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UNIT 11 CONTINUOUS PROBABILITY 
DISTRIBUTIONS 

Objectives 

After reading this unit, you should be able to: 

• identify situations where continuous probability distributions can be applied 

• appreciate the usefulness of continuous probability distributions in decision-
making. 

• analyse situations involving the Exponential and the Normal distributions. 

Structure 

11.1  Introduction 

11.2  Basic Concepts 

11.3  Some Important Continuous Probability Distributions  

11.4  Applications of Continuous Distributions 

11.5  Summary 

11.6  Further Readings 

11.1 INTRODUCTION 

In the last unit, we have examined situations involving discrete random variables and 
the resulting probability distributions. Let us now consider a situation, where the 
variable of interest may take any value within a given range. Suppose that we are 
planning for release of water for hydropower generation and irrigation. Depending on 
how much water we have in the reservoir viz. whether it is above or below the 
"normal" level, we decide on the amount and time of release. The variable indicating 
the difference between the actual reservoir level and the normal level, can take 
positive or negative values, integer or otherwise. Moreover, this value is contingent 
upon the inflow to the reservoir, which in turn is uncertain. This type of random 
variable which can take an infinite number of values is called a continuous random 
variable, and the probability distribution of such a variable is called a continuous 
probability distribution. The concepts and assumptions inherent in the treatment of 
such distributions are quite different from those used in the context of a discrete 
distribution. The objective of this unit is to study the properties and usefulness of 
continuous probability distributions. Accordingly, after a presentation of the basic 
concepts, we discuss some important continuous probability distributions, which are 
applicable to many real-life processes. In the final section, we discuss some possible 
applications of these distributions in decision-making. 

Activity A 

Give two examples of a continuous random variables. Note down the difficulties you 
face in writing down the probability distributions of these variables by proceeding in 
the manner explained in the last unit. 
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11.2 BASIC CONCEPTS 
We have seen that a probability distribution is basically a convenient representation 
of the different values a random variable may take, together with their respective 
probabilities of occurrence. The random variables considered in the last unit were 
discrete, in the sense that they could be listed in a sequence, finite or infinite. 
Consider the following random variables that we have taken up in Unit 10 : 
1  Demand for Newspaper (D) 
2  Number of Trials (N) required to get r successes, given that the probability of a 

success in any trial is P. 
In the first case, D could take only finite number of integer values, 30, 31,…..35; 
whereas in the second case, N could take an infinite number of integer values r, r + 1, 
r + 2 …………….∞ . In contrast to these situations, let us now examine the example 
cited in the introduction of this unit. Let us denote the variable, "Difference between 
normal and actual water level", by X. We find that X can take any one of 
innumerable decimal values within a given range, with each of these values having a 
very small chance of occurrence. This marks the difference between the continuous 
variable X and the discrete variables D and N. Thus, in case of a continuous variable, 
the chance of occurrence of the variable taking a particular value is so small that a 
totally different representation of the probability function is called for. This 
representation is achieved through a function known as "probability density function" 
(p.d.f.). Just as a p.m.f. represents the probability distribution of a discrete random 
variable, a p.d.f. represents the distribution of a continuous random variable. Instead 
of specifying the probability that the variable X will take a particular value, we now 
specify the probability that the variable X will lie within an interval. Before 
discussing the properties of a p.d.f., let us study the following example. 
Example 1 
Consider the experiment of picking a value at random from all available values 
between the integers 0 and 1. We are interested in finding out the p.d.f. of this value 
X. (Alternatively, you may consider the line segment 0-1, with the origin at 0. Then, 
a point picked up at random will have a distance X from the origin. X is continuous 
random variable, and we are interested in the distribution of X.) 
Solution 
Let us first try to find the probability that X takes any particular value, say, .32. 
The Probability (X = .32), written as P(X = .32) can he found by noting that the 1st 
digit of X has to be 3, the 2nd digit of X has to be 2 and the rest of the digits have to 
be zero. The event of the 1st digit having a particular value is independent of the 2nd 
digit having a particular value, or any other digit having a particular value. 

Now, the probability that first digit of X is 3 = 
1

10  (As there are 10 possible numbers 

0 to 9). 
Similarly the probabilities of the other digits taking values of 2, 0, 0 ...etc. are 
1

10
 each. 

P(X = .32) = 
1 1 1 ×  ×   0

10 10 10
� ………………….(1) 

Thus, we find that for a continuous random variable the probability of occurrence of 
any particular value is very small. Therefore we have to look for some other 
meaningful representation. 
We now try to find the probability of X taking less than a particular value, say .32. 
Then P(X < .32) is found by noting the following events : 
A) 
B) 

The first digit has to be less than 3, or 
The first digit is 3 but the second digit is less than 2. 

P(X < .32)  = 
3 1 2+    = .32

10 10 10
× ………(2) 
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1) 

2) 

Combining (1) & (2) we have : 
P(X ≤  .32) =  .32 

Similarly, we can find the probability that X will lie between any two values a and b, 
i.e., P(a  x  b); this is the type of representation that is meaningful in the context 
of a continuous random variable. 

≤ ≤

Properties of a p.d.f. 
The properties of p.d.f. follow directly from the axioms of probability discussed in 
Unit 9. By definition, any probability function has to be non-negative and the sum of 
the probabilities of all possible values that the random variable can take, has to be 1. 
The summation for continuous variables is made possible through `integration'. 
If f(X) denotes the pdf of a continuous random variable X, then 

f(X) 0, and 

R∫  f(X) dX= 1, where "  " denotes the integration over the entire range {R) 

of values of X. 
R∫

The probability that X will lie between two values a and b, will be given by : 

. 
b

a
f(X) dx∫

The cumulative density function (c.d.f.) is found by integrating the p.d.f. from the 
lowest value in the range upto an arbitrary level X. Denoting the c.d.f. by F(X), and 
the lowest value the variable can take by a, we have : 

F(X) =  
x

a
f(X) dx∫

Once the p.d.f. of a continuous random variable is known, the corresponding c.d.f. 
can be found. You may once again note, that as the variable may take any value in a 
specified interval on a real line, the probabilities are expressed for intervals rather 
than for individual values, and are obtained by integrating the p.d.f. over the relevant 
interval. 
Example 2 
Suppose that you have been told that the following p.d.f. describes the probability of 
different weights of a "1kg tea pack" of your company : 

 
Verify whether the above is a valid p.d.f.  
Solution 
As, f(x) = 100 (x -1) for 1 ≤  x ≤  1.1  
 = 0 otherwise. 
The relevant limits for integration are 1 and 1.1; for all other values below 1 and 
above 1.1, the probability being zero. 
In order that f(x) is a valid p.d.f., two conditions need to be satisfied. We test them 
one by one. 
1  Check f(x)  0 ≥
i.e. to show that 100 (x -1) ≥  0 for 1 ≤  x ≤  1.1 
It is easy to see that this is true, for all other values of x, f(x) is given to be 0. So this 
condition is satisfied. 
2  Check f(x) dx = 1 

 
As this is not equal to 1, this is not a valid p.d.f. 

 



 

Example 3 
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The p.d.f. of the different weights of a "1kg tea pack" of your company is given by : 
f(x) = 200 (x-1) for 1 ≤  x ≤  1.1 

= 0, otherwise. 
You may note that the packing process is such that even if you set the machine to a 
value, you will only get packs around that value. The p.d.f. shows that there are 
chances of only exceeding the 1 kg value and there is no chance of packing less than 
1kg. This is normally achieved by setting the machine to a relatively high value to 
overcome the government regulation on packing standard weights.) 
Verify that the given p.d.f. is a valid one. Find the probability that the weight of any 
pack will lie between 1.05 and 1.10. 
Solution 
Proceeding in the same way as in the earlier example, we can show that  

1.1

1
200(x-1)dx = 1∫  

Now, we find the probability that x will lie between 1.05 and 1.10 : 

 
Alternatively, we could have found the above as follows :  

 
Example 4 
find the cdf for the pdf given in Example 3.  
Solution 

 
(Here , 1 is the lowest possible value that x can take). 
In this section we have elaborated on the concept of a continuous random variable 
and have finally shown how to arrive at a representation of the probability function of 
such a variable. We have used "integration" for our purpose. Those of you who are 
not familiar with the concept of integration, may note that this is similar to the 
summation sign (I) used in the context of a discrete variable. Also, if f(x) vs x is 
plotted on a graph, we will have a curve. The integration between two values a and b 
of x then signifies the area under the curve, and as we have already seen, this is 
nothing but the probability that x will lie between a and b. This idea will be useful 
again when we discuss some important theoretical probability distributions for 
continuous variables in the next section. 
Activity B 
Suppose that you are told that the time to service a car at your friend's petrol station is 
uncertain with the p.d.f. given as : 

 
Examine whether this is a valid p.d.f. 
(You may need to brush up Integration from any elementary Calculus book.) 
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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The life in Hours of an electric bulb is known to be uncertain. A particular 
manufacturer of bulbs has estimated the p.d.f. of "life" (the total time for which the 
bulb will burn before getting fused) as : 
f(x) = 0, for x< 0 

= -(x/100),1 e   for x
100

≥ 0  

Check whether the above is a valid p.d.f. 
If it is a valid p.d.f., find the probability that a bulb will have a life of more than 100 
hours. 
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

11.3  SOME IMPORTANT CONTINUOUS PROBABILITY 
DISTRIBUTIONS 

The knowledge of the probability density function (p.d.f.) of a continuous random 
variable is helpful in many ways. The p.d.f. allows us to calculate the probability that 
a variable will lie within a certain range. The usefulness of such calculations are 
illustrated with the help of the following two situations. 
Situation 1 
Mr. X manufactures tea and sells it in packets of 1kg. He knows that the packing 
process is imperfect, so that there is always a chance that any packet that is finally 
sold will have a tea content exceeding 1kg or less than 1 kg. In the current process, it 
is possible to set the packing machine, so that the packet weighs within a certain 
range. As the government regulation forbids packets with weights lesser than what is 
specified on the packets, Mr. X has set the machine at a higher value, so that only 
packets with weights exceeding 1kg. will be produced. This has created a problem for 
him. He feels that currently he is losing a lot of money in the way of excess material 
being packed. He has got an option to go for a more sophisticated packing machine at 
a certain cost that will reduce the variability. He wants to find out whether it is 
worthwhile going for the new machine. Say, the new process will produce packets 
with weight ranging from 1 to 1.05 kg., if set in the same manner. 
A knowledge of p.d.f. of the weights produced by the current process will help Mr. X 
to calculate the probability that any packet will weigh more than, say, 1.05 kg. , or 
that any packet will weigh between 1.01 to 1.05 kg. These probabilities are helpful in 
his decision. A high probability of the weight exceeding 1.05 kg.is an indicator of a 
high percentage of packets having more than 1.05 kg.weight. These probabilities may 
help him calculate the expected loss due to the current process. This expected loss 
may be traded off then with the cost of buying the machine to arrive at the final 
decision. 
Situation 2 
Mr. T, a manufacturer of Electric bulbs, feels that the desired life of a bulb should be 
100 hrs. , i.e. a new bulb should bum for 100 hrs. before the filament breaks. He 
realises that a high cost is associated with having a process that will manufacture all 
bulbs with life of more than 100 hrs. He is ready to make a trade off between the 
quality level and the cost. 
In this case, if he knows the p.d.fs. of "the life (in hours)" of bulbs manufactured 
through different processes, then for different processes he can find out the 
probabilities that the life will exceed or equal 100 hrs. Suppose, he found the 
following for two processes 
P(Iife  100 hrs.) = .8 for process 1 ≤
P(life  100 hrs.) = .9 for process 2 ≥

 



 

The above formula indicates that the process 2 is a better process, so far as quality is 
concerned. One may note that the cost for process 2 is higher than that of process 1. 
Mr X may now try to decide whether it is worthwhile paying extra cost for this 
quality. 
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The above formula shows how the information on p.d.f. can be helpful in decision 
making. This brings us to the question of assessing a p.d.f. Like we have seen in the 
cast-of discrete variables, for continuous variables also may real life situations can be 
approximated by certain theoretical distribution functions. Knowledge about the 
process of interest, and the past data, on the variable help us to find out what type of 
standard (theoretical) p.d.f. is to be applied in a particular situation. 
We now present two important theoretical probability density functions, viz., the 
Exponential and the Normal. A study of the properties of these functions will be 
helpful in characterising the probability distributions in a variety of situations. 
Exponential Distribution 
Time between breakdown of machines, duration of telephone calls, life of an electric 
bulb are examples of situations where the Exponential distribution has been found 
useful. In the previous unit, while discussing the discrete probability distributions, we 
have examined the Poisson process and the resulting Poisson distribution. In the 
Poisson process, we were interested in the random variable of number of occurrences 
of an event within a specific time or space. Thus, using the knowledge of Poisson 
process, we have calculated the probability that 0, 1, 2 .....accidents will occur in any 
month. Quite often, another type of random variable assumes importance in the 
context of a Poisson process. We may be interested in the random variable of the 
lapse of time before the first occurrence of the event. Thus, for a machine, we note 
that the first failure or breakdown of the machine may occur after 1 month or 1.5 
months etc. The 'random variable of the number of failures within a specific time, as 
we have already seen, is discrete and follows the Poisson distribution. The variable, 
time of first failure, is continuous and the Exponential p.d.f. characterises the 
uncertainty. 
If any situation is found to satisfy the conditions of a Poisson process, and if the 
average occurrence of the event of interest is m per unit time, then the number of 
occurrences in a given length of time t has a Poisson distribution with parameter mt, 
and the time between any two consecutive occurrences will be Exponential with 
parameter m. This can be used to derive the p.d.f. of the Exponential distribution. 
Let   f(t) denote the p.d.f. of the time between occurrence of the event    
  F(t) denote the c.d.f. of the time between occurrence of the event (say, t >0). 
Let  A be the event that time between occurrence is less than or equal to t.  
 and B be the event that time between occurrence is greater than t. 
By definition, as A and B are mutually exclusive and collectively  
exhaustive : P(A) + P(B) = 1 ........................... (1) 
From the definition of c.d.f. and the description of event A, 

P(A) = F(t) ......................................(2) 
From the definition of event B, as the time between occurrence is greater than t, it 
implies that the number of occurrences in the interval (0, t) is zero. Taking the 
distribution of number of occurrences in time t as Poisson, we can write': 
P(B) = Probability that zero occurrences are there in time t, given that the average 

number of occurrences are mt. 
From Poisson formula, P(B) can be written as : 

 

 



 

The above formula gives the pdf of the Exponential Distribution. We can now verify 
as to whether this is a valid pdf. 
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 Wefind f(t) ≥  for all t as m>0  

also  -mt

0 0
f(t) dt = m e dt = 1

∞ ∞

∫ ∫
Hence this is a valid p.d.f. 
If we assume that the occurrence of an event corresponds to customers arriving for 
servicing, then the time between the occurrence would correspond to the inter-arrival 
time (IAT), and m would correspond to the arrival rate. Exponential has been used 
widely to characterise the IAT distribution. The Exponential p.d.f. is also used for 
characterising service time distributions. The parameter `m' in that case, corresponds 
to the service rate. We take up an example to show the probability calculations using 
the Exponential p.d.f. In the final section of this unit, we will be illustrating through 
an example, the use of the Exponential distribution in decision-making. 
Example 5 
A highway petrol pump can serve on an average 15 cars per hour. What is the 
probability that for a particular car, the time taken will be less than 3 minutes? 
Solution 
Here, Exponential applies with m = 15 (service rate). We are interested in finding the 

probability that t <3 minutes i.e.  t < 
3

60
 hrs 

From definition of c.d.f., we want to Find F 
3

60
 
 
   = F 

1
20

 
 
 

  

we have seen that F(t) = 1 – e-mt 

-15 1 20 -3 41F  1-e  1-e  .5276.
20

×  = = = 
 

 

Example 6 
The distribution of the total time a light bulb will burn from the moment it is first put 
into service is known to be exponential with mean time between failure of the bulbs 
equal to 1000 hrs. What is the probability that a bulb will burn more than 1000 hrs. 
Solution 

 
We are interested in finding the probability that t >1000 hrs.  

 
∴  The required probability = e-1= 0.368.  
Activity D 
In Example 5, find the probability that for any car, the time taken to service will be 
more than 10 minutes. Discuss how this probability and the probability you have 
found in Example 5, can be useful for the petrol pump owner. 
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

 



 

Activity E 
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In Example 6, find the probability that the life of any bulb will lie between 100 hrs. 
and 120 hrs. Elaborate as to how this information may be useful to the manufacturer 
of the bulb. 
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
Normal Distribution 
The Normal Distribution is the most versatile of all the continuous probability 
distributions. It is found to be useful in Statistical inferences, in characterising 
uncertainties in many real-life processes, and in approximating other probability 
distributions. 
Quite often, we face the problem of making inferences about processes based on 
limited data. Limited data is basically a sample from the full body of data on the 
process. Irrespective of how the full body of data is distributed, it has been found that 
the Normal Distribution can be used to characterise the sampling distribution. This 
helps considerably in Statistical Inferences. 
Heights, weight and dimensions of a product are some of the continuous random 
variables which are found to be normally distributed. This knowledge helps us in 
calculating the probabilities of different events in varied situations, which in turn is 
useful for decision-making. 
Finally, the Normal Distribution can be used to approximate certain probability 
distributions. This helps considerably in simplifying the probability calculations. 
In the next few paragraphs we examine the properties of the Normal Distribution, and 
explain the method of calculating the probabilities of different events using the 
distribution. We then show the Normal approximation to Binomial distribution to '" 
illustrate how the probability calculations are simplified by using the approximation. 
An application of the Normal Distribution in decision-making is presented in the last 
section of the unit. The use of this distribution is Statistical Inferences is taken up in a 
later Block. 
Properties of the Normal Distribution 
The p.d.f. of the Normal Distribution is given by : 

21 x - µ-  dy  
2 σ1F(x) =  e -  < x < 

2σ π

 − 
  ∞ ∞…………………..(1) 

where, π  and e are two constants with values 3.14 and 2.718 respectively. The µ  
and σ  are the two parameters of the distribution, and x is a real number denoting the 
continuous random variable of interest. 
The c.d.f. is given by: 

21 y-µ-  d   x 2 σ

-

1F(X) =  e
2σ π

 − 
 

∞∫
y

 

It is apparent from the above that f is a positive function, 

21 x - µ-  
2 σ
 
 
 

 
e  being positive 

for any real number x. It can be shown that 

f(x) dx = 1
+∞

−∞∫ , so that f(x) is a valid p.d.f, The interested reader may look up the 

book by Gangolli et. al. for proof, 
The mean and the standard deviation are respectively denoted by µ  and σ . Thus, 
different values of these two parameters lead to different `nominal curves'  
The inherent similarity in all the `normal curves' can be seen by examining the 
`Standardised curve'. The Standard Curve with µ  = 0 and σ  = 1 is obtained by 

using 
x - Z = µ
σ

, so that we get the p.d.f. 

21- z   
21f(z) =  e -  < x < 

2π
∞ ∞ ………………………….(2)  

 



 

The p.d.f. (1) is referred to as the regular form, while the p.d.f. (2) is known as the 
standard form. Normal Distribution with mean µ  and standard deviation a is 
generally denoted by N(m, σ ). 
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For large value of n, it is possible to derive the above p.d.f. as an approximation to 
the Binomial Distribution. The p.d.f. cannot be integrated analytically. The c.d.f. is 
tabulated for N(0,1) and the probabilities are calculate with the help of this table. 
The plot of f(x) vs. x gives the Normal curve, and the area under the curve gives the 
probability. The Normal Distribution is symmetric about the mean; the area on each 
side of the mean is 0.5. The area between µ + K  and  is the same for all 
Normal curves irrespective of the values of  

1σ 2µ + K σ
µ  and σ . 

Though the range of the variable is specified from - ∞  to ∞ , 99.7% of the values of 
the random variable fall within ±3σ  limits, that is, 
P(µ - 3 x µ + 3 ) = .997σ σ≤ ≤ . Moreover, it is known that 95.4% and 68.6% of 
the values of the random variable lie between ± 2σ  and ± 1σ  limits respectively. 
Because of the symmetry, and the points of inflexion at ± 1σ  distance, the Normal 
curve has a bell shape. The right and left tails of the curve extend indefinitely without 
touching the horizontal line. 
Probability Calculation 
Suppose, it has been found that the duration of a particular project is normally 
distributed with a mean of 12 days and a standard deviation of 3. We are interested in 
finding the probability that the project will be completed in 15 days.. 
Given the µ  and σ  of the random variable of interest, we first find  

x - Z = µ
σ

 Hence, µ  = 12, σ  = 3 and x = 15, ∴ Z = 
15 - 12  1

3
=  

The values of the probabilities corresponding to Z are tabulated and can be found 
from the table. The Standard Normal being a symmetrical distribution, the table for 
one half (the right half) of the curve is sufficient for our purpose. The table gives.the 
probability of Z being less than equal to a particular value. 
Consider the following diagram depicting the Standardised Normal curve, denoted by 
N(0,1). The probability of Z lying between 1 and 2 can be represented by the area 
under the curve between Z values of 1 and 2; that is, the area represented by FBCG in 
the diagram given below. 

 
Because of the symmetry, the area on the right of OA = area on the left of OA = 0.5. 
If you now look up a `normal table' in any basic Statistics text book, you will find 
that corresponding to Z = 1.0, the probability is given as 0.3413. This only implies 
that the area OABF = 0.3413, so that, 
P(Z≤ 1) = 0.5 + 0.3413 = 0.8413, the area to the left of OA being 0.5. 
Similarly, corresponding to Z = 2.0, we find the value 0.4772 (area OACG = 0.4772). 
This implies, 
P(Z≤ 2) = 0.5 + 0.4772 = 0.9772 
∴ If we are interested in the shaded area FBCG, we find that, FBCG = Area OACG - 
Area OABF = 0.4772 - 0.3413 = 0.1359. 
∴ P(1  Z  2) = 0.1359. ≤ ≤

 



 

The area, hence the probability, corresponding to a negative value of Z can be found 
from symmetry. Thus, we have the area OADE = the area OABF = 0.3413. 
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∴ P(Z  -1) = 0.5 - 0.3413 = 0.1587. ≤
Returning to our example, we are interested in finding the probability that the project 
duration is less than or equal to 15 days. Denoting the random variable by T, we 
know that T is N(12, 3). 

 
Similarly, if we were interested in finding out the chances that the project duration 
will be between 9 and 15 days, we can proceed in a similar way. 

 
(Note that this confirms our earlier statement that 68% of the values lie between 
± 1σ  limit.) 
Normal as an Approximation to Binomial 
For large n and with p value around 0.5, the Normal is a good approximation for the 
Binomial. The corresponding p, and a for the Normal are np and npq  respectively. 
Suppose, we want to find the probability that the number of heads in a toss of 12 
coins will lie between 6 and 9. From the previous unit, we know that this probability 
is equal to : 

 
As such, this tedious calculation can be obviated by assuming that the random 
variable, number of heads (H), is Normal with mean = np and σ  = npq . Here µ  

= 12 x 0.5 = 6 and σ  = 12 0.5 0.5× ×  = 3  = 1.732 
Q assuming H is N (6, 1.732), we can find the probability that H lies between 6 and 
9. The following continuity correction helps in better approximation. Instead of 
looking for the area under the Normal curve between 6 and 9, we look up the area 
between 5.5 and 9.5, i.e. 0.5 is included on either side. 

 
From the table, corresponding to Z = 0.289 and 2.02 we find the values 0.114 and 
0.4783. 
∴ the required probability = 0.114 + 0.4783 = 0.5923, Now you may check that by 
using the Binomial distribution, the same probability can be calculated as 0.5934. 
Fractile of a Normal Distribution 
The concept of Fractile as applied to Normal Distribution is often found to be useful. 
The kth fractile of N(µ,σ ) can be found as follows. First we find the kth fractile of 
the N(0,1). Let Zk be the Kth fractile of N(0,1). 
By definition, F(Zk) = K, (0 < K < 1). 
Say, if Zk is the .975th fractile of N(0,1), then  
F(Zk) = 0.975, P(Z ≤  Zk) = 0.975 = 0.5 + 0.475. 
From the table, we find that corresponding to Z = 1.96, the probability is 0.475. 
Hence Zk = 1.96. Now suppose that we are interested in the 0.975th fractile of 
N(50,6). If Xk be the required fractile, 

then k
k

X  = Zµ
σ
−

 

k k X  =  + Z  = 50 + 1.96  6 = 61.76µ σ∴ ×  
From symmetry, the .025th fractile of N(50,6) can be seen to be = 50 - 1.96 x 6 = 
38.24.  
Activity F 
A ball-bearing is manufactured with a mean diameter of 0.5 inch and a standard 
deviation in diameters of .002 inch. The distribution of the diameter can be 
considered 

 



 

to be normal. The bearing with less than .498 inch and more than .0502 inch are 
considered to be defective. What is the probability that a ball - bearing manufactured 
through this process will be defective ? 
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Activity G 

Suppose from the above exercise, you have found that the probability of a defective 
is 0.32. If the bearing are packed in lots of 100 units and sent to the supplier, what is 
the probability that in any such lot, the number of defectives will be less than 27? 
(The probability corresponding to Z value of 1.07 is 0.358.) 

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
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11.4  APPLICATIONS OF CONTINUOUS DISTRIBUTIONS 

The following two examples illustrate the use of the Exponential and the Normal 
Distribution in decision-making. 

Example 7 

A TV manufacturer is facing the problem of selecting a supplier of Cathode-ray tube 
which is the most vital component of a TV. Three foreign suppliers, all equally 
dependable, have agreed to supply the tubes. The price per tube and the expected life 
of a tube for the three suppliers are as follows : 

 Price/tube Expected life per tube 
Supplier 1 Rs. 800 1500 hrs. 
Supplier 2 Rs. 1000 2000 hrs.
Supplier 3 Rs. 1500 4000 hrs. 

The manufacturer guarantees its customers that it will replace the TV set if the tube 
fails earlier than 1000 hrs. Such a replacement will cost him Rs. 1000 per tube, over 
and above the price of the tube. 

Can you help the manufacturer to select a supplier? 

Solution 

The Expected cost per tube for each supplier can be found as follows : 

Expected cost per tube = price per tube + expected replacement cost per tube. 

Expected replacement cost per tube is given by the product of the cost of replacement 
and the probability that a replacement is needed. Both the cost of replacement and the 
probability vary from supplier to supplier. We note that, a replacement is called for if 
the tube fails before 1000 hrs., so that, for each supplier we can calculate the P(life of 

 



 

tube  1000 hrs.). This probability can be calculated by assuming that the time 
between failure is exponential. Thus, p(t

≤
≤ 1000) is basically exponential with 
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Once the expected costs for each supplier are known, we can take a decision based on 
the cost. The calculations are shown in the table below : 

Supplier Price per Cost per P(life Expected cost
Number tube 

P 
Replacement 
C 

1000 hrs.) 
P 

per tube 
E=(P+Cp) 

1 800 1800 .4886 1679.48 
2 1000 2000 .3935 1787
3 1500 2500 .2212 2053 

We find that for the supplier 1, the expected cost per tube is the minimum. Hence the 
decision is to select 1. 
Example 8 
A supplier of machined parts has got an order to supply piston rods to a big car 
manufacturer. The client has specified that the rod diameter should lie between 2.541 
and 2.548 cms. Accordingly, the supplier has been looking for the right kind of 
machine. He has identified two machines, both of which can produce a mean 
diameter of 2.545 cms. Like any other machine, these machines are also not perfect. 
The standard deviations of the diameters produced from the machine 1 and 2 are 
0.003 and 0.005 cm. respectively, i.e. machine 1 is better than machine 2. This is 
reflected in the prices of the machines, and machine 1 costs Rs. 3.3 lakhs more than 
machine 2. The supplier is confident of making a profit of Rs. 100 per piston rod; 
however, a rod rejected will mean a loss of Rs. 40. 
The supplier wants to know whether he should go for the better machine at an extra 
cost. 
Solution 
Assuming that the diameters of the piston rods produced by the machining process is 
normally distributed, we can find the probability of acceptance of a part if produced 
in a particular machine. 
For machine 1, we find that the diameter is N(2.545,.003), and for machine 2, we find 
that the diameter is N(2.545,.005) 
If D denote the diameter, then : 

2.541 ≤  D ≤  2.548, implies the rod is accepted. 
Probability of acceptance if a rod is produced in machine 1  

 
Hence probability of rejection = 1 - .7479 = .2521  
Expected profit per rod if machine 1 is used 

= 100 x .7479 - 40 x .2521 = Rs. 64.706 .......... (1) 
Similarly, if machine 2 is used, we can find the expected profit per rod  
Probability of acceptance here 

= p 
2.541  2.545 2.548 - 2.545  Z  

.005 .005
−

≤ ≤
 
 
   

 



 

= p(- .8  D ≤  .6 ) ≤
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=.2881+.2257 = .5138 

Probability of rejection = 1 - .5138 = .4862 

Expected profit per rod if machine 2 is used 

= 100 x .5138 - 40 x .4862 = Rs. 31.932 .......... (2) 

Thus, from (1) and (2), we find that the expected profit per part is more if machine 1 
is used. As machine 1 costs 3.3 lakh more than machine 2, it will be profitable to use 
machine 1 only if the production is more. 

We can find the breakeven production level as follows. 

Let N be the number of rods produced, for which both the machines are equally 
profitable. 

Then N x (64.706 - 31.932) = 3,30,000  

or; N �  10,069 

This implies that it is advisable to go in for machine 1, only if the production level is 
higher than 10,070. (Note that we assume that there is enough demand for the rods.) 

Activity. H 

Suppose in Example 8, you have decided that machine 1 should be used for 
production. Assume now, that this machine has got a facility by which one can set the 
mean diameter, i.e., one can set the machine to produce any one mean diameter 
ranging from 2.500 to 2.570 cm. Once the machine is set to a particular value, the 
rods are produced with mean diameter equal to that value and standard deviation 
equal to 0.003 cm. If the profit per rod and loss per rejection is same as in example 8, 
what is the optimal machine setting? 

…………………………………………………………………………………………
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11.5  SUMMARY 

The function that specifies the probability distribution of a continuous random 
variable is called the probability density function (p.d.f.). The cumulative density 
function (c.d.f.) is found by integrating the p.d.f. from the lowest value in the range 
upto an arbitrary level x. As a continuous random variable can take innumerable 
values in a specified interval on a real line, the probabilities are expressed for interval 
rather than for individual values. In this unit, we have examined the basic concepts 
and assumptions involved in the treatment of continuous probability distributions. 
Two such important distributions, viz., the Exponential and the Normal have been 
presented. Exponential distribution is found to be useful for characterising 
uncertainty in machine life, length of telephone call etc., while dimensions of 
machined parts, heights, weights etc. found to be Normally distributed. We have 
examined the properties of these p.d.fs. and have seen how probability calculations 
can be done for these distributions. In the final section, two examples are presented to 
illustrate the use of these distributions in decision-making. 
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