake' in which the shape of the curve is still clearly visible 

The area will continue to increase, but it increases by a smaller amount each time. 

I 
Notice how, as the iterations increase, the overall shape of the pattern seems to be 
"filling" a triangle. What is the area of that triangle? Will the area bounded by the 
curve ever get bigger than the area of the triangle? 

I Further discussions in this activity include: 0 
Calculating the difference between the area bounded by the curve and the area of 
the limiting triangle by drawing the triangle around the variops iterations and 
adding up the area of the remaining spaces. 

1 Discussing the fact that the length of the curve goes to infinity as the number of 
I iterations goes to infinity. 

Here's a related exercise now. 

E7) Design an activity for your learners with the objective of helping them 
develop an understanding of lim f (x) =L. Try it out with your learners, and 

x--f= 

note down their reactions and other outcomes. 

I Let us now discuss ways of connecting the understanding of limits you would have 
developed in your learners with the idea of continuity. 

Limits and Continuity 



Calculus 

Here you need to be 
very careful in your 
choice of examples 
and non-examples of a 
concept. Otherwise 
some other unintended 
dommon features may 
show up which are not 
part of the definition o f  
the concept. 

By the time you wadt to introduce your students to the notion of continuity, they 
would be familiar with many kinds of functions and their graphs. While studying 
'limits' they would have come across functions that have gaps, breaks or jumps in 
their graphs, as well as those that don't have such features. You can use these 
examples and non-ekamples to introduce them to the idea of continuity. 

I 

As we have often suggested throughout the course, a good way of helping the learner 
to learn a concept islto allow her to construct her own understanding of it. The 
following situation may interest you, in this regard. 

Example 2 : The teacher, Kumar, was quite confident about his students' 
understanding of limits. A few of them also seemed to be familiar with 'continuous 
functions', as he discovered when he chatted with them. However, he wanted to 
introduce all the students to this concept. So he drew several figures on the board (see 
Fig. 9), and told thejchildren, "This (pointing to (b)) is a continuous function, and 
these (pointing to (4) and (c) )  are not continuous. Why do you think 1 have called (b) 

(b) -. 

Fig. 9 

continuous? What is the property it has that the other two don't have?" 

A 
Y Y4 . Y 

After looking at the graphs several students spoke out together. Kumar asked one of 
them, Karnla, to shsre her understanding with the others. She said that 'continuous' 
means one line. The middle one is a line, while the others are two lines. 

/. 

Here is when Kum& realised that unwittingly he had given diagrams that were giving 
some children misconcepts. So, he immediately drew some more diagrams (see Fig. 
lo), and again pointed out the continuous ones. 

,/ 

Fig. 10 1 . .  
Again he asked the children the same question. discussion, the children 
concluded that "if there is only one curve, with one it is a continuous 
function. If the curve is in many pieces, then it is 

One student yelled out that it is a graph drawn without lifti g pencil from paper. i Using such reactions, Kumar gradually led his learners to e formal definition of 

F 
X b 

X 0 0 
b 

X 0 



continuity of a function. He also helped the students realize how they needed to use 
their knowledge of limits studied earlier to proceed with checking a function for 
continuity or discontinuity. 

As a next step, he asked the students to divide up into groups. Each group was given a 
function to graph and find, geometrically as well as algebraically, whether it was 
continuous at a point. 

Through such exercises, and full class discussions of the solutions, the students 
realized that the continuity of a function at a point a means that f(x) gets closer and 
closer to f(a) as x gets closer and closer to a, i.e. , the function moves continuously 
towards its actual value at a as x moves towards a. Hence the word "continuous". 

Kumar ended the session with asking the children to note down, as homework, where 
they see continuous curves and discontinuous curves in their homes or outside. 

These types of activities help the students to learn the subject in an informal manner. 
This helps in interesting them in the subject. 

The important point that you need to help your learners realise during your interaction 
with them is that there are two numbers we consider when we consider lim f(x). 

x+a 

One is the number that f(x) is getting closer and closer to as x moves towards a. The 
other is the value of the function at the point a. These two numbers are distinct 
unless the function is continuous at x = a. 

*AI~O,  the students need to realise that the symbol f(a) tells us nothing about the 

function at any point other than a. Therefore, the two expressions lirn f(x) and f(a) 
x+n 

are independent of each other. The students need to understand that the value of 
one has no bearing on the value of the other. 

Here's an exercise about this now. 

. E8) List at least two examples each to illustrate the following possibilities to your 
learners, where f is a function. 

i) lirn f (x) exists but f is not defined at a. 
x+a 

ii) f(a) is defined, but lirn f (x) does not exist. 
x+a 

iii) Both lirn f (x) and f(a) exist, but are not equal. 
x+a 

iv) lim f (x) exists and equals f(a) 
x+a 

v) Neither lim f (x) nor f(a) are defined. 
x +a 

Hand in hand with 'continuity' goes 'discontinuity'. The different situations in which 
a function is discontinuous have been suggested in E8. Your students could be 
familiarised with different kinds of discontinuities like 'jump' and 'removable', along 
with explanations for why these names are used. Appropriately chosen examples 
would help you to make your point. 

For instance, you could tell them why-x = -1 is a removable discontinuity of f defined 

Llrnlts and Contlnulty 

4x+4 
by f(x) = - Vx E R \.{-1,l) . Ask them to draw the graph (see Fig. 1 1) and 

x2 -1 
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4x + 4  
Fig. 11 : Graph of - , x # f  1. 

x2 -1 

observe what happens as x +-1, Do they see the small gap or hole at x = -l? Do 
they realise that this means that f(-1) does not exist, but the function approaches -2 as 
x gets closer and closer to -1. In other words, the limit of the function as x tends to -1 
exists and is equal to -2, but f(-1) does not exist. However, if we define f at x = -1, 
by f(-1) = -2, then this point of discontinuity would be removed. This is why x = -1 
is a removable discontinuity. 

A question may arise in the mind of the students -can all discontinuous functions be 
made continuous in this way? Doing the following exercises will help you to explain 
to them why the answer is 'No'. 

E9) Give an example to your learners that would clarify to them what a 'jump 
discontinuity' is. 

E10) Determine whether the following functions are continuous at the points x = -3 
and x = 1. At the discontinuous points, indicate which condition of continuity 
does not hold. 

(a) 
Fig. 12 

El  1) i) Design an activity for your learners to help them improve their 
understanding af 'discontinuity'. 

ii) What questions did you keep in niind while designing it? 

iii) To what extent did the activity not achieve its aim, when you tried 
it out with your learners? 
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Calculus Regarding mea$urable limits, there is, for instance, an upper limit to the 
amount of rice 8 given student can eat at one meal. Think of other examples 
that your studerjts can relate to. 

E2) From high schopl geometry, you would recall the result: 

Ifan n-sided regular polygon is inscribed in a circle of radrus I ,  and a second 
circle is inscribed in the polygon, then the inner circle has radius cos (7u'n). 

In this pattern, the radii of the circles are 
cos-d3, cosZ (d3), cos3(n 13) , . . . 
Hence, the radills of the nth circle is cos"(d3), i.e., (1/2)" . 

\ 
As n tends to infinity, the resulting radius tends to 0. 

What were the dther patternslrelationships that your students found? Did they 
think of other extensions of this exercise? If so, what were they? 

E3) Ask your student to look at the graph of the function (see Fig.13). 

A 
Y -  

Fig. 13 

Do they observe any holes in the curve? What happens at x = 2? The value of 
the function at x t 2 is not defined. However, the function value approaches 
-2. Therefore, the limit of the function as x tends to 2 is -2. 

E4) F Q ~  instanc 

E5) f(x) = cos nlx is an oscillating function and it oscillates between -1 and +l. 
What happens in the case of x cos nlx? The students need to consider both 
the cases, namely, x > 0 and x < 0. 
Let them draw the graphs in both cases and see what happens (Fig. 14). 

i) x > O :  -1 6 cosdx  5 +  1. Therefore, -x I xcosnlx Sx. 



n By the sandwich theorem, we find that lirn x cos - = 0 
x+o X 

n 
ii) x < 0 : They can proceed as before to find that lirn x cos- is the 

x+o X 

same, namely, 0. 

aE6) For instance, you could take the functions f defined by 

How did they go about the task? Did they observe that y = 0 and y = 1 are 
horizontal asymptotes for the second function? 

A common mistake regarding the third function often made by the students is 

that they take 0 = x, not f x. So, they ignore the case when x c 0. 
Record other errors they make. 

E7) For instance, ask them to draw regular polygons of more and more sides. Do 
they note that the n-gon tends to a circle in the limiting case as n + w ? The 
students can also be asked to work on it on a computer where this can be 
clearly seen. 

E8) It will be helpful for your learners if you give them the geometric and 
algebraic representations of the less simple functions. 

1 x2 + 5  x<-1 

E9) Consider the function f(x) = 6x x = - 1 . Check the function for 

2x+3 x>-1 

continuity at x = -1. Using its graph, explain why it is a 'jump' discontinuity. 
There is no way in which the function can be redefined at x = -1 so that it 
becomes continuous. 

E10) (a) The function is continuous at x = -1, but not at x = 1 as there is a 
small gap there, i.e., the function is not defined at x = 1. So, x = 1 is a 
removable discontinuity. 

(b) x = -3 is an asymptote. The function has a limit as x -+ -3, but the 
function is not defined at x = -3. Hence the function is not 
continuous at x = -3. This is a non-removable discontinuity. 
At x = 1, it is continuous, since lim f (x)=f (1). 

x-1- 

E l  1) Your design would depend on your answer to (ii). Questions like the 
following need to be answered. 

What is its objective? 
What is the nature and quality of the students' participation? 
What materials are required? 
How much time is required? 

You q y  choose to just give a variety of exercises, or a game that can draw 
the whole class into an animated discussion on the concept, or'another 
activity. 

Llmlta and ContInulty 



Calculus i + 1, xis rational 
E12) For example, f(x) = 

0, xis irrational 

Ask your students to pick any point in the interval, say xo. Ask them to find 
lim f(x). 

X 3 X 0  

How did the students go about it? Did you allow a peer group discussion to 
take place? What kind of conceptual errors showed up in such discussions? 

Upon reflection, in what way has this helped you assess your teaching 
strategy? Please record all these points in your logbook. 

E13) Let us draw the graph of f(8) = sec 8 for 8~ [0,- [ (see Fig. 15). The students 
should be able to explain why f is not continuous at 8 = n / 2 or 371 / 2. They 
should also explain why it is continuous at every other point in the interval. 

Fig. 15 
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INTRODUCTION 

In the last two units we focussed on concepts that are pre-requisites for studying 
calculus. In this unit, we deal with problems students face in understanding 
differentiability. As we have said earlier, the understanding of 'derivative' is 
dependent on how well 'limit' has been understood by the leamer. Therefore, much of 
what has been discussed in the previous unit, is relevant to the issues taken up in the 
present unit. 

We begin this unit with suggesting ways of helping students becorrie comfortable with 
the notion of differentiation. Here, a remark made by an NVS teacher is relevant. He 
said, "My students can differentiate most functions, but they do i t  mechanically. They 
don't uaderstand the underlying process." In Sec. 6.2, we look at ways of helping 
students assimilate this underlying process. 

There are several misconceptions regarding when a function is differentiable and when 
it is continuous. In Sec. 6.3, we look at some examples that may help in removing 
these misconceptions. 

Finally, in Sec. 6.4, we take up the use of the derivative for curve tracing and 
analysing the behaviour of a function. Students often miss the significance of the first 
and second derivatives in this context. They also get confused between concepts'like 
'critical (or stationary) point' and 'point of inflection'. We have suggested an 
approach that has been found helpful by some teachers in alleviating this problem. 

- 

As in the previous units, this unit will be of use only if you actually try the exercises 
and activities with your learners. You must follow this up with analysing the students' 
responses. You could then alter your strategies, if neces'sary, based on the assessment 
you make. 

Here, now, is an explicit,list of the broad objectives of this unit. 

Objectives 

After studying this unit, you should be able to develop the ability of your learners to 

explain the meaning of 'derivative', and give its geometric and physical 
interpretation; 
explain when a continuous function need not be differentiable; 
use the first and second derivatives of a differentiable fupction for analysing its 
behaviour and for tracing its graph. 
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6.2 WHAT IS DIFFERENTIATION? 

Let me start by bringing you a quote from an article by Judith Grabiner in 
Mathematics Magazine, Vol. 56, 1983. She writes : 

"Historically speaking, there were four steps in the development of today's concept of 
the derivative, which I list here in chronological order. The derivative was first used; 
it was then discovered; it was then explored and developed; and it was finally 
defined. That is, examples of what we now recognize as derivatives were first used on 
an ad hoc basis in solving particular problems; then the general concept lying behind 
these uses was identified (as part of the invention of calculus); then many properties of 
the derivative were explained and developed in applications to mathematics and to 
physics; andfinally, a rigorous definition was given and the concept of derivative was 
embedded in a rigorous theory." 

Please think about this order carefully. Is it the same order in which we expose our 
learners to the derivative? If not, shouldn't we help our learners to arrive at the 
concept in a more intuitive and less formal manner, as it has been developed 
historically? Because we don't do this, most students react to the question given in the 
title of this section with the response. "It is d by dx." If probed further, they give an 

d 
example like - (xn) = nxn-I, or some other examples. Very rarely do I find a student 

dx 
who tries to explain its mathematical meaning, or its geometric or physical 
interpretation. 

Even though most teachers usually tell students that the derivative gives the slope of 
the tangent to a curve, and draw a diagram to explain it, students don't understand 
what is happening. Even students in college have a problem with this. Maybe drawing 
a diagram, giving some solved examples and many practice examples as homework is 
not the way to help the learner learn the concept. We need to present this aspect, as 
well as differentiation as a measure of the instantaneous rate of change, differently. 

In this context, it would be useful to note that students even have problems with 
understanding the difference between average and instantaneous rates of change. How 
would you address this problem? Rather than explaining this mathematically, you 
could give them examples of, say, movement of a vehicle. 

To start with, it may be useful, to clarify the student's understanding of 'average rate 
of change'. You could ask your students what it means if a car travelled from Ajmer 
to Jaipur with an average speed of 50 kmlhr. Does this mean that at each point of time 
during the journey its speed was 50? What about the traffic light being red on the 
way? And the time the car was suddenly stopped by a truck driver? 

In fact, students make other mistakes regarding this concept. For instance, ask them 
the following problem: 

Ifyou travel at a speed of 40 km./hr. going from Cochin to Trichur, and at a speed of 
60 km./hr. coming back, what is the average speed for the round trip? 

Did you get the usual response I get from many students to such a question, namely, 
50 km./hr.? This happens because the students don't think about what 'average speed' 
really is. Here, you would need to give them some hints to work out why the average 
speed is 48 k d r .  In fact, if the students used their common sense, they would realise 
that more time is spent while going at 40 km./hr. than is spent coming back the same 
distance at 60 km./hr. 

Now, how would you help your students to think about the instantaneous rate of 
change as the average rate of change at that particular instant? They need to see 
that you are making your time interval smaller and smaller, and looking at the average 



value of the function over this smaller and smaller interval. This average is 
f(t0 +h) - f ( t0 )  . As h gets smaller and smaller, nearer and nearer to zero, the 

(to + h) -to 
limiting value of this quotient, if it exists, is what we call the instantaneous rate of 
change off  with respect to t at the instant to. In fact, one teacher put it to her students 

C very nicely, as given in the following example: 

I Example 1 : Ms. Grace regularly coaches senior students in mathematics. A question 
she is frequently asked by her students is 'How is the derivative useful?' She usually 

I responds by explaining, "Imagine you go on a car ride. Suppose you know your 
position at all times. In other words, at 8 a.m. you are in the garage, at 8 a.m. and 5 
seconds you are just outside the garage, at 8 a.m. and 10 seconds you are on the road 

I just in front of your house, and so on. At every moment during this ride, your 
speedometer showed the speed of your car. So, if you knew your position at all times, 
at the end of your trip can you work out what your speedometer showed at any 

i particular instant of time? The answer is, yes, you can. The derivative provides a 
method for doing this. 

She goes on to give them the siniplest situation where one can compute what the 

I speedometer reading is, that is, driving at the same speed over the entire distance. In 
this case, of course, the students do conclude that if you drive 50 kilometres in one 
hour throughout at the same speed, then your speedometer read 50 km. per hour 
throughout the trip. 

In the situation where the car is driven at different speeds, Grace tries to get the 
students to consider the whole trip as made up of several short trips, say, one trip 
involving taking the car out of the garage, another trip would be driving the car onto 
the road, 2nd so on. "Over each of these tiny trips, your speed doesn't change much", 
she tells them, "So, you can pretend that your speed didn't change at all. So, you 
know how to compute the speed for each tiny trip. This gives you a good idea of what 
your speedometer read for that part of the big trip. But, remember, the assumption 
that the speed didn't change over each tiny trip is geherally wrong, and so you only 
get an approximation to the correct answer. But, the main idea behind the derivative 
is that the smaller you make the tiny trips used in your computation, the more 
accurately you will be able to compute the actual speedometer reading." In this way 
Grace tries to help the students understand the average change in an infinitesimal time 
interval. 

Sometimes Grace explains the derivative to the 'Commerce Stream' students inthe 
following way: 

"When you see the sensex (sensitivity index) report of the stock market on the TV in 
the evening, it measures the change in the aggregate stock index per unit of time. This 
is best understood visually by the slope of the graph joining the various points 
showing the stock index (see Fig. 1). If we measure the closing stock price from one 
day to the next, we notice that the graph gets higher on days when the price change is 
positive, and lower when the stocks go down. The steeper the slope, the faster the 
change. 

Grace goes on to explain to her students that the basic part of the formula for the 
derivative is just the formula for the slope of the segment joining two points on the 
curve. The instantaneous part is where the limit comes in. Taking simple examples, 
she tells them, "If you want to find the derivative at x = xo, you need to look first at 
the graph for a clue. Is the curve going up or down? Imagine a tangent to the curve at 
x = xo (see Fig. 2). The slope of the tangent line is the slope of the curve at that point. 
How will you find it numerically?" She draws this tangent, and also the secant joining 
P(xo, f(%)) to a point on the curve near it, say Q(xo+h, f(xo+h)) (see Fig. 2). 

Looking at the Derivative 
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Fig. 1 : A sensex 
graph over 
a month 
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Fig. 2 

Then she asks them what happens to this secant as Q moves towards P along the 
curve. She traces this movement with her finger on the board to a nearer point (Q,) 
and nearer to (Q$, and so on, each time drawing a fresh secant. She points out that the 
interval [xo, xo+h] reduces to smaller and smaller intervals. When they realise this just 
means that xo+h is getting closer to xo, she explains that this is where the limit part 
comes in. As xb+h gets closer and closer to xo, the secant tends to merge with the 
tangent at x = xo. 

Sometimes Grace modifies the explanation a bit by asking the students to take a ruler 
and keep adjusting it to form secants at nearer and nearer points on the curve. Then 
they see the secants actually merging with the tangent. 

In the example abbve the teacher has chosen her way of making the derivative more 
understandable to students. Do you agree with it? Here's a telated exercise. 

E l )  i) Which situations from your own students' lives could you use to explain 
the basic ,idea behind differential calculus to your learners? 

ii) How would you introduce your students to 'derivative'? 

Let us now considsr a common source of confusion for students related to what we 
have just discussed. This is the relationship between continuity and differentiability. 

6.3 CONTINUITY VERSUS DIFFERENTIABILITY 

When I ask students of Class 12, or even first-year college students, if every 
continuous funaiotu is differentiable, invariably they say this is true, but not the other 
way around! This reaction is probably a result of the way we teach and assess them. 
The students simply mug up a result and its proof without understanding it. As a 
result, they know that one condition implies another, but which implies which is the 
problem. Possibly, a good way to help students relate the . two . conditions is to give 
several visual examples of functions that : 

i) are continuous, hut not differentiable at a point; 
ii) both continuous ;and differentiable; , 

iii) not continuous, hence not differentiable. 



Why don't you try some exercises about this now? Looking at the Derivative 

E2) Give the graphs of at least two functions for each of the three situations listed 
above. How would you use these examples to clarify your students' 
understanding regarding the connection between differentiability and 
continuity? 

In workshops I have asked teachers to do the exercise above. Some of them used the 
method they had worked out in the workshop quite successfully in their classrooms. 

They utilised examples like 1x1 and xX to show students situations in which a 

continuous function would not be differentiable. The thrust of their strategy was to 
give students examples of a variety of graphs which could be drawn without lifting 
pencil from paper - some that included sharp comers and some that were smooth 
throughout (see Fig. 3). 

(a) 
Fig. 3 : (a) y = 1x1 , (b) Y = xl' 

They used these examples to show the students that though all the graphs were 
continuous throughout, the ones with sharp comers (Fig. 3(a)) were not differentiable 
at the points at which the comers are formed. Also, some smooth curves were not 
differentiable at the points where the tangents to the curve were vertical (as in Fig. 
3(b)). And why is this so? 

Why this happens is where the students need to utilise their understanding of 
derivative as the 'slope of the curve', that is, the limit of the slope of the secant at the 
point as the secant gets smaller and smaller. Suppose you ask your students to 
consider the function f given by f(x) = 1x1 at the sharp comer, i.e., the point x = 0. 
There is no unique tangent line to the curve at x = 0. If we approach 0 from the left, 
it appears that the slope of the tangent line should be -1, that is, y + x = 0 is the 
tangent. But if we approach 0 from the right, it appears that the slope of the tangent 
should be +1 that is, y = x is the tangent. So, dfldx doesn't exist at x = 0. 

Now, let us consider the other situation, shown in Fig. 3(b). Here, the curve has a 
vertical tangent line at x = 0. This means that the limit of the slope does not exist (a 
case of infinite limits!) at such a point. Therefore, f is not differentiable at x = 0. 

To emphasise the fact that a function is certainly not differentiable at a point of 
discontinuity, you could give them several other examples (as suggested in Unit 5). 
In Fig. 4 below, we show various ways in which a derivative can fail to exist. - - - 
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I x-1 for 0 < x c 1  

iii) f (x) = forx=l 

iv) f (x) = (x - 1) % 

1 E5) Test each of the functions below for differentiability at the points mentioned 
alongside. Also graph the corresponding derivative function, if it exists. 

I 
I 

i) 
2 f(x) = x at x = 0. 

ii) f (x )=Ix - l I a tx=~andx=l .  
-- 

Now let us see how to help our learners see the utility of the derivative of a function 
for analysing the nature of its graph. 

6.4 THE UPS AND DOWNS 

Looking at the Derivative 

I 

As you know, the geometric interpretation of the derivative, and its derivative, are 
very useful for understanding a function. Helping students to see this aspect, by 
getting them to graph the functions with the help of the derivative will make this 
concept more meaningful to the students. 

Do your students realise the important role of the first and second derivatives for 
tracing curves? Ask them : Just by considering f ' and f " at different points, is it 
possible to trace the graph off? How? Examples, and several exercises, to answer 
these questions is what your learners need to be exposed to. 

The first derivative, f', shows us where the extreme points occur, and where the 
function f is increasing or decreasing. The second derivative, f"  , gives the 
instantaneous rate of change of the first derivative. So, it tells us how fast f is 
increasing or decreasing. For instance, if s(t) is the distance covered by a vehicle in 

ds d2s 
time t, v = - is its velocity, and a = -is the acceleration of the vehicle, that is, the 

dt dt2 
rate of increase or decrease in the speed of the vehicle. 

&-. What is really meaningful in the context of curve tracing is that the behaviour of f" 
affects the shape of the graph. Knowing f" , we can find out over which intervals f is  
concave upwards or downwards. To make this point clear to your students, you could 
ask theq, for instance, to graph the curve of f(x) = 2x3 - x2 - 20x - 10 on [-2,4]. 
They would need to first look for Critical points in 1-2,4[ (that is; the points x for 
which f'(x) = 0) and the points in [-2,4] where f'(x) does not exist. In this case, the 

-5  
critical points are x = - ,2, and f'(x) exists V XE [-2,4]. 

3 

To decide whether the critical points are extreme points, and of what kind, the students 
-5  -5  

would need to find f"  at these points. Since f" (2) > 0 and f" ( - ) c 0 ,2  and - 
3 3 

are a local minimum and maximum, respectively. The students should note that some 
local extrema can also be absolute extrema, as in the case of (2,f(2)). 

The students would also need to find the intervals in which f" c 0 and f" > 0 for 
deciding the kind of concavity the curve has. 
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1 
is concave upwards in 1 concave downwards in [-2, -[ . 

6 i 

qg. 6 : The graph off, defined by f(x) = 2x3-x2-20x-10 on [-2,4] 
We usually give our learners several 'curve tracing' exercises. Here are some 
exercises that are not usually given. But these would help your learners undeistand 
and appreciate this application of the derivative, as well as its use in real-life 

ii) By looking at the first derivative decide which of the curves in Fig. 7 could 
not be the graph of f(x) = x3 - 9x2 + 24x + 1 for x 1 0. 
(Hint : Factor the formula for f' (x).) 

iii) By looking at the second derivative, decide which of the curves in Fig. 7 

I 

1 1 
Since f" (x) = 2(6x-I), f" > 0 fgr XE ] - ,4[ and f" c 0 for XE [-2, - [ . So, the curve 

6 6 

C 

The students now need to see, with your help, how the information they have gathered 
can be used for drawing the curve, which is given in Fig. 6. 

absolute, minimum 

- - - - 
situations. 

E6) i) By looking at the second derivative, decide which of the curves in Fig. 7 
could be the graph of f(x) = xSn. 

could be the graph of f(x) = Jf; . 

Y Y 

I 

0 > 
X 0 X 0 X 

I 

(a) (b) (c) 

Fig. 7 

E7) Sketch the graph of a function f for which : 

i) f(2) = 1; f '  (2) = 0; f is concave upwards for all x; 
I 

ii) f ( 3 ) = 5 ; f ' ( x ) > O V x ~ ] - ~ , 3 [ ; f ' ( 3 ) = O ; f ' ( x ) > O ~ x ~ ] 3 , m [ .  

iii) f(3) = -2, f' (3) = 2, f " (3) = 3 (sketch in the neighbourhood of x = 3). I 



An enterprising (although unscrupulous) business student has managed to'get Looking at the Derivative g his hands on a copy of the out-of-print solutions manual for an applied 

calculus text. He plans to make photocopies of it and sell them to ether 
students. According to his calculations, he figures that the demand will be 
between 100 and 1200 copies, and he wants to minimize his average cost of 
production. After checking the cost of paper, duplicating, and the rental of a 
small van, he estimates that the cost in rupees to produce x hundred manuals is 
given by C(x) = x2 + 200x + 100. How many should he produce in order to 
make the average cost per unit as small as possible? What is the least amount 
he will have to charge to make a profit? 

E9) The number of salmon swimming upstream to spawn is approximated by 
S(x) = -x3 + 3x2 + 360x + 5000, 6 I x 5 20, 

where x represents the temperature of the water in degrees Celsius. Find-the 
water temperature that produces the maximum number of salmon swimming 
upstream. 

E10) A rope, 4 metres long, is cut into 2 pieces. One piece is shaped into a circle, 
and the other made into a square. Where should the cut be made in order to 
make the sum of the areas enclosed minimum? 

There are two concepts that show up while tracing curves with using derivatives. 
These are 'critical (or stationary) point"and 'point of inflection (or inflexion)'. 
Students often confuse them, andlor the relationship between them - Is a point of 
inflection a critical point? What about vice-versa? The students need clarifications on 
these questions. What is a good way for helping them in this hatter? 

One way to explain critical points is to geometrically show that those points at which 
the tangent to the curve exists and is parallel to the x-axis are critical points. Here, 
you could ask them to think about why they are called 'critical'. Then you could use 
several curves that they are familiar with to help them observe and'realise why these 
points are 'critical' -that a curve only attains a local maximum or minimum at a 
critical point, andlor at points at which the curve is not differentiable. 

Also , ask your students if the converse is true. To help them think about the 
converse, you could give them graphs of some functions like f(x) = x3, where 
f ' (0) = 0, but x = 0 is not an extreme point. 

Regarding 'point of inflection', ask your students to consider curves like those in Fig. 
8. 

A 
Y 

0 

inflection 

> 
X 

Fig. 8 
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Extreme values of the 
slope always occur at 
inflection points. 

I've been working for f-7 
( 4 hours. Now i'm too tired. \ 

think anymore. ,J 

Fig. 10 

- - 

Ask your studen$ if they notice any difference in the position of the curve relative to 
the tangents to the curve at any point between A and B, vis-a-vis the positi~n relative 
to the tangents drbwn a1 any point between B and C. The function lies belhw the 
tangents from A b B, and above the tangents from B to C. So, the curve is concave 
downwards fronl A to B and concave upwards from B to C. Because of this, B is a 
point of inflection for this curve. More examples and non-examples of such points 
can be given to students to explore. This will help them develop their understanding 
of the concept. 

Why don't you try an exercise now? 

El  1)  What method would you use for explaining 'critical point' and 'point of 
inflection' to your learners? Try it with them. How did you judge the 
effectiveness of your strategy? 

In the strategy you have just suggested, did you expose your learners to any real-life 
examples of points of inflection? We have suggested some such examples below. 

Point of Diminishing Returns : Let us start with considering Fig. 9. 

A 

I Input (rupees) 
Fig. 9 

The graph in this figure depicts the output of a factory worker over a period of time. 
To start with, the graph is not very steep. The steepness increases further on, until the 
graph reaches a point of maximum steepness (at C) after which the steepness begins to 
decrease. This tell$ us that at first, the worker's rate of production is low. The rate of 
production increases as the worker settles into a routine, and continues to increase 
until the worker is performing at maximum efficiency. Beyond this point fatigue sets 
in, and the rate of production begins to show a decline. m e  point of maximum 
efficiency is known in economics as the point of diminishing returns. 

The behaviour of the graph on either side of this point C can be described in terms of 
the slope. To the left of this point the slope of the tangent increases as t increases. 
(This indicates that the output is increasing at a faster rate with each additional hour 
spent by the worker.) To the right of the point C, the slope of the tangent decreases as 
t increases. (This indicates that the increase in output is smaller with each additional 
hour spent on the jab.) It is this increase and decrease of the slope on either side of 
this point that tells us that C is a point of inflection of this function. In this situation it 
shows us that C is the point of maximum efficiency, that is, the point of diminishing 
returns. Any input beyond this point of time corresponding to C will not be 
considered to be a mod use of this worker's labour. 

Point of Maximum Efficiency : Ask your students to think of their own situation 
when preparing for an exam. A couple of days before the exam they sit down to revise 
their syllabus. At first, they will be studying slowly. As they set their mind to do 
more, efficiency increases, and it increases up to a maximum level, say, 4 hours after 
beginning to study. After that point of time, the ability to concentrate slowly declines, 
and many say, "my mind is fully drained, and I can't think any more". This point, 



which is the point of maximum efficiency (the point of diminishing returns), is a point Looking at the Derivative 
of inflection in this situation. 

Point of Maximum Yield : The graph in Fig. 11 shows the population of catfish in a 
commercial catfish farm as a function of time. As the graph shows, the population 
increases rapidly up to a point, and then increases at a slower rate. The horizontal 
dashed line shows that the population will approach some upper limit determined by 
the capacity of the farm. The point at which the rate of population growth starts to 

Y 

................................................. 

population + 
0 Time X 

i fig. 11 

To produce the maximum yield of catfish, harvesting should take place at the point of 
fastest possible growth of the population. This is at the point of inflection. The rate of 
change of the population, given by the first derivative, is increasing up to the 
inflection point (on the interval where the second derivative is positive) and 
decreasing past the inflection point (on the interval where the second derivative is 
negative). 

Why don't you try the following exercise now? 

E12) List two real-life problem situations that you can give your learners to enable 
them to understand 'critical point' and 'point of inflection'. 

Let us now consider another question that students frequently wonder about regarding 
the shape of the graph of a function. The question is: 

Is there a relationship between concavity and the type of monotonicity of a curve? 
Through examples of the kind given in Fig. 12, you cogd help your students to note 
that a function can be either increasing or decreasing on an interval regardless of 
whether it is concave upwards or concave downwards on the interval. 

concave 
upward 

increasing concave 
downward 

1 Fig. 12 : A function that is (a) concave upwards in [a,b]; (b) concave upwards in [a,O], and concave 
Cow wards in [O,b]; (c) concave downwards in [a,b]. 4 



Calculus The following chart shows how a graph may combine the properties of increasing, 
decreasing, concave upwards and concave downwards. 1 

You should also ask your students to think of examples of each category in the chart 
above. 

Sign of f '  

+ 
+ 
- 
- 

Now, your students would have learnt that at a point of inflection of a function f, 
either f '= 0 or f " does not exist. But, have you ever asked them if the converse is 
true? That is, if f.'(x$ = 0, is xo a point of inflection off? You could give your 
students examvles like v = x4 that can h e l ~  them answer the auestion themselves. 1 

Sign of f' 
I 

+ 
- 
+ 
- 

Here, f '(0) = 0, but f * > 0 when x > 0 and when x < 0. So there is no change in 
concavity at x = 0. 

You also need to exmse vour learners to situations in which f "  (xo) does not exist. but 

Inbrease or 
Decrease in f 

Increasing 
Increasing 
Decreasing 
Decreasing 

. ", 
xo is a point of infl&tioh>or f. Think about these aspects while doing the following 
exercises. 

Concavity (C) 
of f  

C-up 
C-down 

C-up 
C-down 

E13) Give examples of functions f, defined on an interval [a,b], such that 

i) f ' and f " ellrist in [a,b]; 
ii) f ' exists in ~[a,b], but f ' does not exist at some points of [a,b]; 
iii) f ' does not ]exist on [a,b]. 

Also find the critical points of these functions, as well as points of inflection, 
if any. 

E14) Give two examples, with justification, of functions f for which 
i) f " (a) = 0 but a is not a point of inflection off  
ii) f is concave upwards on some interval, concave downwards on another 

interval, and yet f has no point of inflection. 
, I 

Let us sum up the essenca of what we have just discussed in the following remark. 

Remark : The first order critical points decide about the extremum of a function 
whereas the second order critical points determine the change in concavity off. This 
shows that critical points of the first order tell us the quantitative nature of a function, 
and second-order critical goints decide the shape of the graph (qualitative behaviour of 
the function f). The points of inflection off  are the extreme points off ' . At a point of 
i n f ldon ,  there is a change in concavity of the curve. But change in concavity itself 
will not lead to a point of inflection. 

Before ending the section, let me suggest an interest activity for your students that 
cover all the aspects of what you discuss with them in differential calculus. This also 
exposes the students to the names of several mathematicians. 



I 
Activity (Class, Take Your Seats) 

Canvou fill in the first initial of each student in this math teacher's seating chart using 
only the clues below? 4 

Looking at the Derivative 

'7' 
CLUES: 

1. All students are located at integral coordinates in The xy-plane. The x- 
coordinates belong to the set (-2, -1,0, 1,2),  and the y-coordinates belong to 
the set {-1,0, 1,2,3).  

2. Wallis is seated on the line which is normal to the curve f(x) = x2 - 2x + 4 at 
its minimum point. 

32 
3. Newton is seated at a point of inflection of f(x) = 4x2 + - . 

X 

4: Euler sits at the point on the curve 2y = (x - 2)' which is nearest to Boole. 
, 

5.  MacLaurin is located at the relative maximum point of the function 
f(x) = x3 - 3x2 - 9x - 4. 

6. Saccheri is seated at the absolute maximum point of the function 
f(x)=-x244x - 1. 

7. Riemann's seat is one of the critical points of the curve 

k 
8 .  The function f(x) = x2 + - has a point of inflection at x = 1. Zeno sits at this 

X 

point. 

9. Boole is seated at the absolute maximum point on the curve (x - 212 + y2 = 1. 

10. Archimedes is located at one of the vertices of the rectangle with the largest 
area that can be drawn with its upper vertices on the line y = 1 and its lower 
vertices on the parabola y.= x2 - 2. 

1 1. Thales sits at a point on the curve f(x) = 2x3 - 6x2 + 43 where the slope is 48. 



Calculus 12. Leibniz sits at a point on the curve y = cos(x) where the 99th derivative of that 
curve is O: 

13. Kronecker sits on the line which is tangent to the curve y = 4x2 - 22x + 35 at 
the point (3,5). 

14. Fermat is seated at the point of inflection of the curve y = x3 - 6x2 + 33x - 51. 
D 

15. Descartes is located at one of the critical points of the curve y = -3x4 + 6x2. 

16. Cantor is located on the line tangent to the curve y = -x2 + lox - 25 at its 
maximum point. 

17. Gauss sits at the absolute maximum point on the curve 4y = -2x3 + 3x2 + 7 
over the interval [-1 ,2]. 

18. Viete's seat is collinear with those of Gauss and Kronecker. 

19. Heron is located at the point of inflection of the curve f(x) = x3 - 3x2 + 3x + 1. 

20. Pascal lies on the line tangent to the curve 12y = 16 - 6x2 - x3 at its point of 
inflection. 

(This activity is designed by David Pleacher, 1991 VCTM Mathematics Teacher.) 

The activity above catl also be done by the class as a whole, divided into teams. 

Let us now summarise what we have covered in this unit.' 

SUMMARY. 

In this unit we have discussed the following points. 

I. We have given some suggestions for relating the derivative to the students' 
real-life experiences. 

2. Examples have been given for clearing the confusion students have regarding 
the relationship between continuity and differentiability. In particular, we 
have spelt out various situations in which a function is not differentiable at a 
point. 

3. You have studied examples to help students realise the significance of f ' and 
f " for understanding the behaviour of f'4d the shape of its graph. 

4. We have particularly focussed on critical points and points of inflection, 
geometrically, algebraically and through real-life examples. 

5. Stress has been laid on encouraging students to think about whether any 
critical point is an extremum, and whether f " (Q) = 0 means that xo is a point 
of inflection. 

6. We have also sufgested that you discuss the fact with your students that there 
is no relationshie between monotonicity and type of concavity of a function. 



Looking at the Derivative 
6.6 COMMENTS ON EXERCISES 

El)  i) The examples would necessarily deal with movement of some kind. 
They could relate to profit or loss, movement of water in a stream, 
movement of vehicles around them, students running/walking/swirnming, 
etc. 

ii) You may find it interesting to note down in your logbook any changes in 
method of teaching the derivative that you have made now. Also, note 
down the consequences for the quality of learning. . 

E2) Your students must be familiar with several examples. But did they realise that 
these examples (like 1x1 ) would be appropriate? 

While writing your teaching strategy, note down the methods you used for 
assessing the usefulness of the strategy from the learning point of view. 

E3) For instance, did they realise that the graph in (a) is continuous over 
1-2, -11 u [1,3], and differentiable over ] -2, -11 u [1,3] \ {2,2.5,2.75)? 

E4) i) Continuous, not differentiable at x = 1 ; sharp comer at x = 1. 

ii) As in (i) above. 

iii) Discontinuous, and hence not differentiable, at x = 1. 

iv) Continuous, but not differentiable at x = 1; tangent is vertical at x = 1. 

i) ~ifferentiable at x = 0. The curve of f ' is the straight line y = 2x. 

ii) Differentiable at x = 0, but not at x = 1. The curve of f ' over R \ { 1 ) is 
the union of two half li8nes. 

i) Since f a r  0 V x > 0, f is concave upwards in [0, [. Therefore, of the 
graphs given, the one in (b) is the most appropriate. 

ii) Since f "  (x) = 3(x-4)(x-2), f is increasing in [4, = [ and 1- m ,2], and 
decreasing in [2,4]. Hence, (a) could be the graph off, not (b) or (c). 

(ji) 

Fig. 13 

(iii) 

E8) The average cost function is . This is minimum for x = 10. Remember, 

the unit of x is hundred manuals. So, to minimise the average cost, 10 hundred, 
i.e., 1000 manuals at least should be produced. 



Calculus 
The cost of prodLcing these is ==Rs.2.20. So, he should charge more 

1000 
than RS. 2.20 to bake a profit. 

I 

E9) 12" Celsius. 
(Here note that $tudents often forget to write the unit. You need to insist on the 
units being written.) 

Remember to check the 
I endpoints also when 

looking for absolute 
E ~ O )  Suppose a portibn of length x cm. is formed into a circle and the length 

minima or maxima. 400 - x cm. is hade into a square. 

The sum of the, areas is n 

This is minimdm for x = (y ) : )  - cm. 
I 

E l  1) Here, you shobld try out methods based on the core course 'Teaching-Learning 
Process and Evaluation' that you have studied. 

E12) For instance, a small company that makes and sells bicycles determines that the 
cost and price functions for x ( 2 0) cycles per week are C(x) = 100 + 30x and 
P(x) = 90 - x, respectively. What are the possible values of x for which the cost 
would be miqiesed? 

Here, the quebtion only requires the critical points to be determined. However, 
it can be alteqed for finding maximum revenue, etc. 

Similarly, copsider the problem of drug concentration : The percent of 
concentration of a certain drug in the bloodstream x hours after the drug is given 

3x 
is K(x) = -----. Find the time at which concentration is a maximum. 

x"4 

There are selveral other problems that you can think of related to chemical 
reactions, vctlocity and acceleration, etc. 

E13) i) Any polynomial function, for example. 

ii) For instance, y = 1% in [-1.11. 

1, x rational 
iii) For ipstance, f(x) = on any interval. 

0, otherwise 

~usi:$y looking at the type of functions, ask your students if they can tell 
whether critical points or points of inflection exist. 

E14) i) For instance, take f(x) = x4 over [-1,1], Here f a  (0) = 0, but f a  (h) > 0 . . for h < 0 and h > 0. So x = 0 is not a point of inflection. 

1 
ii) For'instance, y s - is concave downwards at x = -1 and concave 

X 

upwards at x = 1. But there is no inflection point in between. 




