


1.	 Preface

a.	 Why	Learn	SQL?

b.	 Why	Use	This	Book	to	Do	It?

c.	 Structure	of	This	Book

d.	 Conventions	Used	in	This	Book

e.	 Using	the	Examples	in	This	Book

f.	 O’Reilly	Online	Learning

g.	 How	to	Contact	Us

h.	 Acknowledgments

2.	 1.	A	Little	Background

a.	 Introduction	to	Databases

i.	 Nonrelational	Database	Systems

ii.	 The	Relational	Model

iii.	 Some	Terminology

b.	 What	Is	SQL?

i.	 SQL	Statement	Classes

ii.	 SQL:	A	Nonprocedural	Language

iii.	 SQL	Examples

c.	 What	Is	MySQL?

d.	 SQL	Unplugged

e.	 What’s	in	Store

3.	 2.	Creating	and	Populating	a	Database



a.	 Creating	a	MySQL	Database

b.	 Using	the	mysql	Command-Line	Tool

c.	 MySQL	Data	Types

i.	 Character	Data

ii.	 Numeric	Data

iii.	 Temporal	Data

d.	 Table	Creation

i.	 Step	1:	Design

ii.	 Step	2:	Refinement

iii.	 Step	3:	Building	SQL	Schema	Statements

e.	 Populating	and	Modifying	Tables

i.	 Inserting	Data

ii.	 Updating	Data

iii.	 Deleting	Data

f.	 When	Good	Statements	Go	Bad

i.	 Nonunique	Primary	Key

ii.	 Nonexistent	Foreign	Key

iii.	 Column	Value	Violations

iv.	 Invalid	Date	Conversions

g.	 The	Sakila	Database

4.	 3.	Query	Primer

a.	 Query	Mechanics

b.	 Query	Clauses



c.	 The	select	Clause

i.	 Column	Aliases

ii.	 Removing	Duplicates

d.	 The	from	Clause

i.	 Tables

ii.	 Table	Links

iii.	 Defining	Table	Aliases

e.	 The	where	Clause

f.	 The	group	by	and	having	Clauses

g.	 The	order	by	Clause

i.	 Ascending	Versus	Descending	Sort	Order

ii.	 Sorting	via	Numeric	Placeholders

h.	 Test	Your	Knowledge

i.	 Exercise	3-1

ii.	 Exercise	3-2

iii.	 Exercise	3-3

iv.	 Exercise	3-4

5.	 4.	Filtering

a.	 Condition	Evaluation

i.	 Using	Parentheses

ii.	 Using	the	not	Operator

b.	 Building	a	Condition

c.	 Condition	Types



i.	 Equality	Conditions

ii.	 Range	Conditions

iii.	 Membership	Conditions

iv.	 Matching	Conditions

d.	 Null:	That	Four-Letter	Word

e.	 Test	Your	Knowledge

i.	 Exercise	4-1

ii.	 Exercise	4-2

iii.	 Exercise	4-3

iv.	 Exercise	4-4

6.	 5.	Querying	Multiple	Tables

a.	 What	Is	a	Join?

i.	 Cartesian	Product

ii.	 Inner	Joins

iii.	 The	ANSI	Join	Syntax

b.	 Joining	Three	or	More	Tables

i.	 Using	Subqueries	as	Tables

ii.	 Using	the	Same	Table	Twice

c.	 Self-Joins

d.	 Test	Your	Knowledge

i.	 Exercise	5-1

ii.	 Exercise	5-2

iii.	 Exercise	5-3



7.	 6.	Working	with	Sets

a.	 Set	Theory	Primer

b.	 Set	Theory	in	Practice

c.	 Set	Operators

i.	 The	union	Operator

ii.	 The	intersect	Operator

iii.	 The	except	Operator

d.	 Set	Operation	Rules

i.	 Sorting	Compound	Query	Results

ii.	 Set	Operation	Precedence

e.	 Test	Your	Knowledge

i.	 Exercise	6-1

ii.	 Exercise	6-2

iii.	 Exercise	6-3

8.	 7.	Data	Generation,	Manipulation,	and	Conversion

a.	 Working	with	String	Data

i.	 String	Generation

ii.	 String	Manipulation

b.	 Working	with	Numeric	Data

i.	 Performing	Arithmetic	Functions

ii.	 Controlling	Number	Precision

iii.	 Handling	Signed	Data

c.	 Working	with	Temporal	Data



i.	 Dealing	with	Time	Zones

ii.	 Generating	Temporal	Data

iii.	 Manipulating	Temporal	Data

d.	 Conversion	Functions

e.	 Test	Your	Knowledge

i.	 Exercise	7-1

ii.	 Exercise	7-2

iii.	 Exercise	7-3

9.	 8.	Grouping	and	Aggregates

a.	 Grouping	Concepts

b.	 Aggregate	Functions

i.	 Implicit	Versus	Explicit	Groups

ii.	 Counting	Distinct	Values

iii.	 Using	Expressions

iv.	 How	Nulls	Are	Handled

c.	 Generating	Groups

i.	 Single-Column	Grouping

ii.	 Multicolumn	Grouping

iii.	 Grouping	via	Expressions

iv.	 Generating	Rollups

d.	 Group	Filter	Conditions

e.	 Test	Your	Knowledge

i.	 Exercise	8-1



ii.	 Exercise	8-2

iii.	 Exercise	8-3

10.	 9.	Subqueries

a.	 What	Is	a	Subquery?

b.	 Subquery	Types

c.	 Noncorrelated	Subqueries

i.	 Multiple-Row,	Single-Column	Subqueries

ii.	 Multicolumn	Subqueries

d.	 Correlated	Subqueries

i.	 The	exists	Operator

ii.	 Data	Manipulation	Using	Correlated
Subqueries

e.	 When	to	Use	Subqueries

i.	 Subqueries	as	Data	Sources

ii.	 Subqueries	as	Expression	Generators

f.	 Subquery	Wrap-Up

g.	 Test	Your	Knowledge

i.	 Exercise	9-1

ii.	 Exercise	9-2

iii.	 Exercise	9-3

11.	 10.	Joins	Revisited

a.	 Outer	Joins

i.	 Left	Versus	Right	Outer	Joins



ii.	 Three-Way	Outer	Joins

b.	 Cross	Joins

c.	 Natural	Joins

d.	 Test	Your	Knowledge

i.	 Exercise	10-1

ii.	 Exercise	10-2

iii.	 Exercise	10-3	(Extra	Credit)

12.	 11.	Conditional	Logic

a.	 What	Is	Conditional	Logic?

b.	 The	case	Expression

i.	 Searched	case	Expressions

ii.	 Simple	case	Expressions

c.	 Examples	of	case	Expressions

i.	 Result	Set	Transformations

ii.	 Checking	for	Existence

iii.	 Division-by-Zero	Errors

iv.	 Conditional	Updates

v.	 Handling	Null	Values

d.	 Test	Your	Knowledge

i.	 Exercise	11-1

ii.	 Exercise	11-2

13.	 12.	Transactions

a.	 Multiuser	Databases



i.	 Locking

ii.	 Lock	Granularities

b.	 What	Is	a	Transaction?

i.	 Starting	a	Transaction

ii.	 Ending	a	Transaction

iii.	 Transaction	Savepoints

c.	 Test	Your	Knowledge

i.	 Exercise	12-1

14.	 13.	Indexes	and	Constraints

a.	 Indexes

i.	 Index	Creation

ii.	 Types	of	Indexes

iii.	 How	Indexes	Are	Used

iv.	 The	Downside	of	Indexes

b.	 Constraints

i.	 Constraint	Creation

c.	 Test	Your	Knowledge

i.	 Exercise	13-1

ii.	 Exercise	13-2

15.	 14.	Views

a.	 What	Are	Views?

b.	 Why	Use	Views?

i.	 Data	Security



ii.	 Data	Aggregation

iii.	 Hiding	Complexity

iv.	 Joining	Partitioned	Data

c.	 Updatable	Views

i.	 Updating	Simple	Views

ii.	 Updating	Complex	Views

d.	 Test	Your	Knowledge

i.	 Exercise	14-1

ii.	 Exercise	14-2

16.	 15.	Metadata

a.	 Data	About	Data

b.	 information_schema

c.	 Working	with	Metadata

i.	 Schema	Generation	Scripts

ii.	 Deployment	Verification

iii.	 Dynamic	SQL	Generation

d.	 Test	Your	Knowledge

i.	 Exercise	15-1

ii.	 Exercise	15-2

17.	 16.	Analytic	Functions

a.	 Analytic	Function	Concepts

i.	 Data	Windows

ii.	 Localized	Sorting



b.	 Ranking

i.	 Ranking	Functions

ii.	 Generating	Multiple	Rankings

c.	 Reporting	Functions

i.	 Window	Frames

ii.	 Lag	and	Lead

iii.	 Column	Value	Concatenation

d.	 Test	Your	Knowledge

i.	 Exercise	16-1

ii.	 Exercise	16-2

iii.	 Exercise	16-3

18.	 17.	Working	with	Large	Databases

a.	 Partitioning

i.	 Partitioning	Concepts

ii.	 Table	Partitioning

iii.	 Index	Partitioning

iv.	 Partitioning	Methods

v.	 Partitioning	Benefits

b.	 Clustering

c.	 Sharding

d.	 Big	Data

i.	 Hadoop

ii.	 NoSQL	and	Document	Databases



iii.	 Cloud	Computing

iv.	 Conclusion

19.	 18.	SQL	and	Big	Data

a.	 Introduction	to	Apache	Drill

b.	 Querying	Files	Using	Drill

c.	 Querying	MySQL	Using	Drill

d.	 Querying	MongoDB	Using	Drill

e.	 Drill	with	Multiple	Data	Sources

f.	 Future	of	SQL

20.	 A.	ER	Diagram	for	Example	Database

21.	 B.	Solutions	to	Exercises

a.	 Chapter	3

i.	 Exercise	3-1

ii.	 Exercise	3-2

iii.	 Exercise	3-3

iv.	 Exercise	3-4

b.	 Chapter	4

i.	 Exercise	4-1

ii.	 Exercise	4-2

iii.	 Exercise	4-3

iv.	 Exercise	4-4

c.	 Chapter	5

i.	 Exercise	5-1



ii.	 Exercise	5-2

iii.	 Exercise	5-3

d.	 Chapter	6

i.	 Exercise	6-1

ii.	 Exercise	6-2

iii.	 Exercise	6-3

e.	 Chapter	7

i.	 Exercise	7-1

ii.	 Exercise	7-2

iii.	 Exercise	7-3

f.	 Chapter	8

i.	 Exercise	8-1

ii.	 Exercise	8-2

iii.	 Exercise	8-3

g.	 Chapter	9

i.	 Exercise	9-1

ii.	 Exercise	9-2

iii.	 Exercise	9-3

h.	 Chapter	10

i.	 Exercise	10-1

ii.	 Exercise	10-2

iii.	 Exercise	10-3	(Extra	Credit)

i.	 Chapter	11



i.	 Exercise	11-1

ii.	 Exercise	11-2

j.	 Chapter	12

i.	 Exercise	12-1

k.	 Chapter	13

i.	 Exercise	13-1

ii.	 Exercise	13-2

l.	 Chapter	14

i.	 Exercise	14-1

ii.	 Exercise	14-2

m.	 Chapter	15

i.	 Exercise	15-1

ii.	 Exercise	15-2

n.	 Chapter	16

i.	 Exercise	16-1

ii.	 Exercise	16-2

iii.	 Exercise	16-3

22.	 Index



Learning	SQL

THIRD	EDITION

Generate,	Manipulate,	and	Retrieve	Data

Alan	Beaulieu



Learning	SQL

by	Alan	Beaulieu

Copyright	©	2020	Alan	Beaulieu.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales
promotional	use.	Online	editions	are	also	available	for	most	titles
(http://oreilly.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Acquisitions	Editor:	Jessica	Haberman

Development	Editor:	Jeff	Bleiel

Production	Editor:	Deborah	Baker

Copyeditor:	Charles	Roumeliotis

Proofreader:	Chris	Morris

Indexer:	Angela	Howard

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

http://oreilly.com


Illustrator:	Rebecca	Demarest

August	2005:	First	Edition

April	2009:	Second	Edition

April	2020:	Third	Edition

Revision	History	for	the	Third	Edition

2020-03-04:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492057611	for
release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.
Learning	SQL,	the	cover	image,	and	related	trade	dress	are	trademarks	of
O’Reilly	Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	author,	and	do	not
represent	the	publisher’s	views.	While	the	publisher	and	the	author	have
used	good	faith	efforts	to	ensure	that	the	information	and	instructions
contained	in	this	work	are	accurate,	the	publisher	and	the	author	disclaim
all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this
work.	Use	of	the	information	and	instructions	contained	in	this	work	is	at
your	own	risk.	If	any	code	samples	or	other	technology	this	work	contains
or	describes	is	subject	to	open	source	licenses	or	the	intellectual	property
rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-492-05761-1

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492057611


Preface

Programming	languages	come	and	go	constantly,	and	very	few	languages
in	use	today	have	roots	going	back	more	than	a	decade	or	so.	Some
examples	are	COBOL,	which	is	still	used	quite	heavily	in	mainframe
environments;	Java,	which	was	born	in	the	mid-1990s	and	has	become	one
of	the	most	popular	programming	languages;	and	C,	which	is	still	quite
popular	for	operating	systems	and	server	development	and	for	embedded
systems.	In	the	database	arena,	we	have	SQL,	whose	roots	go	all	the	way
back	to	the	1970s.

SQL	was	initially	created	to	be	the	language	for	generating,	manipulating,
and	retrieving	data	from	relational	databases,	which	have	been	around	for
more	than	40	years.	Over	the	past	decade	or	so,	however,	other	data
platforms	such	as	Hadoop,	Spark,	and	NoSQL	have	gained	a	great	deal	of
traction,	eating	away	at	the	relational	database	market.	As	will	be
discussed	in	the	last	few	chapters	of	this	book,	however,	the	SQL	language
has	been	evolving	to	facilitate	the	retrieval	of	data	from	various	platforms,
regardless	of	whether	the	data	is	stored	in	tables,	documents,	or	flat	files.

Why	Learn	SQL?
Whether	you	will	be	using	a	relational	database	or	not,	if	you	are	working
in	data	science,	business	intelligence,	or	some	other	facet	of	data	analysis,
you	will	likely	need	to	know	SQL,	along	with	other	languages/platforms
such	as	Python	and	R.	Data	is	everywhere,	in	huge	quantities,	and	arriving
at	a	rapid	pace,	and	people	who	can	extract	meaningful	information	from



all	this	data	are	in	big	demand.



Why	Use	This	Book	to	Do	It?
There	are	plenty	of	books	out	there	that	treat	you	like	a	dummy,	idiot,	or
some	other	flavor	of	simpleton,	but	these	books	tend	to	just	skim	the
surface.	At	the	other	end	of	the	spectrum	are	reference	guides	that	detail
every	permutation	of	every	statement	in	a	language,	which	can	be	useful	if
you	already	have	a	good	idea	of	what	you	want	to	do	but	just	need	the
syntax.	This	book	strives	to	find	the	middle	ground,	starting	with	some
background	of	the	SQL	language,	moving	through	the	basics,	and	then
progressing	into	some	of	the	more	advanced	features	that	will	allow	you	to
really	shine.	Additionally,	this	book	ends	with	a	chapter	showing	how	to
query	data	in	nonrelational	databases,	which	is	a	topic	rarely	covered	in
introductory	books.

Structure	of	This	Book
This	book	is	divided	into	18	chapters	and	2	appendixes:

Chapter	1,	A	Little	Background
Explores	the	history	of	computerized	databases,	including	the	rise	of
the	relational	model	and	the	SQL	language.

Chapter	2,	Creating	and	Populating	a	Database
Demonstrates	how	to	create	a	MySQL	database,	create	the	tables	used
for	the	examples	in	this	book,	and	populate	the	tables	with	data.

Chapter	3,	Query	Primer
Introduces	the	select	statement	and	further	demonstrates	the	most
common	clauses	(select,	from,	where).

Chapter	4,	Filtering



Demonstrates	the	different	types	of	conditions	that	can	be	used	in	the
where	clause	of	a	select,	update,	or	delete	statement.

Chapter	5,	Querying	Multiple	Tables
Shows	how	queries	can	utilize	multiple	tables	via	table	joins.

Chapter	6,	Working	with	Sets
This	chapter	is	all	about	data	sets	and	how	they	can	interact	within
queries.

Chapter	7,	Data	Generation,	Manipulation,	and	Conversion
Demonstrates	several	built-in	functions	used	for	manipulating	or
converting	data.

Chapter	8,	Grouping	and	Aggregates
Shows	how	data	can	be	aggregated.

Chapter	9,	Subqueries
Introduces	subqueries	(a	personal	favorite)	and	shows	how	and	where
they	can	be	utilized.

Chapter	10,	Joins	Revisited
Further	explores	the	various	types	of	table	joins.

Chapter	11,	Conditional	Logic
Explores	how	conditional	logic	(i.e.,	if-then-else)	can	be	utilized	in
select,	insert,	update,	and	delete	statements.

Chapter	12,	Transactions
Introduces	transactions	and	shows	how	to	use	them.

Chapter	13,	Indexes	and	Constraints
Explores	indexes	and	constraints.

Chapter	14,	Views
Shows	how	to	build	an	interface	to	shield	users	from	data
complexities.

Chapter	15,	Metadata
Demonstrates	the	utility	of	the	data	dictionary.



Chapter	16,	Analytic	Functions
Covers	functionality	used	to	generate	rankings,	subtotals,	and	other
values	used	heavily	in	reporting	and	analysis.

Chapter	17,	Working	with	Large	Databases
Demonstrates	techniques	for	making	very	large	databases	easier	to
manage	and	traverse.

Chapter	18,	SQL	and	Big	Data
Explores	the	transformation	of	the	SQL	language	to	allow	retrieval	of
data	from	nonrelational	data	platforms.

Appendix	A,	ER	Diagram	for	Example	Database
Shows	the	database	schema	used	for	all	examples	in	the	book.

Appendix	B,	Solutions	to	Exercises
Shows	solutions	to	the	chapter	exercises.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file
extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to
program	elements	such	as	variable	or	function	names,	databases,	data
types,	environment	variables,	statements,	and	keywords.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by
values	determined	by	context.

Constant	width	bold



Shows	commands	or	other	text	that	should	be	typed	literally	by	the
user.

NOTE
Indicates	a	tip,	suggestion,	or	general	note.	For	example,	I	use	notes	to	point	you	to	useful	new
features	in	Oracle9i.

WARNING
Indicates	a	warning	or	caution.	For	example,	I’ll	tell	you	if	a	certain	SQL	clause	might	have
unintended	consequences	if	not	used	carefully.

Using	the	Examples	in	This	Book
To	experiment	with	the	data	used	for	the	examples	in	this	book,	you	have
two	options:

Download	and	install	the	MySQL	server	version	8.0	(or	later)	and
load	the	Sakila	example	database	from
https://dev.mysql.com/doc/index-other.html.

Go	to	https://www.katacoda.com/mysql-db-
sandbox/scenarios/mysql-sandbox	to	access	the	MySQL
Sandbox,	which	has	the	Sakila	sample	database	loaded	in	a
MySQL	instance.	You’ll	have	to	set	up	a	(free)	Katacoda	account.
Then,	click	the	Start	Scenario	button.

If	you	choose	the	second	option,	once	you	start	the	scenario,	a	MySQL
server	is	installed	and	started,	and	then	the	Sakila	schema	and	data	are
loaded.	When	it’s	ready,	a	standard	mysql>	prompt	appears,	and	you	can
then	start	querying	the	sample	database.	This	is	certainly	the	easiest

https://dev.mysql.com/doc/index-other.html
https://www.katacoda.com/mysql-db-sandbox/scenarios/mysql-sandbox


option,	and	I	anticipate	that	most	readers	will	choose	this	option;	if	this
sounds	good	to	you,	feel	free	to	skip	ahead	to	the	next	section.

If	you	prefer	to	have	your	own	copy	of	the	data	and	want	any	changes	you
have	made	to	be	permanent,	or	if	you	are	just	interested	in	installing	the
MySQL	server	on	your	own	machine,	you	may	prefer	the	first	option.	You
may	also	opt	to	use	a	MySQL	server	hosted	in	an	environment	such	as
Amazon	Web	Services	or	Google	Cloud.	In	either	case,	you	will	need	to
perform	the	installation/configuration	yourself,	as	it	is	beyond	the	scope	of
this	book.	Once	your	database	is	available,	you	will	need	to	follow	a	few
steps	to	load	the	Sakila	sample	database.

First,	you	will	need	to	launch	the	mysql	command-line	client	and	provide
a	password,	and	then	perform	the	following	steps:

1.	 Go	to	https://dev.mysql.com/doc/index-other.html	and	download
the	files	for	“sakila	database”	under	the	Example	Databases
section.

2.	 Put	the	files	in	a	local	directory	such	as	C:\temp\sakila-db	(used
for	the	next	two	steps,	but	overwrite	with	your	directory	path).

3.	 Type	source c:\temp\sakila-db\sakila-schema.sql;	and
press	Enter.

4.	 Type	source c:\temp\sakila-db\sakila-data.sql;	and
press	Enter.

You	should	now	have	a	working	database	populated	with	all	the	data
needed	for	the	examples	in	this	book.

O’Reilly	Online	Learning

NOTE

https://dev.mysql.com/doc/index-other.html


NOTE
For	more	than	40	years,	O’Reilly	Media	has	provided	technology	and	business	training,
knowledge,	and	insight	to	help	companies	succeed.

Our	unique	network	of	experts	and	innovators	share	their	knowledge	and
expertise	through	books,	articles,	conferences,	and	our	online	learning
platform.	O’Reilly’s	online	learning	platform	gives	you	on-demand	access
to	live	training	courses,	in-depth	learning	paths,	interactive	coding
environments,	and	a	vast	collection	of	text	and	video	from	O’Reilly	and
200+	other	publishers.	For	more	information,	please	visit
http://oreilly.com.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the
publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata	and	any	additional
information.	You	can	access	this	page	at	https://oreil.ly/Learning_SQL3.

http://oreilly.com
http://www.oreilly.com
https://oreil.ly/Learning_SQL3


Email	bookquestions@oreilly.com	to	comment	or	ask	technical	questions
about	this	book.

For	more	information	about	our	books,	courses,	conferences,	and	news,
see	our	website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
I	would	like	to	thank	my	editor,	Jeff	Bleiel,	for	helping	to	make	this	third
edition	a	reality,	along	with	Thomas	Nield,	Ann	White-Watkins,	and
Charles	Givre,	who	were	kind	enough	to	review	the	book	for	me.	Thanks
also	go	to	Deb	Baker,	Jess	Haberman,	and	all	the	other	folks	at	O’Reilly
Media	who	were	involved.	Lastly,	I	thank	my	wife,	Nancy,	and	my
daughters,	Michelle	and	Nicole,	for	their	encouragement	and	inspiration.

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Chapter	1.	A	Little	Background

Before	we	roll	up	our	sleeves	and	get	to	work,	it	would	be	helpful	to
survey	the	history	of	database	technology	in	order	to	better	understand
how	relational	databases	and	the	SQL	language	evolved.	Therefore,	I’d
like	to	start	by	introducing	some	basic	database	concepts	and	looking	at
the	history	of	computerized	data	storage	and	retrieval.

NOTE
For	those	readers	anxious	to	start	writing	queries,	feel	free	to	skip	ahead	to	Chapter	3,	but	I
recommend	returning	later	to	the	first	two	chapters	in	order	to	better	understand	the	history	and
utility	of	the	SQL	language.

Introduction	to	Databases
A	database	is	nothing	more	than	a	set	of	related	information.	A	telephone
book,	for	example,	is	a	database	of	the	names,	phone	numbers,	and
addresses	of	all	people	living	in	a	particular	region.	While	a	telephone
book	is	certainly	a	ubiquitous	and	frequently	used	database,	it	suffers	from
the	following:

Finding	a	person’s	telephone	number	can	be	time	consuming,
especially	if	the	telephone	book	contains	a	large	number	of
entries.

A	telephone	book	is	indexed	only	by	last/first	names,	so	finding
the	names	of	the	people	living	at	a	particular	address,	while
possible	in	theory,	is	not	a	practical	use	for	this	database.



From	the	moment	the	telephone	book	is	printed,	the	information
becomes	less	and	less	accurate	as	people	move	into	or	out	of	a
region,	change	their	telephone	numbers,	or	move	to	another
location	within	the	same	region.

The	same	drawbacks	attributed	to	telephone	books	can	also	apply	to	any
manual	data	storage	system,	such	as	patient	records	stored	in	a	filing
cabinet.	Because	of	the	cumbersome	nature	of	paper	databases,	some	of
the	first	computer	applications	developed	were	database	systems,	which
are	computerized	data	storage	and	retrieval	mechanisms.	Because	a
database	system	stores	data	electronically	rather	than	on	paper,	a	database
system	is	able	to	retrieve	data	more	quickly,	index	data	in	multiple	ways,
and	deliver	up-to-the-minute	information	to	its	user	community.

Early	database	systems	managed	data	stored	on	magnetic	tapes.	Because
there	were	generally	far	more	tapes	than	tape	readers,	technicians	were
tasked	with	loading	and	unloading	tapes	as	specific	data	was	requested.
Because	the	computers	of	that	era	had	very	little	memory,	multiple
requests	for	the	same	data	generally	required	the	data	to	be	read	from	the
tape	multiple	times.	While	these	database	systems	were	a	significant
improvement	over	paper	databases,	they	are	a	far	cry	from	what	is
possible	with	today’s	technology.	(Modern	database	systems	can	manage
petabytes	of	data,	accessed	by	clusters	of	servers	each	caching	tens	of
gigabytes	of	that	data	in	high-speed	memory,	but	I’m	getting	a	bit	ahead	of
myself.)

Nonrelational	Database	Systems

NOTE
This	section	contains	some	background	information	about	pre-relational	database	systems.	For
those	readers	eager	to	dive	into	SQL,	feel	free	to	skip	ahead	a	couple	of	pages	to	the	next



section.

Over	the	first	several	decades	of	computerized	database	systems,	data	was
stored	and	represented	to	users	in	various	ways.	In	a	hierarchical	database
system,	for	example,	data	is	represented	as	one	or	more	tree	structures.
Figure	1-1	shows	how	data	relating	to	George	Blake’s	and	Sue	Smith’s
bank	accounts	might	be	represented	via	tree	structures.



Figure	1-1.	Hierarchical	view	of	account	data

George	and	Sue	each	have	their	own	tree	containing	their	accounts	and	the
transactions	on	those	accounts.	The	hierarchical	database	system	provides
tools	for	locating	a	particular	customer’s	tree	and	then	traversing	the	tree
to	find	the	desired	accounts	and/or	transactions.	Each	node	in	the	tree	may



have	either	zero	or	one	parent	and	zero,	one,	or	many	children.	This
configuration	is	known	as	a	single-parent	hierarchy.

Another	common	approach,	called	the	network	database	system,	exposes
sets	of	records	and	sets	of	links	that	define	relationships	between	different
records.	Figure	1-2	shows	how	George’s	and	Sue’s	same	accounts	might
look	in	such	a	system.





Figure	1-2.	Network	view	of	account	data

In	order	to	find	the	transactions	posted	to	Sue’s	money	market	account,
you	would	need	to	perform	the	following	steps:

1.	 Find	the	customer	record	for	Sue	Smith.

2.	 Follow	the	link	from	Sue	Smith’s	customer	record	to	her	list	of
accounts.

3.	 Traverse	the	chain	of	accounts	until	you	find	the	money	market
account.

4.	 Follow	the	link	from	the	money	market	record	to	its	list	of
transactions.

One	interesting	feature	of	network	database	systems	is	demonstrated	by
the	set	of	product	records	on	the	far	right	of	Figure	1-2.	Notice	that	each
product	record	(Checking,	Savings,	etc.)	points	to	a	list	of	account
records	that	are	of	that	product	type.	Account	records,	therefore,	can	be
accessed	from	multiple	places	(both	customer	records	and	product
records),	allowing	a	network	database	to	act	as	a	multiparent	hierarchy.

Both	hierarchical	and	network	database	systems	are	alive	and	well	today,
although	generally	in	the	mainframe	world.	Additionally,	hierarchical
database	systems	have	enjoyed	a	rebirth	in	the	directory	services	realm,
such	as	Microsoft’s	Active	Directory	and	the	open	source	Apache
Directory	Server.	Beginning	in	the	1970s,	however,	a	new	way	of
representing	data	began	to	take	root,	one	that	was	more	rigorous	yet	easy
to	understand	and	implement.

The	Relational	Model

In	1970,	Dr.	E.	F.	Codd	of	IBM’s	research	laboratory	published	a	paper
titled	“A	Relational	Model	of	Data	for	Large	Shared	Data	Banks”	that



proposed	that	data	be	represented	as	sets	of	tables.	Rather	than	using
pointers	to	navigate	between	related	entities,	redundant	data	is	used	to	link
records	in	different	tables.	Figure	1-3	shows	how	George’s	and	Sue’s
account	information	would	appear	in	this	context.





Figure	1-3.	Relational	view	of	account	data

The	four	tables	in	Figure	1-3	represent	the	four	entities	discussed	so	far:
customer,	product,	account,	and	transaction.	Looking	across	the	top
of	the	customer	table	in	Figure	1-3,	you	can	see	three	columns:	cust_id
(which	contains	the	customer’s	ID	number),	fname	(which	contains	the
customer’s	first	name),	and	lname	(which	contains	the	customer’s	last
name).	Looking	down	the	side	of	the	customer	table,	you	can	see	two
rows,	one	containing	George	Blake’s	data	and	the	other	containing	Sue
Smith’s	data.	The	number	of	columns	that	a	table	may	contain	differs	from
server	to	server,	but	it	is	generally	large	enough	not	to	be	an	issue
(Microsoft	SQL	Server,	for	example,	allows	up	to	1,024	columns	per
table).	The	number	of	rows	that	a	table	may	contain	is	more	a	matter	of
physical	limits	(i.e.,	how	much	disk	drive	space	is	available)	and
maintainability	(i.e.,	how	large	a	table	can	get	before	it	becomes	difficult
to	work	with)	than	of	database	server	limitations.

Each	table	in	a	relational	database	includes	information	that	uniquely
identifies	a	row	in	that	table	(known	as	the	primary	key),	along	with
additional	information	needed	to	describe	the	entity	completely.	Looking
again	at	the	customer	table,	the	cust_id	column	holds	a	different	number
for	each	customer;	George	Blake,	for	example,	can	be	uniquely	identified
by	customer	ID	1.	No	other	customer	will	ever	be	assigned	that	identifier,
and	no	other	information	is	needed	to	locate	George	Blake’s	data	in	the
customer	table.

NOTE
Every	database	server	provides	a	mechanism	for	generating	unique	sets	of	numbers	to	use	as
primary	key	values,	so	you	won’t	need	to	worry	about	keeping	track	of	what	numbers	have	been
assigned.



While	I	might	have	chosen	to	use	the	combination	of	the	fname	and	lname
columns	as	the	primary	key	(a	primary	key	consisting	of	two	or	more
columns	is	known	as	a	compound	key),	there	could	easily	be	two	or	more
people	with	the	same	first	and	last	names	who	have	accounts	at	the	bank.
Therefore,	I	chose	to	include	the	cust_id	column	in	the	customer	table
specifically	for	use	as	a	primary	key	column.

NOTE
In	this	example,	choosing	fname/lname	as	the	primary	key	would	be	referred	to	as	a	natural	key,
whereas	the	choice	of	cust_id	would	be	referred	to	as	a	surrogate	key.	The	decision	whether	to
employ	natural	or	surrogate	keys	is	up	to	the	database	designer,	but	in	this	particular	case	the
choice	is	clear,	since	a	person’s	last	name	may	change	(such	as	when	a	person	adopts	a	spouse’s
last	name),	and	primary	key	columns	should	never	be	allowed	to	change	once	a	value	has	been
assigned.

Some	of	the	tables	also	include	information	used	to	navigate	to	another
table;	this	is	where	the	“redundant	data”	mentioned	earlier	comes	in.	For
example,	the	account	table	includes	a	column	called	cust_id,	which
contains	the	unique	identifier	of	the	customer	who	opened	the	account,
along	with	a	column	called	product_cd,	which	contains	the	unique
identifier	of	the	product	to	which	the	account	will	conform.	These
columns	are	known	as	foreign	keys,	and	they	serve	the	same	purpose	as
the	lines	that	connect	the	entities	in	the	hierarchical	and	network	versions
of	the	account	information.	If	you	are	looking	at	a	particular	account
record	and	want	to	know	more	information	about	the	customer	who
opened	the	account,	you	would	take	the	value	of	the	cust_id	column	and
use	it	to	find	the	appropriate	row	in	the	customer	table	(this	process	is
known,	in	relational	database	lingo,	as	a	join;	joins	are	introduced	in



Chapter	3	and	probed	deeply	in	Chapters	5	and	10).

It	might	seem	wasteful	to	store	the	same	data	many	times,	but	the
relational	model	is	quite	clear	on	what	redundant	data	may	be	stored.	For
example,	it	is	proper	for	the	account	table	to	include	a	column	for	the
unique	identifier	of	the	customer	who	opened	the	account,	but	it	is	not
proper	to	include	the	customer’s	first	and	last	names	in	the	account	table
as	well.	If	a	customer	were	to	change	her	name,	for	example,	you	want	to
make	sure	that	there	is	only	one	place	in	the	database	that	holds	the
customer’s	name;	otherwise,	the	data	might	be	changed	in	one	place	but
not	another,	causing	the	data	in	the	database	to	be	unreliable.	The	proper
place	for	this	data	is	the	customer	table,	and	only	the	cust_id	values
should	be	included	in	other	tables.	It	is	also	not	proper	for	a	single	column
to	contain	multiple	pieces	of	information,	such	as	a	name	column	that
contains	both	a	person’s	first	and	last	names,	or	an	address	column	that
contains	street,	city,	state,	and	zip	code	information.	The	process	of
refining	a	database	design	to	ensure	that	each	independent	piece	of
information	is	in	only	one	place	(except	for	foreign	keys)	is	known	as
normalization.

Getting	back	to	the	four	tables	in	Figure	1-3,	you	may	wonder	how	you
would	use	these	tables	to	find	George	Blake’s	transactions	against	his
checking	account.	First,	you	would	find	George	Blake’s	unique	identifier
in	the	customer	table.	Then,	you	would	find	the	row	in	the	account	table
whose	cust_id	column	contains	George’s	unique	identifier	and	whose
product_cd	column	matches	the	row	in	the	product	table	whose	name
column	equals	“Checking.”	Finally,	you	would	locate	the	rows	in	the
transaction	table	whose	account_id	column	matches	the	unique
identifier	from	the	account	table.	This	might	sound	complicated,	but	you
can	do	it	in	a	single	command,	using	the	SQL	language,	as	you	will	see



shortly.

Some	Terminology

I	introduced	some	new	terminology	in	the	previous	sections,	so	maybe	it’s
time	for	some	formal	definitions.	Table	1-1	shows	the	terms	we	use	for	the
remainder	of	the	book	along	with	their	definitions.

Table	1-1.	Terms	and	definitions

Term Definition

	
	
Entity
	
	

	
	 	 	
Something	of	interest	to	the	database	user	community.	Examples	include	
customers,	parts,	geographic	locations,	etc.
	
	 	 	

	
	
Column
	
	

	
	 	 	
An	individual	piece	of	data	stored	in	a	table.
	
	 	 	

	
	
Row
	
	

	
	 	 	
A	set	of	columns	that	together	completely	describe	an	entity	or	some	action	on	
an	entity.	Also	called	a	record.
	
	 	 	

	
	
Table
	
	

	
	 	 	
A	set	of	rows,	held	either	in	memory	(nonpersistent)	or	on	permanent	storage	
(persistent).
	
	 	 	

	
	
Result	
set
	
	

	
	 	 	
Another	name	for	a	nonpersistent	table,	generally	the	result	of	an	SQL	query.
	
	 	 	



	

	
	

Primary	
key
	
	

	
	 	 	

One	or	more	columns	that	can	be	used	as	a	unique	identifier	for	each	row	in	a	
table.
	
	 	 	

	
	
Foreign	
key
	
	

	
	 	 	
One	or	more	columns	that	can	be	used	together	to	identify	a	single	row	in	
another	table.
	
	 	 	

What	Is	SQL?
Along	with	Codd’s	definition	of	the	relational	model,	he	proposed	a
language	called	DSL/Alpha	for	manipulating	the	data	in	relational	tables.
Shortly	after	Codd’s	paper	was	released,	IBM	commissioned	a	group	to
build	a	prototype	based	on	Codd’s	ideas.	This	group	created	a	simplified
version	of	DSL/Alpha	that	they	called	SQUARE.	Refinements	to
SQUARE	led	to	a	language	called	SEQUEL,	which	was,	finally,
shortened	to	SQL.	While	SQL	began	as	a	language	used	to	manipulate
data	in	relational	databases,	it	has	evolved	(as	you	will	see	toward	the	end
of	this	book)	to	be	a	language	for	manipulating	data	across	various
database	technologies.

SQL	is	now	more	than	40	years	old,	and	it	has	undergone	a	great	deal	of
change	along	the	way.	In	the	mid-1980s,	the	American	National	Standards
Institute	(ANSI)	began	working	on	the	first	standard	for	the	SQL
language,	which	was	published	in	1986.	Subsequent	refinements	led	to
new	releases	of	the	SQL	standard	in	1989,	1992,	1999,	2003,	2006,	2008,
2011,	and	2016.	Along	with	refinements	to	the	core	language,	new



features	have	been	added	to	the	SQL	language	to	incorporate	object-
oriented	functionality,	among	other	things.	The	later	standards	focus	on
the	integration	of	related	technologies,	such	as	extensible	markup
language	(XML)	and	JavaScript	object	notation	(JSON).

SQL	goes	hand	in	hand	with	the	relational	model	because	the	result	of	an
SQL	query	is	a	table	(also	called,	in	this	context,	a	result	set).	Thus,	a	new
permanent	table	can	be	created	in	a	relational	database	simply	by	storing
the	result	set	of	a	query.	Similarly,	a	query	can	use	both	permanent	tables
and	the	result	sets	from	other	queries	as	inputs	(we	explore	this	in	detail	in
Chapter	9).

One	final	note:	SQL	is	not	an	acronym	for	anything	(although	many
people	will	insist	it	stands	for	“Structured	Query	Language”).	When
referring	to	the	language,	it	is	equally	acceptable	to	say	the	letters
individually	(i.e.,	S.	Q.	L.)	or	to	use	the	word	sequel.

SQL	Statement	Classes

The	SQL	language	is	divided	into	several	distinct	parts:	the	parts	that	we
explore	in	this	book	include	SQL	schema	statements,	which	are	used	to
define	the	data	structures	stored	in	the	database;	SQL	data	statements,
which	are	used	to	manipulate	the	data	structures	previously	defined	using
SQL	schema	statements;	and	SQL	transaction	statements,	which	are	used
to	begin,	end,	and	roll	back	transactions	(concepts	covered	in	Chapter	12).
For	example,	to	create	a	new	table	in	your	database,	you	would	use	the
SQL	schema	statement	create table,	whereas	the	process	of	populating
your	new	table	with	data	would	require	the	SQL	data	statement	insert.

To	give	you	a	taste	of	what	these	statements	look	like,	here’s	an	SQL
schema	statement	that	creates	a	table	called	corporation:



CREATE TABLE corporation
 (corp_id SMALLINT,
  name VARCHAR(30),
  CONSTRAINT pk_corporation PRIMARY KEY (corp_id)
 );

This	statement	creates	a	table	with	two	columns,	corp_id	and	name,	with
the	corp_id	column	identified	as	the	primary	key	for	the	table.	We	probe
the	finer	details	of	this	statement,	such	as	the	different	data	types	available
with	MySQL,	in	Chapter	2.	Next,	here’s	an	SQL	data	statement	that
inserts	a	row	into	the	corporation	table	for	Acme	Paper	Corporation:

INSERT INTO corporation (corp_id, name)
VALUES (27, 'Acme Paper Corporation');

This	statement	adds	a	row	to	the	corporation	table	with	a	value	of	27	for
the	corp_id	column	and	a	value	of	Acme Paper Corporation	for	the
name	column.

Finally,	here’s	a	simple	select	statement	to	retrieve	the	data	that	was	just
created:

mysql< SELECT name
    -> FROM corporation
    -> WHERE corp_id = 27;
+------------------------+
| name                   |
+------------------------+
| Acme Paper Corporation |
+------------------------+

All	database	elements	created	via	SQL	schema	statements	are	stored	in	a
special	set	of	tables	called	the	data	dictionary.	This	“data	about	the
database”	is	known	collectively	as	metadata	and	is	explored	in
Chapter	15.	Just	like	tables	that	you	create	yourself,	data	dictionary	tables
can	be	queried	via	a	select	statement,	thereby	allowing	you	to	discover
the	current	data	structures	deployed	in	the	database	at	runtime.	For



example,	if	you	are	asked	to	write	a	report	showing	the	new	accounts
created	last	month,	you	could	either	hardcode	the	names	of	the	columns	in
the	account	table	that	were	known	to	you	when	you	wrote	the	report,	or
query	the	data	dictionary	to	determine	the	current	set	of	columns	and
dynamically	generate	the	report	each	time	it	is	executed.

Most	of	this	book	is	concerned	with	the	data	portion	of	the	SQL	language,
which	consists	of	the	select,	update,	insert,	and	delete	commands.
SQL	schema	statements	are	demonstrated	in	Chapter	2,	which	will	lead
you	through	the	design	and	creation	of	some	simple	tables.	In	general,
SQL	schema	statements	do	not	require	much	discussion	apart	from	their
syntax,	whereas	SQL	data	statements,	while	few	in	number,	offer
numerous	opportunities	for	detailed	study.	Therefore,	while	I	try	to
introduce	you	to	many	of	the	SQL	schema	statements,	most	chapters	in
this	book	concentrate	on	the	SQL	data	statements.

SQL:	A	Nonprocedural	Language

If	you	have	worked	with	programming	languages	in	the	past,	you	are	used
to	defining	variables	and	data	structures,	using	conditional	logic	(i.e.,	if-
then-else)	and	looping	constructs	(i.e.,	do	while	...	end),	and	breaking	your
code	into	small,	reusable	pieces	(i.e.,	objects,	functions,	procedures).	Your
code	is	handed	to	a	compiler,	and	the	executable	that	results	does	exactly
(well,	not	always	exactly)	what	you	programmed	it	to	do.	Whether	you
work	with	Java,	Python,	Scala,	or	some	other	procedural	language,	you
are	in	complete	control	of	what	the	program	does.

NOTE
A	procedural	language	defines	both	the	desired	results	and	the	mechanism,	or	process,	by	which
the	results	are	generated.	Nonprocedural	languages	also	define	the	desired	results,	but	the
process	by	which	the	results	are	generated	is	left	to	an	external	agent.



With	SQL,	however,	you	will	need	to	give	up	some	of	the	control	you	are
used	to,	because	SQL	statements	define	the	necessary	inputs	and	outputs,
but	the	manner	in	which	a	statement	is	executed	is	left	to	a	component	of
your	database	engine	known	as	the	optimizer.	The	optimizer’s	job	is	to
look	at	your	SQL	statements	and,	taking	into	account	how	your	tables	are
configured	and	what	indexes	are	available,	decide	the	most	efficient
execution	path	(well,	not	always	the	most	efficient).	Most	database
engines	will	allow	you	to	influence	the	optimizer’s	decisions	by	specifying
optimizer	hints,	such	as	suggesting	that	a	particular	index	be	used;	most
SQL	users,	however,	will	never	get	to	this	level	of	sophistication	and	will
leave	such	tweaking	to	their	database	administrator	or	performance	expert.

Therefore,	with	SQL,	you	will	not	be	able	to	write	complete	applications.
Unless	you	are	writing	a	simple	script	to	manipulate	certain	data,	you	will
need	to	integrate	SQL	with	your	favorite	programming	language.	Some
database	vendors	have	done	this	for	you,	such	as	Oracle’s	PL/SQL
language,	MySQL’s	stored	procedure	language,	and	Microsoft’s	Transact-
SQL	language.	With	these	languages,	the	SQL	data	statements	are	part	of
the	language’s	grammar,	allowing	you	to	seamlessly	integrate	database
queries	with	procedural	commands.	If	you	are	using	a	non-database-
specific	language	such	as	Java	or	Python,	however,	you	will	need	to	use	a
toolkit/API	to	execute	SQL	statements	from	your	code.	Some	of	these
toolkits	are	provided	by	your	database	vendor,	whereas	others	have	been
created	by	third-party	vendors	or	by	open	source	providers.	Table	1-2
shows	some	of	the	available	options	for	integrating	SQL	into	a	specific
language.

Table	1-2.	SQL	integration	toolkits



Table	1-2.	SQL	integration	toolkits

Language Toolkit

	
	 	 	
Java
	
	 	 	

	
	 	 	
JDBC	(Java	Database	Connectivity)
	
	 	 	

	
	 	 	
C#
	
	 	 	

	
	 	 	
ADO.NET	(Microsoft)
	
	 	 	

	
	 	 	
Ruby
	
	 	 	

	
	 	 	
Ruby	DBI
	
	 	 	

	
	 	 	
Python
	
	 	 	

	
	 	 	
Python	DB
	
	 	 	

	
	 	 	
Go
	
	 	 	

	
	 	 	
Package	database/sql
	
	 	 	

If	you	only	need	to	execute	SQL	commands	interactively,	every	database
vendor	provides	at	least	a	simple	command-line	tool	for	submitting	SQL
commands	to	the	database	engine	and	inspecting	the	results.	Most	vendors
provide	a	graphical	tool	as	well	that	includes	one	window	showing	your
SQL	commands	and	another	window	showing	the	results	from	your	SQL
commands.	Additionally,	there	are	third-party	tools	such	as	SQuirrel,
which	will	connect	via	a	JDBC	connection	to	many	different	database
servers.	Since	the	examples	in	this	book	are	executed	against	a	MySQL



database,	I	use	the	mysql	command-line	tool	that	is	included	as	part	of	the
MySQL	installation	to	run	the	examples	and	format	the	results.

SQL	Examples

Earlier	in	this	chapter,	I	promised	to	show	you	an	SQL	statement	that
would	return	all	the	transactions	against	George	Blake’s	checking	account.
Without	further	ado,	here	it	is:

SELECT t.txn_id, t.txn_type_cd, t.txn_date, t.amount
FROM individual i
  INNER JOIN account a ON i.cust_id = a.cust_id
  INNER JOIN product p ON p.product_cd = a.product_cd
  INNER JOIN transaction t ON t.account_id = a.account_id
WHERE i.fname = 'George' AND i.lname = 'Blake'
  AND p.name = 'checking account';
 
+--------+-------------+---------------------+--------+
| txn_id | txn_type_cd | txn_date            | amount |
+--------+-------------+---------------------+--------+
|     11 | DBT         | 2008-01-05 00:00:00 | 100.00 |
+--------+-------------+---------------------+--------+
1 row in set (0.00 sec)

Without	going	into	too	much	detail	at	this	point,	this	query	identifies	the
row	in	the	individual	table	for	George	Blake	and	the	row	in	the	product
table	for	the	“checking”	product,	finds	the	row	in	the	account	table	for
this	individual/product	combination,	and	returns	four	columns	from	the
transaction	table	for	all	transactions	posted	to	this	account.	If	you
happen	to	know	that	George	Blake’s	customer	ID	is	8	and	that	checking
accounts	are	designated	by	the	code	'CHK',	then	you	can	simply	find
George	Blake’s	checking	account	in	the	account	table	based	on	the
customer	ID	and	use	the	account	ID	to	find	the	appropriate	transactions:

SELECT t.txn_id, t.txn_type_cd, t.txn_date, t.amount
FROM account a
  INNER JOIN transaction t ON t.account_id = a.account_id
WHERE a.cust_id = 8 AND a.product_cd = 'CHK';



I	cover	all	of	the	concepts	in	these	queries	(plus	a	lot	more)	in	the
following	chapters,	but	I	wanted	to	at	least	show	what	they	would	look
like.

The	previous	queries	contain	three	different	clauses:	select,	from,	and
where.	Almost	every	query	that	you	encounter	will	include	at	least	these
three	clauses,	although	there	are	several	more	that	can	be	used	for	more
specialized	purposes.	The	role	of	each	of	these	three	clauses	is
demonstrated	by	the	following:

SELECT /* one or more things */ ...
FROM /* one or more places */ ...
WHERE /* one or more conditions apply */ ...

NOTE
Most	SQL	implementations	treat	any	text	between	the	/*	and	*/	tags	as	comments.

When	constructing	your	query,	your	first	task	is	generally	to	determine
which	table	or	tables	will	be	needed	and	then	add	them	to	your	from
clause.	Next,	you	will	need	to	add	conditions	to	your	where	clause	to	filter
out	the	data	from	these	tables	that	you	aren’t	interested	in.	Finally,	you
will	decide	which	columns	from	the	different	tables	need	to	be	retrieved
and	add	them	to	your	select	clause.	Here’s	a	simple	example	that	shows
how	you	would	find	all	customers	with	the	last	name	“Smith”:

SELECT cust_id, fname
FROM individual
WHERE lname = 'Smith';

This	query	searches	the	individual	table	for	all	rows	whose	lname
column	matches	the	string	'Smith'	and	returns	the	cust_id	and	fname



columns	from	those	rows.

Along	with	querying	your	database,	you	will	most	likely	be	involved	with
populating	and	modifying	the	data	in	your	database.	Here’s	a	simple
example	of	how	you	would	insert	a	new	row	into	the	product	table:

INSERT INTO product (product_cd, name)
VALUES ('CD', 'Certificate of Depysit')

Whoops,	looks	like	you	misspelled	“Deposit.”	No	problem.	You	can	clean
that	up	with	an	update	statement:

UPDATE product
SET name = 'Certificate of Deposit'
WHERE product_cd = 'CD';

Notice	that	the	update	statement	also	contains	a	where	clause,	just	like
the	select	statement.	This	is	because	an	update	statement	must	identify
the	rows	to	be	modified;	in	this	case,	you	are	specifying	that	only	those
rows	whose	product_cd	column	matches	the	string	'CD'	should	be
modified.	Since	the	product_cd	column	is	the	primary	key	for	the
product	table,	you	should	expect	your	update	statement	to	modify
exactly	one	row	(or	zero,	if	the	value	doesn’t	exist	in	the	table).	Whenever
you	execute	an	SQL	data	statement,	you	will	receive	feedback	from	the
database	engine	as	to	how	many	rows	were	affected	by	your	statement.	If
you	are	using	an	interactive	tool	such	as	the	mysql	command-line	tool
mentioned	earlier,	then	you	will	receive	feedback	concerning	how	many
rows	were	either:

Returned	by	your	select	statement

Created	by	your	insert	statement

Modified	by	your	update	statement



Removed	by	your	delete	statement

If	you	are	using	a	procedural	language	with	one	of	the	toolkits	mentioned
earlier,	the	toolkit	will	include	a	call	to	ask	for	this	information	after	your
SQL	data	statement	has	executed.	In	general,	it’s	a	good	idea	to	check	this
info	to	make	sure	your	statement	didn’t	do	something	unexpected	(like
when	you	forget	to	put	a	where	clause	on	your	delete	statement	and
delete	every	row	in	the	table!).

What	Is	MySQL?
Relational	databases	have	been	available	commercially	for	more	than
three	decades.	Some	of	the	most	mature	and	popular	commercial	products
include:

Oracle	Database	from	Oracle	Corporation

SQL	Server	from	Microsoft

DB2	Universal	Database	from	IBM

All	these	database	servers	do	approximately	the	same	thing,	although
some	are	better	equipped	to	run	very	large	or	very	high	throughput
databases.	Others	are	better	at	handling	objects	or	very	large	files	or	XML
documents,	and	so	on.	Additionally,	all	these	servers	do	a	pretty	good	job
of	complying	with	the	latest	ANSI	SQL	standard.	This	is	a	good	thing,	and
I	make	it	a	point	to	show	you	how	to	write	SQL	statements	that	will	run	on
any	of	these	platforms	with	little	or	no	modification.

Along	with	the	commercial	database	servers,	there	has	been	quite	a	bit	of
activity	in	the	open	source	community	in	the	past	two	decades	with	the
goal	of	creating	a	viable	alternative.	Two	of	the	most	commonly	used
open	source	database	servers	are	PostgreSQL	and	MySQL.	The	MySQL



server	is	available	for	free,	and	I	have	found	it	to	be	extremely	simple	to
download	and	install.	For	these	reasons,	I	have	decided	that	all	examples
for	this	book	be	run	against	a	MySQL	(version	8.0)	database,	and	that	the
mysql	command-line	tool	be	used	to	format	query	results.	Even	if	you	are
already	using	another	server	and	never	plan	to	use	MySQL,	I	urge	you	to
install	the	latest	MySQL	server,	load	the	sample	schema	and	data,	and
experiment	with	the	data	and	examples	in	this	book.

However,	keep	in	mind	the	following	caveat:

This	is	not	a	book	about	MySQL’s	SQL	implementation.

Rather,	this	book	is	designed	to	teach	you	how	to	craft	SQL	statements
that	will	run	on	MySQL	with	no	modifications,	and	will	run	on	recent
releases	of	Oracle	Database,	DB2,	and	SQL	Server	with	few	or	no
modifications.

SQL	Unplugged
A	great	deal	has	happened	in	the	database	world	during	the	decade
between	the	second	and	third	editions	of	this	book.	While	relational
databases	are	still	heavily	used	and	will	continue	to	be	for	some	time,	new
database	technologies	have	emerged	to	meet	the	needs	of	companies	like
Amazon	and	Google.	These	technologies	include	Hadoop,	Spark,	NoSQL,
and	NewSQL,	which	are	distributed,	scalable	systems	typically	deployed
on	clusters	of	commodity	servers.	While	it	is	beyond	the	scope	of	this
book	to	explore	these	technologies	in	detail,	they	do	all	share	something	in
common	with	relational	databases:	SQL.

Since	organizations	frequently	store	data	using	multiple	technologies,
there	is	a	need	to	unplug	SQL	from	a	particular	database	server	and



provide	a	service	that	can	span	multiple	databases.	For	example,	a	report
may	need	to	bring	together	data	stored	in	Oracle,	Hadoop,	JSON	files,
CSV	files,	and	Unix	log	files.	A	new	generation	of	tools	have	been	built	to
meet	this	type	of	challenge,	and	one	of	the	most	promising	is	Apache
Drill,	which	is	an	open	source	query	engine	that	allows	users	to	write
queries	that	can	access	data	stored	in	most	any	database	or	filesystem.	We
will	explore	Apache	Drill	in	Chapter	18.

What’s	in	Store
The	overall	goal	of	the	next	four	chapters	is	to	introduce	the	SQL	data
statements,	with	a	special	emphasis	on	the	three	main	clauses	of	the
select	statement.	Additionally,	you	will	see	many	examples	that	use	the
Sakila	schema	(introduced	in	the	next	chapter),	which	will	be	used	for	all
examples	in	the	book.	It	is	my	hope	that	familiarity	with	a	single	database
will	allow	you	to	get	to	the	crux	of	an	example	without	having	to	stop	and
examine	the	tables	being	used	each	time.	If	it	becomes	a	bit	tedious
working	with	the	same	set	of	tables,	feel	free	to	augment	the	sample
database	with	additional	tables	or	to	invent	your	own	database	with	which
to	experiment.

After	you	have	a	solid	grasp	on	the	basics,	the	remaining	chapters	will
drill	deep	into	additional	concepts,	most	of	which	are	independent	of	each
other.	Thus,	if	you	find	yourself	getting	confused,	you	can	always	move
ahead	and	come	back	later	to	revisit	a	chapter.	When	you	have	finished	the
book	and	worked	through	all	of	the	examples,	you	will	be	well	on	your
way	to	becoming	a	seasoned	SQL	practitioner.

For	readers	interested	in	learning	more	about	relational	databases,	the
history	of	computerized	database	systems,	or	the	SQL	language	than	was



covered	in	this	short	introduction,	here	are	a	few	resources	worth	checking
out:

Database	in	Depth:	Relational	Theory	for	Practitioners	by	C.	J.
Date	(O’Reilly)

An	Introduction	to	Database	Systems,	Eighth	Edition,	by	C.	J.
Date	(Addison-Wesley)

The	Database	Relational	Model:	A	Retrospective	Review	and
Analysis,	by	C.	J.	Date	(Addison-Wesley)

Wikipedia	subarticle	on	definition	of	“Database	Management
System”

http://oreilly.com/catalog/9780596100124/
https://oreil.ly/sj2xR


Chapter	2.	Creating	and
Populating	a	Database

This	chapter	provides	you	with	the	information	you	need	to	create	your
first	database	and	to	create	the	tables	and	associated	data	used	for	the
examples	in	this	book.	You	will	also	learn	about	various	data	types	and
see	how	to	create	tables	using	them.	Because	the	examples	in	this	book	are
executed	against	a	MySQL	database,	this	chapter	is	somewhat	skewed
toward	MySQL’s	features	and	syntax,	but	most	concepts	are	applicable	to
any	server.

Creating	a	MySQL	Database
If	you	want	the	ability	to	experiment	with	the	data	used	for	the	examples
in	this	book,	you	have	two	options:

Download	and	install	the	MySQL	server	version	8.0	(or	later)	and
load	the	Sakila	example	database	from
https://dev.mysql.com/doc/index-other.html.

Go	to	https://www.katacoda.com/mysql-db-
sandbox/scenarios/mysql-sandbox	to	access	the	MySQL
Sandbox,	which	has	the	Sakila	sample	database	loaded	in	a
MySQL	instance.	You’ll	have	to	set	up	a	(free)	Katacoda	account.
Then,	click	the	Start	Scenario	button.

If	you	choose	the	second	option,	once	you	start	the	scenario,	a	MySQL
server	is	installed	and	started,	and	then	the	Sakila	schema	and	data	are
loaded.	When	it’s	ready,	a	standard	mysql>	prompt	appears,	and	you	can

https://dev.mysql.com/doc/index-other.html
https://www.katacoda.com/mysql-db-sandbox/scenarios/mysql-sandbox


then	start	querying	the	sample	database.	This	is	certainly	the	easiest
option,	and	I	anticipate	that	most	readers	will	choose	this	option;	if	this
sounds	good	to	you,	feel	free	to	skip	ahead	to	the	next	section.

If	you	prefer	to	have	your	own	copy	of	the	data	and	want	any	changes	you
have	made	to	be	permanent,	or	if	you	are	just	interested	in	installing	the
MySQL	server	on	your	own	machine,	you	may	prefer	the	first	option.	You
may	also	opt	to	use	a	MySQL	server	hosted	in	an	environment	such	as
Amazon	Web	Services	or	Google	Cloud.	In	either	case,	you	will	need	to
perform	the	installation/configuration	yourself,	as	it	is	beyond	the	scope	of
this	book.	Once	your	database	is	available,	you	will	need	to	follow	a	few
steps	to	load	the	Sakila	sample	database.

First,	you	will	need	to	launch	the	mysql	command-line	client	and	provide
a	password,	and	then	perform	the	following	steps:

1.	 Go	to	https://dev.mysql.com/doc/index-other.html	and	download
the	files	for	“sakila	database”	under	the	Example	Databases
section.

2.	 Put	the	files	in	a	local	directory	such	as	C:\temp\sakila-db	(used
for	the	next	two	steps,	but	overwrite	with	your	directory	path).

3.	 Type	source c:\temp\sakila-db\sakila-schema.sql;	and
press	Enter.

4.	 Type	source c:\temp\sakila-db\sakila-data.sql;	and
press	Enter.

You	should	now	have	a	working	database	populated	with	all	the	data
needed	for	the	examples	in	this	book.

NOTE

https://dev.mysql.com/doc/index-other.html


The	Sakila	sample	database	is	made	available	by	MySQL	and	is	licensed	via	the	New	BSD
license.	Sakila	contains	data	for	a	fictitious	movie	rental	company,	and	includes	tables	such	as
store,	inventory,	film,	customer,	and	payment.	While	actual	movie	rental	stores	are	largely	a
thing	of	the	past,	with	a	little	imagination	we	could	rebrand	it	as	a	movie-streaming	company	by
ignoring	the	staff	and	address	tables	and	renaming	store	to	streaming_service.	However,
the	examples	in	this	book	will	stick	to	the	original	script	(pun	intended).

Using	the	mysql	Command-Line	Tool
Unless	you	are	using	a	temporary	database	session	(the	second	option	in
the	previous	section),	you	will	need	to	start	the	mysql	command-line	tool
in	order	to	interact	with	the	database.	To	do	so,	you	will	need	to	open	a
Windows	or	Unix	shell	and	execute	the	mysql	utility.	For	example,	if	you
are	logging	in	using	the	root	account,	you	would	do	the	following:

mysql -u root -p;

You	will	then	be	asked	for	your	password,	after	which	you	will	see	the
mysql>	prompt.	To	see	all	of	the	available	databases,	you	can	use	the
following	command:

mysql> show databases;
+--------------------+
| Database           |
+--------------------+
| information_schema |
| mysql              |
| performance_schema |
| sakila             |
| sys                |
+--------------------+
5 rows in set (0.01 sec)

Since	you	will	be	using	the	Sakila	database,	you	will	need	to	specify	the
database	you	want	to	work	with	via	the	use	command:



mysql> use sakila;
Database changed

Whenever	you	invoke	the	mysql	command-line	tool,	you	can	specify	both
the	username	and	database	to	use,	as	in	the	following:

mysql -u root -p sakila;

This	will	save	you	from	having	to	type	use sakila;	every	time	you	start
up	the	tool.	Now	that	you	have	established	a	session	and	specified	the
database,	you	will	be	able	to	issue	SQL	statements	and	view	the	results.
For	example,	if	you	want	to	know	the	current	date	and	time,	you	could
issue	the	following	query:

mysql> SELECT now();
+---------------------+
| now()               |
+---------------------+
| 2019-04-04 20:44:26 |
+---------------------+
1 row in set (0.01 sec)

The	now()	function	is	a	built-in	MySQL	function	that	returns	the	current
date	and	time.	As	you	can	see,	the	mysql	command-line	tool	formats	the
results	of	your	queries	within	a	rectangle	bounded	by	+,	-,	and	|	characters.
After	the	results	have	been	exhausted	(in	this	case,	there	is	only	a	single
row	of	results),	the	mysql	command-line	tool	shows	how	many	rows	were
returned,	along	with	how	long	the	SQL	statement	took	to	execute.

ABOUT	MISSING	FROM	CLAUSES
With	some	database	servers,	you	won’t	be	able	to	issue	a	query	without	a	from	clause	that	names	at	least
one	table.	Oracle	Database	is	a	commonly	used	server	for	which	this	is	true.	For	cases	when	you	only
need	to	call	a	function,	Oracle	provides	a	table	called	dual,	which	consists	of	a	single	column	called	dummy
that	contains	a	single	row	of	data.	In	order	to	be	compatible	with	Oracle	Database,	MySQL	also	provides	a
dual	table.	The	previous	query	to	determine	the	current	date	and	time	could	therefore	be	written	as:

mysql> SELECT now()



          FROM dual;
+---------------------+
| now()               |
+---------------------+
| 2019-04-04 20:44:26 |
+---------------------+
1 row in set (0.01 sec)

If	you	are	not	using	Oracle	and	have	no	need	to	be	compatible	with	Oracle,	you	can	ignore	the	dual	table
altogether	and	use	just	a	select	clause	without	a	from	clause.

When	you	are	done	with	the	mysql	command-line	tool,	simply	type	quit;
or	exit;	to	return	to	the	Unix	or	Windows	command	shell.

MySQL	Data	Types
In	general,	all	the	popular	database	servers	have	the	capacity	to	store	the
same	types	of	data,	such	as	strings,	dates,	and	numbers.	Where	they
typically	differ	is	in	the	specialty	data	types,	such	as	XML	and	JSON
documents	or	spatial	data.	Since	this	is	an	introductory	book	on	SQL	and
since	98%	of	the	columns	you	encounter	will	be	simple	data	types,	this
chapter	covers	only	the	character,	date	(a.k.a.	temporal),	and	numeric	data
types.	The	use	of	SQL	to	query	JSON	documents	will	be	explored	in
Chapter	18.

Character	Data

Character	data	can	be	stored	as	either	fixed-length	or	variable-length
strings;	the	difference	is	that	fixed-length	strings	are	right-padded	with
spaces	and	always	consume	the	same	number	of	bytes,	and	variable-length
strings	are	not	right-padded	with	spaces	and	don’t	always	consume	the
same	number	of	bytes.	When	defining	a	character	column,	you	must
specify	the	maximum	size	of	any	string	to	be	stored	in	the	column.	For
example,	if	you	want	to	store	strings	up	to	20	characters	in	length,	you



could	use	either	of	the	following	definitions:

char(20)    /* fixed-length */
varchar(20) /* variable-length */

The	maximum	length	for	char	columns	is	currently	255	bytes,	whereas
varchar	columns	can	be	up	to	65,535	bytes.	If	you	need	to	store	longer
strings	(such	as	emails,	XML	documents,	etc.),	then	you	will	want	to	use
one	of	the	text	types	(mediumtext	and	longtext),	which	I	cover	later	in
this	section.	In	general,	you	should	use	the	char	type	when	all	strings	to
be	stored	in	the	column	are	of	the	same	length,	such	as	state	abbreviations,
and	the	varchar	type	when	strings	to	be	stored	in	the	column	are	of
varying	lengths.	Both	char	and	varchar	are	used	in	a	similar	fashion	in
all	the	major	database	servers.

NOTE
An	exception	is	made	in	the	use	of	varchar	for	Oracle	Database.	Oracle	users	should	use	the
varchar2	type	when	defining	variable-length	character	columns.

CHARACTER	SETS

For	languages	that	use	the	Latin	alphabet,	such	as	English,	there	is	a
sufficiently	small	number	of	characters	such	that	only	a	single	byte	is
needed	to	store	each	character.	Other	languages,	such	as	Japanese	and
Korean,	contain	large	numbers	of	characters,	thus	requiring	multiple	bytes
of	storage	for	each	character.	Such	character	sets	are	therefore	called
multibyte	character	sets.

MySQL	can	store	data	using	various	character	sets,	both	single-	and
multibyte.	To	view	the	supported	character	sets	in	your	server,	you	can	use



the	show	command,	as	shown	in	the	following	example:

mysql> SHOW CHARACTER SET;
+----------+---------------------------------+---------------------+--------+
| Charset  | Description                     | Default collation   | Maxlen |
+----------+---------------------------------+---------------------+--------+
| armscii8 | ARMSCII-8 Armenian              | armscii8_general_ci |      1 |
| ascii    | US ASCII                        | ascii_general_ci    |      1 |
| big5     | Big5 Traditional Chinese        | big5_chinese_ci     |      2 |
| binary   | Binary pseudo charset           | binary              |      1 |
| cp1250   | Windows Central European        | cp1250_general_ci   |      1 |
| cp1251   | Windows Cyrillic                | cp1251_general_ci   |      1 |
| cp1256   | Windows Arabic                  | cp1256_general_ci   |      1 |
| cp1257   | Windows Baltic                  | cp1257_general_ci   |      1 |
| cp850    | DOS West European               | cp850_general_ci    |      1 |
| cp852    | DOS Central European            | cp852_general_ci    |      1 |
| cp866    | DOS Russian                     | cp866_general_ci    |      1 |
| cp932    | SJIS for Windows Japanese       | cp932_japanese_ci   |      2 |
| dec8     | DEC West European               | dec8_swedish_ci     |      1 |
| eucjpms  | UJIS for Windows Japanese       | eucjpms_japanese_ci |      3 |
| euckr    | EUC-KR Korean                   | euckr_korean_ci     |      2 |
| gb18030  | China National Standard GB18030 | gb18030_chinese_ci  |      4 |
| gb2312   | GB2312 Simplified Chinese       | gb2312_chinese_ci   |      2 |
| gbk      | GBK Simplified Chinese          | gbk_chinese_ci      |      2 |
| geostd8  | GEOSTD8 Georgian                | geostd8_general_ci  |      1 |
| greek    | ISO 8859-7 Greek                | greek_general_ci    |      1 |
| hebrew   | ISO 8859-8 Hebrew               | hebrew_general_ci   |      1 |
| hp8      | HP West European                | hp8_english_ci      |      1 |
| keybcs2  | DOS Kamenicky Czech-Slovak      | keybcs2_general_ci  |      1 |
| koi8r    | KOI8-R Relcom Russian           | koi8r_general_ci    |      1 |
| koi8u    | KOI8-U Ukrainian                | koi8u_general_ci    |      1 |
| latin1   | cp1252 West European            | latin1_swedish_ci   |      1 |
| latin2   | ISO 8859-2 Central European     | latin2_general_ci   |      1 |
| latin5   | ISO 8859-9 Turkish              | latin5_turkish_ci   |      1 |
| latin7   | ISO 8859-13 Baltic              | latin7_general_ci   |      1 |
| macce    | Mac Central European            | macce_general_ci    |      1 |
| macroman | Mac West European               | macroman_general_ci |      1 |
| sjis     | Shift-JIS Japanese              | sjis_japanese_ci    |      2 |
| swe7     | 7bit Swedish                    | swe7_swedish_ci     |      1 |
| tis620   | TIS620 Thai                     | tis620_thai_ci      |      1 |
| ucs2     | UCS-2 Unicode                   | ucs2_general_ci     |      2 |
| ujis     | EUC-JP Japanese                 | ujis_japanese_ci    |      3 |
| utf16    | UTF-16 Unicode                  | utf16_general_ci    |      4 |
| utf16le  | UTF-16LE Unicode                | utf16le_general_ci  |      4 |
| utf32    | UTF-32 Unicode                  | utf32_general_ci    |      4 |
| utf8     | UTF-8 Unicode                   | utf8_general_ci     |      3 |
| utf8mb4  | UTF-8 Unicode                   | utf8mb4_0900_ai_ci  |      4 |
+----------+---------------------------------+---------------------+--------+



41 rows in set (0.04 sec)

If	the	value	in	the	fourth	column,	maxlen,	is	greater	than	1,	then	the
character	set	is	a	multibyte	character	set.

In	prior	versions	of	the	MySQL	server,	the	latin1	character	set	was
automatically	chosen	as	the	default	character	set,	but	version	8	defaults	to
utf8mb4.	However,	you	may	choose	to	use	a	different	character	set	for
each	character	column	in	your	database,	and	you	can	even	store	different
character	sets	within	the	same	table.	To	choose	a	character	set	other	than
the	default	when	defining	a	column,	simply	name	one	of	the	supported
character	sets	after	the	type	definition,	as	in:

varchar(20) character set latin1

With	MySQL,	you	may	also	set	the	default	character	set	for	your	entire
database:

create database european_sales character set latin1;

While	this	is	as	much	information	regarding	character	sets	as	is
appropriate	for	an	introductory	book,	there	is	a	great	deal	more	to	the	topic
of	internationalization	than	what	is	shown	here.	If	you	plan	to	deal	with
multiple	or	unfamiliar	character	sets,	you	may	want	to	pick	up	a	book	such
as	Jukka	Korpela’s	Unicode	Explained:	Internationalize	Documents,
Programs,	and	Web	Sites	(O’Reilly).

TEXT	DATA

If	you	need	to	store	data	that	might	exceed	the	64	KB	limit	for	varchar
columns,	you	will	need	to	use	one	of	the	text	types.

Table	2-1	shows	the	available	text	types	and	their	maximum	sizes.



Table	2-1.	MySQL	text	types

Text	type Maximum	number	of	bytes

	
	 	 	
tinytext
	
	 	 	

	
	 	 	
255
	
	 	 	

	
	 	 	
text
	
	 	 	

	
	 	 	
65,535
	
	 	 	

	
	 	 	
mediumtext
	
	 	 	

	
	 	 	
16,777,215
	
	 	 	

	
	 	 	
longtext
	
	 	 	

	
	 	 	
4,294,967,295
	
	 	 	

When	choosing	to	use	one	of	the	text	types,	you	should	be	aware	of	the
following:

If	the	data	being	loaded	into	a	text	column	exceeds	the	maximum
size	for	that	type,	the	data	will	be	truncated.

Trailing	spaces	will	not	be	removed	when	data	is	loaded	into	the
column.

When	using	text	columns	for	sorting	or	grouping,	only	the	first
1,024	bytes	are	used,	although	this	limit	may	be	increased	if
necessary.

The	different	text	types	are	unique	to	MySQL.	SQL	Server	has	a



single	text	type	for	large	character	data,	whereas	DB2	and
Oracle	use	a	data	type	called	clob,	for	Character	Large	Object.

Now	that	MySQL	allows	up	to	65,535	bytes	for	varchar
columns	(it	was	limited	to	255	bytes	in	version	4),	there	isn’t	any
particular	need	to	use	the	tinytext	or	text	type.

If	you	are	creating	a	column	for	free-form	data	entry,	such	as	a	notes
column	to	hold	data	about	customer	interactions	with	your	company’s
customer	service	department,	then	varchar	will	probably	be	adequate.	If
you	are	storing	documents,	however,	you	should	choose	either	the
mediumtext	or	longtext	type.

NOTE
Oracle	Database	allows	up	to	2,000	bytes	for	char	columns	and	4,000	bytes	for	varchar2
columns.	For	larger	documents	you	may	use	the	clob	type.	SQL	Server	can	handle	up	to	8,000
bytes	for	both	char	and	varchar	data,	but	you	can	store	up	to	2	GB	of	data	in	a	column	defined
as	varchar(max).

Numeric	Data

Although	it	might	seem	reasonable	to	have	a	single	numeric	data	type
called	“numeric,”	there	are	actually	several	different	numeric	data	types
that	reflect	the	various	ways	in	which	numbers	are	used,	as	illustrated
here:

A	column	indicating	whether	a	customer	order	has	been	shipped

This	type	of	column,	referred	to	as	a	Boolean,	would	contain	a	0	to
indicate	false	and	a	1	to	indicate	true.

A	system-generated	primary	key	for	a	transaction	table

This	data	would	generally	start	at	1	and	increase	in	increments	of	one



up	to	a	potentially	very	large	number.

An	item	number	for	a	customer’s	electronic	shopping	basket

The	values	for	this	type	of	column	would	be	positive	whole	numbers
between	1	and,	perhaps,	200	(for	shopaholics).

Positional	data	for	a	circuit	board	drill	machine

High-precision	scientific	or	manufacturing	data	often	requires
accuracy	to	eight	decimal	points.

To	handle	these	types	of	data	(and	more),	MySQL	has	several	different
numeric	data	types.	The	most	commonly	used	numeric	types	are	those
used	to	store	whole	numbers,	or	integers.	When	specifying	one	of	these
types,	you	may	also	specify	that	the	data	is	unsigned,	which	tells	the
server	that	all	data	stored	in	the	column	will	be	greater	than	or	equal	to
zero.	Table	2-2	shows	the	five	different	data	types	used	to	store	whole-
number	integers.

Table	2-2.	MySQL	integer	types

Type Signed	range Unsigned	range

	
	 	 	
tinyint
	
	 	 	

	
	 	 	
−128	to	127
	
	 	 	

	
	 	 	
0	to	255
	
	 	 	

	
	 	 	
smallint
	
	 	 	

	
	 	 	
−32,768	to	32,767
	
	 	 	

	
	 	 	
0	to	65,535
	
	 	 	

	
	 	 	
mediumint
	
	 	 	

	
	 	 	
−8,388,608	to	8,388,607
	
	 	 	

	
	 	 	
0	to	16,777,215
	
	 	 	



	
	 	 	
int
	
	 	 	

	
	 	 	
−2,147,483,648	to	2,147,483,647
	
	 	 	

	
	 	 	
0	to	4,294,967,295
	
	 	 	

	
	 	 	
bigint
	
	 	 	

	
	 	 	
−2^63	to	2^63	-	1
	
	 	 	

	
	 	 	
0	to	2^64	-	1
	
	 	 	

When	you	create	a	column	using	one	of	the	integer	types,	MySQL	will
allocate	an	appropriate	amount	of	space	to	store	the	data,	which	ranges
from	one	byte	for	a	tinyint	to	eight	bytes	for	a	bigint.	Therefore,	you
should	try	to	choose	a	type	that	will	be	large	enough	to	hold	the	biggest
number	you	can	envision	being	stored	in	the	column	without	needlessly
wasting	storage	space.

For	floating-point	numbers	(such	as	3.1415927),	you	may	choose	from	the
numeric	types	shown	in	Table	2-3.

Table	2-3.	MySQL	floating-point	types

Type Numeric	range

	
	 	 	
float(	p	,	s	)
	
	 	 	

	
	 	 	
−3.402823466E+38	to	−1.175494351E-38
	
	
	 	 	
and	1.175494351E-38	to	3.402823466E+38
	
	 	 	

	
	 	 	
double(	p	,	s	)
	
	 	 	

	
	 	 	
−1.7976931348623157E+308	to	−2.2250738585072014E-308
	
	



	 	 	 	
	 	 	
and	2.2250738585072014E-308	to	1.7976931348623157E+308
	
	 	 	

When	using	a	floating-point	type,	you	can	specify	a	precision	(the	total
number	of	allowable	digits	both	to	the	left	and	to	the	right	of	the	decimal
point)	and	a	scale	(the	number	of	allowable	digits	to	the	right	of	the
decimal	point),	but	they	are	not	required.	These	values	are	represented	in
Table	2-3	as	p	and	s.	If	you	specify	a	precision	and	scale	for	your
floating-point	column,	remember	that	the	data	stored	in	the	column	will	be
rounded	if	the	number	of	digits	exceeds	the	scale	and/or	precision	of	the
column.	For	example,	a	column	defined	as	float(4,2)	will	store	a	total
of	four	digits,	two	to	the	left	of	the	decimal	and	two	to	the	right	of	the
decimal.	Therefore,	such	a	column	would	handle	the	numbers	27.44	and
8.19	just	fine,	but	the	number	17.8675	would	be	rounded	to	17.87,	and
attempting	to	store	the	number	178.375	in	your	float(4,2)	column
would	generate	an	error.

Like	the	integer	types,	floating-point	columns	can	be	defined	as	unsigned,
but	this	designation	only	prevents	negative	numbers	from	being	stored	in
the	column	rather	than	altering	the	range	of	data	that	may	be	stored	in	the
column.

Temporal	Data

Along	with	strings	and	numbers,	you	will	almost	certainly	be	working
with	information	about	dates	and/or	times.	This	type	of	data	is	referred	to
as	temporal,	and	some	examples	of	temporal	data	in	a	database	include:

The	future	date	that	a	particular	event	is	expected	to	happen,	such
as	shipping	a	customer’s	order



The	date	that	a	customer’s	order	was	shipped

The	date	and	time	that	a	user	modified	a	particular	row	in	a	table

An	employee’s	birth	date

The	year	corresponding	to	a	row	in	a	yearly_sales	fact	table	in
a	data	warehouse

The	elapsed	time	needed	to	complete	a	wiring	harness	on	an
automobile	assembly	line

MySQL	includes	data	types	to	handle	all	of	these	situations.	Table	2-4
shows	the	temporal	data	types	supported	by	MySQL.

Table	2-4.	MySQL	temporal	types

Type Default	format Allowable	values

	
	 	 	
date
	
	 	 	

	
	 	 	
YYYY-MM-DD
	
	 	 	

	
	 	 	
1000-01-01	to	9999-12-31
	
	 	 	

	
	 	 	
datetime
	
	 	 	

	
	 	 	
YYYY-MM-DD	HH:MI:SS
	
	 	 	

	
	 	 	
1000-01-01 00:00:00.000000
	
	
	 	 	
to	9999-12-31 23:59:59.999999
	
	 	 	

	
	 	 	
timestamp
	
	 	 	

	
	 	 	
YYYY-MM-DD	HH:MI:SS
	
	 	 	

	
	 	 	
1970-01-01 00:00:00.000000
	
	
	 	 	
to	2038-01-18 22:14:07.999999
	
	 	 	

	 	 	



	
	 	 	
year
	
	 	 	

	
	 	 	
YYYY
	
	 	 	

	
	 	 	
1901	to	2155
	
	 	 	

	
	 	 	
time
	
	 	 	

	
	 	 	
HHH:MI:SS
	
	 	 	

	
	 	 	
−838:59:59.000000
	
	
	 	 	
to	838:59:59.000000
	
	 	 	

While	database	servers	store	temporal	data	in	various	ways,	the	purpose	of
a	format	string	(second	column	of	Table	2-4)	is	to	show	how	the	data	will
be	represented	when	retrieved,	along	with	how	a	date	string	should	be
constructed	when	inserting	or	updating	a	temporal	column.	Thus,	if	you
wanted	to	insert	the	date	March	23,	2020,	into	a	date	column	using	the
default	format	YYYY-MM-DD,	you	would	use	the	string	'2020-03-23'.
Chapter	7	fully	explores	how	temporal	data	is	constructed	and	displayed.

The	datetime,	timestamp,	and	time	types	also	allow	fractional	seconds
of	up	to	6	decimal	places	(microseconds).	When	defining	columns	using
one	of	these	data	types,	you	may	supply	a	value	from	0	to	6;	for	example,
specifying	datetime(2)	would	allow	your	time	values	to	include
hundredths	of	a	second.

NOTE
Each	database	server	allows	a	different	range	of	dates	for	temporal	columns.	Oracle	Database
accepts	dates	ranging	from	4712	BC	to	9999	AD,	while	SQL	Server	only	handles	dates	ranging
from	1753	AD	to	9999	AD	(unless	you	are	using	SQL	Server	2008’s	datetime2	data	type,
which	allows	for	dates	ranging	from	1	AD	to	9999	AD).	MySQL	falls	in	between	Oracle	and
SQL	Server	and	can	store	dates	from	1000	AD	to	9999	AD.	Although	this	might	not	make	any



difference	for	most	systems	that	track	current	and	future	events,	it	is	important	to	keep	in	mind	if
you	are	storing	historical	dates.

Table	2-5	describes	the	various	components	of	the	date	formats	shown	in
Table	2-4.

Table	2-5.	Date	format	components

Component Definition Range

	
	 	 	
YYYY
	
	 	 	

	
	 	 	
Year,	including	century
	
	 	 	

	
	 	 	
1000	to	9999
	
	 	 	

	
	 	 	
MM
	
	 	 	

	
	 	 	
Month
	
	 	 	

	
	 	 	
01	(January)	to	12	(December)
	
	 	 	

	
	 	 	
DD
	
	 	 	

	
	 	 	
Day
	
	 	 	

	
	 	 	
01	to	31
	
	 	 	

	
	 	 	
HH
	
	 	 	

	
	 	 	
Hour
	
	 	 	

	
	 	 	
00	to	23
	
	 	 	

	
	 	 	
HHH
	
	 	 	

	
	 	 	
Hours	(elapsed)
	
	 	 	

	
	 	 	
−838	to	838
	
	 	 	

	
	 	 	
MI

	
	 	 	
Minute

	
	 	 	
00	to	59



MI
	
	 	 	

Minute
	
	 	 	

00	to	59
	
	 	 	

	
	 	 	
SS
	
	 	 	

	
	 	 	
Second
	
	 	 	

	
	 	 	
00	to	59
	
	 	 	

Here’s	how	the	various	temporal	types	would	be	used	to	implement	the
examples	shown	earlier:

Columns	to	hold	the	expected	future	shipping	date	of	a	customer
order	and	an	employee’s	birth	date	would	use	the	date	type,	since
it	is	unrealistic	to	schedule	a	future	shipment	down	to	the	second
and	unnecessary	to	know	at	what	time	a	person	was	born.

A	column	to	hold	information	about	when	a	customer	order	was
actually	shipped	would	use	the	datetime	type,	since	it	is
important	to	track	not	only	the	date	that	the	shipment	occurred
but	the	time	as	well.

A	column	that	tracks	when	a	user	last	modified	a	particular	row	in
a	table	would	use	the	timestamp	type.	The	timestamp	type	holds
the	same	information	as	the	datetime	type	(year,	month,	day,
hour,	minute,	second),	but	a	timestamp	column	will
automatically	be	populated	with	the	current	date/time	by	the
MySQL	server	when	a	row	is	added	to	a	table	or	when	a	row	is
later	modified.

A	column	holding	just	year	data	would	use	the	year	type.

Columns	that	hold	data	regarding	the	length	of	time	needed	to
complete	a	task	would	use	the	time	type.	For	this	type	of	data,	it
would	be	unnecessary	and	confusing	to	store	a	date	component,
since	you	are	interested	only	in	the	number	of
hours/minutes/seconds	needed	to	complete	the	task.	This
information	could	be	derived	using	two	datetime	columns	(one



for	the	task	start	date/time	and	the	other	for	the	task	completion
date/time)	and	subtracting	one	from	the	other,	but	it	is	simpler	to
use	a	single	time	column.

Chapter	7	explores	how	to	work	with	each	of	these	temporal	data	types.

Table	Creation
Now	that	you	have	a	firm	grasp	on	what	data	types	may	be	stored	in	a
MySQL	database,	it’s	time	to	see	how	to	use	these	types	in	table
definitions.	Let’s	start	by	defining	a	table	to	hold	information	about	a
person.

Step	1:	Design

A	good	way	to	start	designing	a	table	is	to	do	a	bit	of	brainstorming	to	see
what	kind	of	information	would	be	helpful	to	include.	Here’s	what	I	came
up	with	after	thinking	for	a	short	time	about	the	types	of	information	that
describe	a	person:

Name

Eye	color

Birth	date

Address

Favorite	foods

This	is	certainly	not	an	exhaustive	list,	but	it’s	good	enough	for	now.	The
next	step	is	to	assign	column	names	and	data	types.	Table	2-6	shows	my
initial	attempt.

Table	2-6.	Person	table,	first	pass



Column Type Allowable	values

	
	 	 	
name
	
	 	 	

	
	 	 	
varchar(40)
	
	 	 	

	

	
	 	 	
eye_color
	
	 	 	

	
	 	 	
char(2)
	
	 	 	

	
	 	 	
BL,	BR,	GR
	
	 	 	

	
	 	 	
birth_date
	
	 	 	

	
	 	 	
date
	
	 	 	

	

	
	 	 	
address
	
	 	 	

	
	 	 	
varchar(100)
	
	 	 	

	

	
	 	 	
favorite_foods
	
	 	 	

	
	 	 	
varchar(200)
	
	 	 	

	

The	name,	address,	and	favorite_foods	columns	are	of	type	varchar
and	allow	for	free-form	data	entry.	The	eye_color	column	allows	two
characters	that	should	equal	only	BR,	BL,	or	GR.	The	birth_date	column	is
of	type	date,	since	a	time	component	is	not	needed.

Step	2:	Refinement

In	Chapter	1,	you	were	introduced	to	the	concept	of	normalization,	which
is	the	process	of	ensuring	that	there	are	no	duplicate	(other	than	foreign



keys)	or	compound	columns	in	your	database	design.	In	looking	at	the
columns	in	the	person	table	a	second	time,	the	following	issues	arise:

The	name	column	is	actually	a	compound	object	consisting	of	a
first	name	and	a	last	name.

Since	multiple	people	can	have	the	same	name,	eye	color,	birth
date,	and	so	forth,	there	are	no	columns	in	the	person	table	that
guarantee	uniqueness.

The	address	column	is	also	a	compound	object	consisting	of
street,	city,	state/province,	country,	and	postal	code.

The	favorite_foods	column	is	a	list	containing	zero,	one,	or
more	independent	items.	It	would	be	best	to	create	a	separate
table	for	this	data	that	includes	a	foreign	key	to	the	person	table
so	that	you	know	to	which	person	a	particular	food	may	be
attributed.

After	taking	these	issues	into	consideration,	Table	2-7	gives	a	normalized
version	of	the	person	table.

Table	2-7.	Person	table,	second	pass

Column Type Allowable	values

	
	 	 	
person_id
	
	 	 	

	
	 	 	
smallint (unsigned)
	
	 	 	

	

	
	 	 	
first_name
	
	 	 	

	
	 	 	
varchar(20)
	
	 	 	

	

	
	 	 	
last_name
	

	
	 	 	
varchar(20)
	

	



	
	 	 	

	
	 	 	

	
	 	 	
eye_color
	
	 	 	

	
	 	 	
char(2)
	
	 	 	

	
	 	 	
BR,	BL,	GR
	
	 	 	

	
	 	 	
birth_date
	
	 	 	

	
	 	 	
date
	
	 	 	

	

	
	 	 	
street
	
	 	 	

	
	 	 	
varchar(30)
	
	 	 	

	

	
	 	 	
city
	
	 	 	

	
	 	 	
varchar(20)
	
	 	 	

	

	
	 	 	
state
	
	 	 	

	
	 	 	
varchar(20)
	
	 	 	

	

	
	 	 	
country
	
	 	 	

	
	 	 	
varchar(20)
	
	 	 	

	

	
	 	 	
postal_code
	
	 	 	

	
	 	 	
varchar(20)
	
	 	 	

	

Now	that	the	person	table	has	a	primary	key	(person_id)	to	guarantee



uniqueness,	the	next	step	is	to	build	a	favorite_food	table	that	includes	a
foreign	key	to	the	person	table.	Table	2-8	shows	the	result.

Table	2-8.	favorite_food	table

Column Type

	
	 	 	
person_id
	
	 	 	

	
	 	 	
smallint (unsigned)
	
	 	 	

	
	 	 	
food
	
	 	 	

	
	 	 	
varchar(20)
	
	 	 	

The	person_id	and	food	columns	comprise	the	primary	key	of	the
favorite_food	table,	and	the	person_id	column	is	also	a	foreign	key	to
the	person	table.

HOW	MUCH	IS	ENOUGH?
Moving	the	favorite_foods	column	out	of	the	person	table	was	definitely	a	good	idea,	but	are	we	done
yet?	What	happens,	for	example,	if	one	person	lists	“pasta”	as	a	favorite	food	while	another	person	lists
“spaghetti”?	Are	they	the	same	thing?	In	order	to	prevent	this	problem,	you	might	decide	that	you	want
people	to	choose	their	favorite	foods	from	a	list	of	options,	in	which	case	you	should	create	a	food	table
with	food_id	and	food_name	columns	and	then	change	the	favorite_food	table	to	contain	a	foreign	key	to
the	food	table.	While	this	design	would	be	fully	normalized,	you	might	decide	that	you	simply	want	to	store
the	values	that	the	user	has	entered,	in	which	case	you	may	leave	the	table	as	is.

Step	3:	Building	SQL	Schema	Statements

Now	that	the	design	is	complete	for	the	two	tables	holding	information
about	people	and	their	favorite	foods,	the	next	step	is	to	generate	SQL
statements	to	create	the	tables	in	the	database.	Here	is	the	statement	to



create	the	person	table:

CREATE TABLE person
 (person_id SMALLINT UNSIGNED,
  fname VARCHAR(20),
  lname VARCHAR(20),
  eye_color CHAR(2),
  birth_date DATE,
  street VARCHAR(30),
  city VARCHAR(20),
  state VARCHAR(20),
  country VARCHAR(20),
  postal_code VARCHAR(20),
  CONSTRAINT pk_person PRIMARY KEY (person_id)
 );

Everything	in	this	statement	should	be	fairly	self-explanatory	except	for
the	last	item;	when	you	define	your	table,	you	need	to	tell	the	database
server	what	column	or	columns	will	serve	as	the	primary	key	for	the	table.
You	do	this	by	creating	a	constraint	on	the	table.	You	can	add	several
types	of	constraints	to	a	table	definition.	This	constraint	is	a	primary	key
constraint.	It	is	created	on	the	person_id	column	and	given	the	name
pk_person.

While	on	the	topic	of	constraints,	there	is	another	type	of	constraint	that
would	be	useful	for	the	person	table.	In	Table	2-6,	I	added	a	third	column
to	show	the	allowable	values	for	certain	columns	(such	as	'BR'	and	'BL'
for	the	eye_color	column).	Another	type	of	constraint	called	a	check
constraint	constrains	the	allowable	values	for	a	particular	column.	MySQL
allows	a	check	constraint	to	be	attached	to	a	column	definition,	as	in	the
following:

eye_color CHAR(2) CHECK	(eye_color	IN	('BR','BL','GR')),

While	check	constraints	operate	as	expected	on	most	database	servers,	the
MySQL	server	allows	check	constraints	to	be	defined	but	does	not	enforce



them.	However,	MySQL	does	provide	another	character	data	type	called
enum	that	merges	the	check	constraint	into	the	data	type	definition.	Here’s
what	it	would	look	like	for	the	eye_color	column	definition:

eye_color ENUM('BR','BL','GR'),

Here’s	how	the	person	table	definition	looks	with	an	enum	data	type	for
the	eye_color	column:

CREATE TABLE person
 (person_id SMALLINT UNSIGNED,
  fname VARCHAR(20),
  lname VARCHAR(20),
  eye_color ENUM('BR','BL','GR'),
  birth_date DATE,
  street VARCHAR(30),
  city VARCHAR(20),
  state VARCHAR(20),
  country VARCHAR(20),
  postal_code VARCHAR(20),
  CONSTRAINT pk_person PRIMARY KEY (person_id)
 );

Later	in	this	chapter,	you	will	see	what	happens	if	you	try	to	add	data	to	a
column	that	violates	its	check	constraint	(or,	in	the	case	of	MySQL,	its
enumeration	values).

You	are	now	ready	to	run	the	create table	statement	using	the	mysql
command-line	tool.	Here’s	what	it	looks	like:

mysql> CREATE TABLE person
    ->  (person_id SMALLINT UNSIGNED,
    ->   fname VARCHAR(20),
    ->   lname VARCHAR(20),
    ->   eye_color ENUM('BR','BL','GR'),
    ->   birth_date DATE,
    ->   street VARCHAR(30),
    ->   city VARCHAR(20),
    ->   state VARCHAR(20),
    ->   country VARCHAR(20),



    ->   postal_code VARCHAR(20),
    ->   CONSTRAINT pk_person PRIMARY KEY (person_id)
    ->  );
Query OK, 0 rows affected (0.37 sec)

After	processing	the	create table	statement,	the	MySQL	server	returns
the	message	“Query	OK,	0	rows	affected,”	which	tells	me	that	the
statement	had	no	syntax	errors.

If	you	want	to	make	sure	that	the	person	table	does,	in	fact,	exist,	you	can
use	the	describe	command	(or	desc	for	short)	to	look	at	the	table
definition:

mysql> desc person;
+-------------+----------------------+------+-----+---------+-------+
| Field       | Type                 | Null | Key | Default | Extra |
+-------------+----------------------+------+-----+---------+-------+
| person_id   | smallint(5) unsigned | NO   | PRI | NULL    |       |
| fname       | varchar(20)          | YES  |     | NULL    |       |
| lname       | varchar(20)          | YES  |     | NULL    |       |
| eye_color   | enum('BR','BL','GR') | YES  |     | NULL    |       |
| birth_date  | date                 | YES  |     | NULL    |       |
| street      | varchar(30)          | YES  |     | NULL    |       |
| city        | varchar(20)          | YES  |     | NULL    |       |
| state       | varchar(20)          | YES  |     | NULL    |       |
| country     | varchar(20)          | YES  |     | NULL    |       |
| postal_code | varchar(20)          | YES  |     | NULL    |       |
+-------------+----------------------+------+-----+---------+-------+
10 rows in set (0.00 sec)

Columns	1	and	2	of	the	describe	output	are	self-explanatory.	Column	3
shows	whether	a	particular	column	can	be	omitted	when	data	is	inserted
into	the	table.	I	purposefully	left	this	topic	out	of	the	discussion	for	now
(see	the	following	sidebar	for	a	short	discourse),	but	we	explore	it	fully	in
Chapter	4.	The	fourth	column	shows	whether	a	column	takes	part	in	any
keys	(primary	or	foreign);	in	this	case,	the	person_id	column	is	marked
as	the	primary	key.	Column	5	shows	whether	a	particular	column	will	be
populated	with	a	default	value	if	you	omit	the	column	when	inserting	data



into	the	table.	The	sixth	column	(called	“Extra”)	shows	any	other	pertinent
information	that	might	apply	to	a	column.

WHAT	IS	NULL?
In	some	cases,	it	is	not	possible	or	applicable	to	provide	a	value	for	a	particular	column	in	your	table.	For
example,	when	adding	data	about	a	new	customer	order,	the	ship_date	column	cannot	yet	be	determined.
In	this	case,	the	column	is	said	to	be	null	(note	that	I	do	not	say	that	it	equals	null),	which	indicates	the
absence	of	a	value.	Null	is	used	for	various	cases	where	a	value	cannot	be	supplied,	such	as:

Not	applicable

Unknown

Empty	set

When	designing	a	table,	you	may	specify	which	columns	are	allowed	to	be	null	(the	default)	and	which
columns	are	not	allowed	to	be	null	(designated	by	adding	the	keywords	not null	after	the	type	definition).

Now	that	you	have	created	the	person	table,	your	next	step	will	be	to	then
create	the	favorite_food	table:

mysql>  CREATE TABLE favorite_food
    ->  (person_id SMALLINT UNSIGNED,
    ->  food VARCHAR(20),
    ->  CONSTRAINT pk_favorite_food PRIMARY KEY (person_id, food),
    ->  CONSTRAINT fk_fav_food_person_id FOREIGN KEY (person_id)
    ->  REFERENCES person (person_id)
    ->  );
Query OK, 0 rows affected (0.10 sec)

This	should	look	very	similar	to	the	create table	statement	for	the
person	table,	with	the	following	exceptions:

Since	a	person	can	have	more	than	one	favorite	food	(which	is	the
reason	this	table	was	created	in	the	first	place),	it	takes	more	than
just	the	person_id	column	to	guarantee	uniqueness	in	the	table.
This	table,	therefore,	has	a	two-column	primary	key:	person_id
and	food.

	The	favorite_food	table	contains	another	type	of	constraint



which	is	called	a	foreign	key	constraint.	This	constrains	the
values	of	the	person_id	column	in	the	favorite_food	table	to
include	only	values	found	in	the	person	table.	With	this
constraint	in	place,	I	will	not	be	able	to	add	a	row	to	the
favorite_food	table	indicating	that	person_id 27	likes	pizza	if
there	isn’t	already	a	row	in	the	person	table	having	a	person_id
of	27.

NOTE
If	you	forget	to	create	the	foreign	key	constraint	when	you	first	create	the	table,	you	can	add	it
later	via	the	alter table	statement.

describe	shows	the	following	after	executing	the	create table
statement:

mysql> desc favorite_food;
+-----------+----------------------+------+-----+---------+-------+
| Field     | Type                 | Null | Key | Default | Extra |
+-----------+----------------------+------+-----+---------+-------+
| person_id | smallint(5) unsigned | NO   | PRI | NULL    |       |
| food      | varchar(20)          | NO   | PRI | NULL    |       |
+-----------+----------------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

Now	that	the	tables	are	in	place,	the	next	logical	step	is	to	add	some	data.

Populating	and	Modifying	Tables
With	the	person	and	favorite_food	tables	in	place,	you	can	now	begin
to	explore	the	four	SQL	data	statements:	insert,	update,	delete,	and
select.

Inserting	Data



Since	there	is	not	yet	any	data	in	the	person	and	favorite_food	tables,
the	first	of	the	four	SQL	data	statements	to	be	explored	will	be	the	insert
statement.	There	are	three	main	components	to	an	insert	statement:

The	name	of	the	table	into	which	to	add	the	data

The	names	of	the	columns	in	the	table	to	be	populated

The	values	with	which	to	populate	the	columns

You	are	not	required	to	provide	data	for	every	column	in	the	table	(unless
all	the	columns	in	the	table	have	been	defined	as	not null).	In	some
cases,	those	columns	that	are	not	included	in	the	initial	insert	statement
will	be	given	a	value	later	via	an	update	statement.	In	other	cases,	a
column	may	never	receive	a	value	for	a	particular	row	of	data	(such	as	a
customer	order	that	is	canceled	before	being	shipped,	thus	rendering	the
ship_date	column	inapplicable).

GENERATING	NUMERIC	KEY	DATA

Before	inserting	data	into	the	person	table,	it	would	be	useful	to	discuss
how	values	are	generated	for	numeric	primary	keys.	Other	than	picking	a
number	out	of	thin	air,	you	have	a	couple	of	options:

Look	at	the	largest	value	currently	in	the	table	and	add	one.

Let	the	database	server	provide	the	value	for	you.

Although	the	first	option	may	seem	valid,	it	proves	problematic	in	a
multiuser	environment,	since	two	users	might	look	at	the	table	at	the	same
time	and	generate	the	same	value	for	the	primary	key.	Instead,	all	database
servers	on	the	market	today	provide	a	safe,	robust	method	for	generating
numeric	keys.	In	some	servers,	such	as	the	Oracle	Database,	a	separate
schema	object	is	used	(called	a	sequence);	in	the	case	of	MySQL,



however,	you	simply	need	to	turn	on	the	auto-increment	feature	for	your
primary	key	column.	Normally,	you	would	do	this	at	table	creation,	but
doing	it	now	provides	the	opportunity	to	learn	another	SQL	schema
statement,	alter table,	which	is	used	to	modify	the	definition	of	an
existing	table:

ALTER TABLE person MODIFY person_id SMALLINT UNSIGNED AUTO_INCREMENT;

This	statement	essentially	redefines	the	person_id	column	in	the	person
table.	If	you	describe	the	table,	you	will	now	see	the	auto-increment
feature	listed	under	the	“Extra”	column	for	person_id:

mysql> DESC person;
+-------------+------------------------+------+-----+---------+-----------------+

| Field       | Type                   | Null | Key | Default | Extra           
|
+-------------+------------------------+------+-----+---------+-----------------+

| person_id   | smallint(5) unsigned   | NO   | PRI | NULL    | 
auto_increment  |

| .           |                        |      |     |         |                 
|
| .           |                        |      |     |         |                 
|
| .           |                        |      |     |         |                 
|

When	you	insert	data	into	the	person	table,	you	simply	provide	a	null
value	for	the	person_id	column,	and	MySQL	will	populate	the	column
with	the	next	available	number	(by	default,	MySQL	starts	at	1	for	auto-
increment	columns).

THE	INSERT	STATEMENT

Now	that	all	the	pieces	are	in	place,	it’s	time	to	add	some	data.	The
following	statement	creates	a	row	in	the	person	table	for	William	Turner:



mysql> INSERT INTO person
    ->   (person_id, fname, lname, eye_color, birth_date)
    -> VALUES (null, 'William','Turner', 'BR', '1972-05-27');
Query OK, 1 row affected (0.22 sec)

The	feedback	(“Query	OK,	1	row	affected”)	tells	you	that	your	statement
syntax	was	proper	and	that	one	row	was	added	to	the	database	(since	it
was	an	insert	statement).	You	can	look	at	the	data	just	added	to	the	table
by	issuing	a	select	statement:

mysql> SELECT person_id, fname, lname, birth_date
    -> FROM person;
+-----------+---------+--------+------------+
| person_id | fname   | lname  | birth_date |
+-----------+---------+--------+------------+
|         1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.06 sec)

As	you	can	see,	the	MySQL	server	generated	a	value	of	1	for	the	primary
key.	Since	there	is	only	a	single	row	in	the	person	table,	I	neglected	to
specify	which	row	I	am	interested	in	and	simply	retrieved	all	the	rows	in
the	table.	If	there	were	more	than	one	row	in	the	table,	however,	I	could
add	a	where	clause	to	specify	that	I	want	to	retrieve	data	only	for	the	row
having	a	value	of	1	for	the	person_id	column:

mysql> SELECT person_id, fname, lname, birth_date
    -> FROM person
    -> WHERE person_id = 1;
+-----------+---------+--------+------------+
| person_id | fname   | lname  | birth_date |
+-----------+---------+--------+------------+
|         1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.00 sec)

While	this	query	specifies	a	particular	primary	key	value,	you	can	use	any
column	in	the	table	to	search	for	rows,	as	shown	by	the	following	query,
which	finds	all	rows	with	a	value	of	'Turner'	for	the	lname	column:



mysql> SELECT person_id, fname, lname, birth_date
    -> FROM person
    -> WHERE lname = 'Turner';
+-----------+---------+--------+------------+
| person_id | fname   | lname  | birth_date |
+-----------+---------+--------+------------+
|         1 | William | Turner | 1972-05-27 |
+-----------+---------+--------+------------+
1 row in set (0.00 sec)

Before	moving	on,	a	couple	of	things	about	the	earlier	insert	statement
are	worth	mentioning:

Values	were	not	provided	for	any	of	the	address	columns.	This	is
fine,	since	nulls	are	allowed	for	those	columns.

The	value	provided	for	the	birth_date	column	was	a	string.	As
long	as	you	match	the	required	format	shown	in	Table	2-4,
MySQL	will	convert	the	string	to	a	date	for	you.

The	column	names	and	the	values	provided	must	correspond	in
number	and	type.	If	you	name	seven	columns	and	provide	only
six	values	or	if	you	provide	values	that	cannot	be	converted	to	the
appropriate	data	type	for	the	corresponding	column,	you	will
receive	an	error.

William	Turner	has	also	provided	information	about	his	favorite	three
foods,	so	here	are	three	insert	statements	to	store	his	food	preferences:

mysql> INSERT INTO favorite_food (person_id, food)
    -> VALUES (1, 'pizza');
Query OK, 1 row affected (0.01 sec)
mysql> INSERT INTO favorite_food (person_id, food)
    -> VALUES (1, 'cookies');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO favorite_food (person_id, food)
    -> VALUES (1, 'nachos');
Query OK, 1 row affected (0.01 sec)

Here’s	a	query	that	retrieves	William’s	favorite	foods	in	alphabetical	order
using	an	order by	clause:



mysql> SELECT food
    -> FROM favorite_food
    -> WHERE person_id = 1
    -> ORDER BY food;
+---------+
| food    |
+---------+
| cookies |
| nachos  |
| pizza   |
+---------+
3 rows in set (0.02 sec)

The	order by	clause	tells	the	server	how	to	sort	the	data	returned	by	the
query.	Without	the	order by	clause,	there	is	no	guarantee	that	the	data	in
the	table	will	be	retrieved	in	any	particular	order.

So	that	William	doesn’t	get	lonely,	you	can	execute	another	insert
statement	to	add	Susan	Smith	to	the	person	table:

mysql> INSERT INTO person
    -> (person_id, fname, lname, eye_color, birth_date,
    -> street, city, state, country, postal_code)
    -> VALUES (null, 'Susan','Smith', 'BL', '1975-11-02',
    ->  '23 Maple St.', 'Arlington', 'VA', 'USA', '20220');
 Query OK, 1 row affected (0.01 sec)

Since	Susan	was	kind	enough	to	provide	her	address,	we	included	five
more	columns	than	when	William’s	data	was	inserted.	If	you	query	the
table	again,	you	will	see	that	Susan’s	row	has	been	assigned	the	value	2
for	its	primary	key	value:

mysql> SELECT person_id, fname, lname, birth_date
    -> FROM person;
+-----------+---------+--------+------------+
| person_id | fname   | lname  | birth_date |
+-----------+---------+--------+------------+
|         1 | William | Turner | 1972-05-27 |
|         2 | Susan   | Smith  | 1975-11-02 |
+-----------+---------+--------+------------+
2 rows in set (0.00 sec)



CAN	I	GET	THAT	IN	XML?
If	you	will	be	working	with	XML	data,	you	will	be	happy	to	know	that	most	database	servers	provide	a
simple	way	to	generate	XML	output	from	a	query.	With	MySQL,	for	example,	you	can	use	the	--xml	option
when	invoking	the	mysql	tool,	and	all	your	output	will	automatically	be	formatted	using	XML.	Here’s	what
the	favorite-food	data	looks	like	as	an	XML	document:

C:\database> mysql -u lrngsql -p --xml bank
Enter password: xxxxxx
Welcome to the MySQL Monitor...
 
Mysql> SELECT * FROM favorite_food;
<?xml version="1.0"?>
 
<resultset statement="select * from favorite_food"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <row>
        <field name="person_id">1</field>
        <field name="food">cookies</field>
  </row>
  <row>
        <field name="person_id">1</field>
        <field name="food">nachos</field>
  </row>
  <row>
        <field name="person_id">1</field>
        <field name="food">pizza</field>
  </row>
</resultset>
3 rows in set (0.00 sec)

With	SQL	Server,	you	don’t	need	to	configure	your	command-line	tool;	you	just	need	to	add	the	for xml
clause	to	the	end	of	your	query,	as	in:

SELECT * FROM favorite_food
FOR XML AUTO, ELEMENTS

Updating	Data

When	the	data	for	William	Turner	was	initially	added	to	the	table,	data	for
the	various	address	columns	was	not	included	in	the	insert	statement.
The	next	statement	shows	how	these	columns	can	be	populated	at	a	later
time	via	an	update	statement:

mysql> UPDATE person
    -> SET street = '1225 Tremont St.',
    ->   city = 'Boston',



    ->   state = 'MA',
    ->   country = 'USA',
    ->   postal_code = '02138'
    -> WHERE person_id = 1;
Query OK, 1 row affected (0.04 sec)
Rows matched: 1  Changed: 1  Warnings: 0

The	server	responded	with	a	two-line	message:	the	“Rows	matched:	1”
item	tells	you	that	the	condition	in	the	where	clause	matched	a	single	row
in	the	table,	and	the	“Changed:	1”	item	tells	you	that	a	single	row	in	the
table	has	been	modified.	Since	the	where	clause	specifies	the	primary	key
of	William’s	row,	this	is	exactly	what	you	would	expect	to	have	happen.

Depending	on	the	conditions	in	your	where	clause,	it	is	also	possible	to
modify	more	than	one	row	using	a	single	statement.	Consider,	for
example,	what	would	happen	if	your	where	clause	looked	as	follows:

WHERE person_id < 10

Since	both	William	and	Susan	have	a	person_id	value	less	than	10,	both
of	their	rows	would	be	modified.	If	you	leave	off	the	where	clause
altogether,	your	update	statement	will	modify	every	row	in	the	table.

Deleting	Data

It	seems	that	William	and	Susan	aren’t	getting	along	very	well	together,	so
one	of	them	has	got	to	go.	Since	William	was	there	first,	Susan	will	get	the
boot	courtesy	of	the	delete	statement:

mysql> DELETE FROM person
    -> WHERE person_id = 2;
Query OK, 1 row affected (0.01 sec)

Again,	the	primary	key	is	being	used	to	isolate	the	row	of	interest,	so	a
single	row	is	deleted	from	the	table.	Like	the	update	statement,	more	than



one	row	can	be	deleted	depending	on	the	conditions	in	your	where	clause,
and	all	rows	will	be	deleted	if	the	where	clause	is	omitted.

When	Good	Statements	Go	Bad
So	far,	all	of	the	SQL	data	statements	shown	in	this	chapter	have	been
well	formed	and	have	played	by	the	rules.	Based	on	the	table	definitions
for	the	person	and	favorite_food	tables,	however,	there	are	lots	of	ways
that	you	can	run	afoul	when	inserting	or	modifying	data.	This	section
shows	you	some	of	the	common	mistakes	that	you	might	come	across	and
how	the	MySQL	server	will	respond.

Nonunique	Primary	Key

Because	the	table	definitions	include	the	creation	of	primary	key
constraints,	MySQL	will	make	sure	that	duplicate	key	values	are	not
inserted	into	the	tables.	The	next	statement	attempts	to	bypass	the	auto-
increment	feature	of	the	person_id	column	and	create	another	row	in	the
person	table	with	a	person_id	of	1:

mysql> INSERT INTO person
    ->  (person_id, fname, lname, eye_color, birth_date)
    -> VALUES (1, 'Charles','Fulton', 'GR', '1968-01-15');
ERROR 1062 (23000): Duplicate entry '1' for key 'PRIMARY'

There	is	nothing	stopping	you	(with	the	current	schema	objects,	at	least)
from	creating	two	rows	with	identical	names,	addresses,	birth	dates,	and	so
on,	as	long	as	they	have	different	values	for	the	person_id	column.

Nonexistent	Foreign	Key

The	table	definition	for	the	favorite_food	table	includes	the	creation	of	a
foreign	key	constraint	on	the	person_id	column.	This	constraint	ensures



that	all	values	of	person_id	entered	into	the	favorite_food	table	exist	in
the	person	table.	Here’s	what	would	happen	if	you	tried	to	create	a	row
that	violates	this	constraint:

mysql> INSERT INTO favorite_food (person_id, food)
    -> VALUES (999, 'lasagna');
ERROR 1452 (23000): Cannot add or update a child row: a foreign key 
constraint
fails ('sakila'.'favorite_food', CONSTRAINT 'fk_fav_food_person_id' FOREIGN 
KEY
('person_id') REFERENCES 'person' ('person_id'))

In	this	case,	the	favorite_food	table	is	considered	the	child	and	the
person	table	is	considered	the	parent,	since	the	favorite_food	table	is
dependent	on	the	person	table	for	some	of	its	data.	If	you	plan	to	enter
data	into	both	tables,	you	will	need	to	create	a	row	in	parent	before	you
can	enter	data	into	favorite_food.

NOTE
Foreign	key	constraints	are	enforced	only	if	your	tables	are	created	using	the	InnoDB	storage
engine.	We	discuss	MySQL’s	storage	engines	in	Chapter	12.

Column	Value	Violations

The	eye_color	column	in	the	person	table	is	restricted	to	the	values	'BR'
for	brown,	'BL'	for	blue,	and	'GR'	for	green.	If	you	mistakenly	attempt	to
set	the	value	of	the	column	to	any	other	value,	you	will	receive	the
following	response:

mysql> UPDATE person
    -> SET eye_color = 'ZZ'
    -> WHERE person_id = 1;
ERROR 1265 (01000): Data truncated for column 'eye_color' at row 1



The	error	message	is	a	bit	confusing,	but	it	gives	you	the	general	idea	that
the	server	is	unhappy	about	the	value	provided	for	the	eye_color	column.

Invalid	Date	Conversions

If	you	construct	a	string	with	which	to	populate	a	date	column	and	that
string	does	not	match	the	expected	format,	you	will	receive	another	error.
Here’s	an	example	that	uses	a	date	format	that	does	not	match	the	default
date	format	of	YYYY-MM-DD:

mysql> UPDATE person
    -> SET birth_date = 'DEC-21-1980'
    -> WHERE person_id = 1;
ERROR 1292 (22007): Incorrect date value: 'DEC-21-1980' for column 
'birth_date'
at row 1

In	general,	it	is	always	a	good	idea	to	explicitly	specify	the	format	string
rather	than	relying	on	the	default	format.	Here’s	another	version	of	the
statement	that	uses	the	str_to_date	function	to	specify	which	format
string	to	use:

mysql> UPDATE person
    -> SET birth_date = str_to_date('DEC-21-1980' , '%b-%d-%Y')
    -> WHERE person_id = 1;
Query OK, 1 row affected (0.12 sec)
Rows matched: 1  Changed: 1  Warnings: 0

Not	only	is	the	database	server	happy,	but	William	is	happy	as	well	(we
just	made	him	eight	years	younger,	without	the	need	for	expensive
cosmetic	surgery!).

NOTE
Earlier	in	the	chapter,	when	I	discussed	the	various	temporal	data	types,	I	showed	date-
formatting	strings	such	as	YYYY-MM-DD.	While	many	database	servers	use	this	style	of



formatting,	MySQL	uses	%Y	to	indicate	a	four-character	year.	Here	are	a	few	more	formatters
that	you	might	need	when	converting	strings	to	datetimes	in	MySQL:

%a The short weekday name, such as Sun, Mon, ...
%b The short month name, such as Jan, Feb, ...
%c The numeric month (0..12)
%d The numeric day of the month (00..31)
%f The number of microseconds (000000..999999)
%H The hour of the day, in 24-hour format (00..23)
%h The hour of the day, in 12-hour format (01..12)
%i The minutes within the hour (00..59)
%j The day of year (001..366)
%M The full month name (January..December)
%m The numeric month
%p AM or PM
%s The number of seconds (00..59)
%W The full weekday name (Sunday..Saturday)
%w The numeric day of the week (0=Sunday..6=Saturday)
%Y The four-digit year

The	Sakila	Database
For	the	remainder	of	the	book,	most	examples	will	use	a	sample	database
called	Sakila,	which	is	made	available	by	the	nice	people	at	MySQL.	This
database	models	a	chain	of	DVD	rental	stores,	which	is	a	bit	outdated,	but
with	a	bit	of	imagination	it	can	be	rebranded	as	a	video-streaming
company.	Some	of	the	tables	include	customer,	film,	actor,	payment,
rental,	and	category.	The	entire	schema	and	example	data	should	have
been	created	when	you	followed	the	final	steps	at	the	beginning	of	the
chapter	for	loading	the	MySQL	server	and	generating	the	sample	data.	For
a	diagram	of	the	tables	and	their	columns	and	relationships,	see
Appendix	A.

Table	2-9	shows	some	of	the	tables	used	in	the	Sakila	schema,	along	with
short	definitions	of	each.

Table	2-9.	Sakila	schema	definitions



Table	name Definition

	
	 	 	
film
	
	 	 	

	
	 	 	
A	movie	that	has	been	released	and	can	be	rented
	
	 	 	

	
	 	 	
actor
	
	 	 	

	
	 	 	
A	person	who	acts	in	films
	
	 	 	

	
	 	 	
customer
	
	 	 	

	
	 	 	
A	person	who	watches	films
	
	 	 	

	
	 	 	
category
	
	 	 	

	
	 	 	
A	genre	of	films
	
	 	 	

	
	 	 	
payment
	
	 	 	

	
	 	 	
A	rental	of	a	film	by	a	customer
	
	 	 	

	
	 	 	
language
	
	 	 	

	
	 	 	
A	language	spoken	by	the	actors	of	a	film
	
	 	 	

	
	 	 	
film_actor
	
	 	 	

	
	 	 	
An	actor	in	a	film
	
	 	 	

	
	 	 	
inventory
	
	 	 	

	
	 	 	
A	film	available	for	rental
	
	 	 	



	 	 	 	 	 	

Feel	free	to	experiment	with	the	tables	as	much	as	you	want,	including
adding	your	own	tables	to	expand	the	business	functions.	You	can	always
drop	the	database	and	re-create	it	from	the	downloaded	file	if	you	want	to
make	sure	your	sample	data	is	intact.	If	you	are	using	the	temporary
session,	any	changes	you	make	will	be	lost	when	the	session	closes,	so
you	may	want	to	keep	a	script	of	your	changes	so	you	can	re-create	any
changes	you	have	made.

If	you	want	to	see	the	tables	available	in	your	database,	you	can	use	the
show tables	command,	as	in:

mysql> show tables;
+----------------------------+
| Tables_in_sakila           |
+----------------------------+
| actor                      |
| actor_info                 |
| address                    |
| category                   |
| city                       |
| country                    |
| customer                   |
| customer_list              |
| film                       |
| film_actor                 |
| film_category              |
| film_list                  |
| film_text                  |
| inventory                  |
| language                   |
| nicer_but_slower_film_list |
| payment                    |
| rental                     |
| sales_by_film_category     |
| sales_by_store             |
| staff                      |
| staff_list                 |
| store                      |
+----------------------------+
23 rows in set (0.02 sec)



Along	with	the	23	tables	in	the	Sakila	schema,	your	table	listing	may	also
include	the	two	tables	created	in	this	chapter:	person	and	favorite_food.
These	tables	will	not	be	used	in	later	chapters,	so	feel	free	to	drop	them	by
issuing	the	following	set	of	commands:

mysql> DROP	TABLE	favorite_food;

Query OK, 0 rows affected (0.56 sec)
mysql> DROP	TABLE	person;

Query OK, 0 rows affected (0.05 sec)

If	you	want	to	look	at	the	columns	in	a	table,	you	can	use	the	describe
command.	Here’s	an	example	of	the	describe	output	for	the	customer
table:

mysql> desc customer;
+-------------+--------------+------+-----+-------------+----------------------+

| Field       | Type         | Null | Key | Default     | 
Extra                |
+-------------+--------------+------+-----+-------------+----------------------+

| customer_id | smallint(5)  | NO   | PRI | NULL        | 
auto_increment       |
                 unsigned 
| store_id    | tinyint(3)   | NO   | MUL | NULL        
|                      |
                 unsigned 
| first_name  | varchar(45)  | NO   |     | NULL        
|                      |
| last_name   | varchar(45)  | NO   | MUL | NULL        
|                      |
| email       | varchar(50)  | YES  |     | NULL        
|                      |
| address_id  | smallint(5)  | NO   | MUL | NULL        
|                      |
                 unsigned 
| active      | tinyint(1)   | NO   |     | 1           
|                      |
| create_date | datetime     | NO   |     | NULL        
|                      |
| last_update | timestamp    | YES  |     | CURRENT_    | DEFAULT_GENERATED 
on
                                              TIMESTAMP     update CURRENT_
                                                            TIMESTAMP          



| 
+-------------+--------------+------+-----+-------------+----------------------+

The	more	comfortable	you	are	with	the	example	database,	the	better	you
will	understand	the	examples	and,	consequently,	the	concepts	in	the
following	chapters.



Chapter	3.	Query	Primer

So	far,	you	have	seen	a	few	examples	of	database	queries	(a.k.a.	select
statements)	sprinkled	throughout	the	first	two	chapters.	Now	it’s	time	to
take	a	closer	look	at	the	different	parts	of	the	select	statement	and	how
they	interact.	After	finishing	this	chapter,	you	should	have	a	basic
understanding	of	how	data	is	retrieved,	joined,	filtered,	grouped,	and
sorted;	these	topics	will	be	covered	in	detail	in	Chapters	4	through	10.

Query	Mechanics
Before	dissecting	the	select	statement,	it	might	be	interesting	to	look	at
how	queries	are	executed	by	the	MySQL	server	(or,	for	that	matter,	any
database	server).	If	you	are	using	the	mysql	command-line	tool	(which	I
assume	you	are),	then	you	have	already	logged	in	to	the	MySQL	server	by
providing	your	username	and	password	(and	possibly	a	hostname	if	the
MySQL	server	is	running	on	a	different	computer).	Once	the	server	has
verified	that	your	username	and	password	are	correct,	a	database
connection	is	generated	for	you	to	use.	This	connection	is	held	by	the
application	that	requested	it	(which,	in	this	case,	is	the	mysql	tool)	until
the	application	releases	the	connection	(i.e.,	as	a	result	of	typing	quit)	or
the	server	closes	the	connection	(i.e.,	when	the	server	is	shut	down).	Each
connection	to	the	MySQL	server	is	assigned	an	identifier,	which	is	shown
to	you	when	you	first	log	in:

Welcome to the MySQL monitor.  Commands end with ; or \g.
Your	MySQL	connection	id	is	11

Server version: 8.0.15 MySQL Community Server - GPL



Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

In	this	case,	my	connection	ID	is	11.	This	information	might	be	useful	to
your	database	administrator	if	something	goes	awry,	such	as	a	malformed
query	that	runs	for	hours,	so	you	might	want	to	jot	it	down.

Once	the	server	has	verified	your	username	and	password	and	issued	you	a
connection,	you	are	ready	to	execute	queries	(along	with	other	SQL
statements).	Each	time	a	query	is	sent	to	the	server,	the	server	checks	the
following	things	prior	to	statement	execution:

Do	you	have	permission	to	execute	the	statement?

Do	you	have	permission	to	access	the	desired	data?

Is	your	statement	syntax	correct?

If	your	statement	passes	these	three	tests,	then	your	query	is	handed	to	the
query	optimizer,	whose	job	it	is	to	determine	the	most	efficient	way	to
execute	your	query.	The	optimizer	looks	at	such	things	as	the	order	in
which	to	join	the	tables	named	in	your	from	clause	and	what	indexes	are
available,	and	then	it	picks	an	execution	plan,	which	the	server	uses	to
execute	your	query.

NOTE
Understanding	and	influencing	how	your	database	server	chooses	execution	plans	is	a
fascinating	topic	that	many	of	you	will	want	to	explore.	For	those	readers	using	MySQL,	you
might	consider	reading	Baron	Schwartz	et	al.’s	High	Performance	MySQL	(O’Reilly).	Among
other	things,	you	will	learn	how	to	generate	indexes,	analyze	execution	plans,	influence	the
optimizer	via	query	hints,	and	tune	your	server’s	startup	parameters.	If	you	are	using	Oracle
Database	or	SQL	Server,	dozens	of	tuning	books	are	available.

http://oreilly.com/catalog/9780596101718


Once	the	server	has	finished	executing	your	query,	the	result	set	is
returned	to	the	calling	application	(which	is,	once	again,	the	mysql	tool).
As	I	mentioned	in	Chapter	1,	a	result	set	is	just	another	table	containing
rows	and	columns.	If	your	query	fails	to	yield	any	results,	the	mysql	tool
will	show	you	the	message	found	at	the	end	of	the	following	example:

mysql> SELECT first_name, last_name
    -> FROM customer
    -> WHERE last_name = 'ZIEGLER';
Empty	set	(0.02 sec)

If	the	query	returns	one	or	more	rows,	the	mysql	tool	will	format	the
results	by	adding	column	headers	and	constructing	boxes	around	the
columns	using	the	-,	|,	and	+	symbols,	as	shown	in	the	next	example:

mysql> SELECT *
    -> FROM category;
+-------------+-------------+---------------------+
| category_id | name        | last_update         |
+-------------+-------------+---------------------+
|           1 | Action      | 2006-02-15 04:46:27 |
|           2 | Animation   | 2006-02-15 04:46:27 |
|           3 | Children    | 2006-02-15 04:46:27 |
|           4 | Classics    | 2006-02-15 04:46:27 |
|           5 | Comedy      | 2006-02-15 04:46:27 |
|           6 | Documentary | 2006-02-15 04:46:27 |
|           7 | Drama       | 2006-02-15 04:46:27 |
|           8 | Family      | 2006-02-15 04:46:27 |
|           9 | Foreign     | 2006-02-15 04:46:27 |
|          10 | Games       | 2006-02-15 04:46:27 |
|          11 | Horror      | 2006-02-15 04:46:27 |
|          12 | Music       | 2006-02-15 04:46:27 |
|          13 | New         | 2006-02-15 04:46:27 |
|          14 | Sci-Fi      | 2006-02-15 04:46:27 |
|          15 | Sports      | 2006-02-15 04:46:27 |
|          16 | Travel      | 2006-02-15 04:46:27 |
+-------------+-------------+---------------------+
16	rows	in	set (0.02 sec)



This	query	returns	all	three	columns	for	of	all	the	rows	in	the	category
table.	After	the	last	row	of	data	is	displayed,	the	mysql	tool	displays	a
message	telling	you	how	many	rows	were	returned,	which,	in	this	case,	is
16.

Query	Clauses
Several	components	or	clauses	make	up	the	select	statement.	While	only
one	of	them	is	mandatory	when	using	MySQL	(the	select	clause),	you
will	usually	include	at	least	two	or	three	of	the	six	available	clauses.
Table	3-1	shows	the	different	clauses	and	their	purposes.

Table	3-1.	Query	clauses

Clause
name Purpose

	
	 	
select
	
	 	

	
	 	 	
Determines	which	columns	to	include	in	the	query’s	result	set
	
	 	 	

	
	 	
from
	
	 	

	
	 	 	
Identifies	the	tables	from	which	to	retrieve	data	and	how	the	tables	should	
be	joined
	
	 	 	

	
	 	
where
	
	 	

	
	 	 	
Filters	out	unwanted	data
	
	 	 	

	
	 	
group by
	
	 	

	
	 	 	
Used	to	group	rows	together	by	common	column	values
	
	 	 	



	 	 	 	 	

	
	 	
having
	
	 	

	
	 	 	
Filters	out	unwanted	groups
	
	 	 	

	
	 	
order by
	
	 	

	
	 	 	
Sorts	the	rows	of	the	final	result	set	by	one	or	more	columns
	
	 	 	

All	of	the	clauses	shown	in	Table	3-1	are	included	in	the	ANSI
specification.	The	following	sections	delve	into	the	uses	of	the	six	major
query	clauses.

The	select	Clause
Even	though	the	select	clause	is	the	first	clause	of	a	select	statement,	it
is	one	of	the	last	clauses	that	the	database	server	evaluates.	The	reason	for
this	is	that	before	you	can	determine	what	to	include	in	the	final	result	set,
you	need	to	know	all	of	the	possible	columns	that	could	be	included	in	the
final	result	set.	In	order	to	fully	understand	the	role	of	the	select	clause,
therefore,	you	will	need	to	understand	a	bit	about	the	from	clause.	Here’s
a	query	to	get	started:

mysql> SELECT *
    -> FROM language;
+-------------+----------+---------------------+
| language_id | name     | last_update         |
+-------------+----------+---------------------+
|           1 | English  | 2006-02-15 05:02:19 |
|           2 | Italian  | 2006-02-15 05:02:19 |
|           3 | Japanese | 2006-02-15 05:02:19 |
|           4 | Mandarin | 2006-02-15 05:02:19 |
|           5 | French   | 2006-02-15 05:02:19 |
|           6 | German   | 2006-02-15 05:02:19 |
+-------------+----------+---------------------+



6 rows in set (0.03 sec)

In	this	query,	the	from	clause	lists	a	single	table	(language),	and	the
select	clause	indicates	that	all	columns	(designated	by	*)	in	the
language	table	should	be	included	in	the	result	set.	This	query	could	be
described	in	English	as	follows:

Show	me	all	the	columns	and	all	the	rows	in	the	language	table.

In	addition	to	specifying	all	the	columns	via	the	asterisk	character,	you	can
explicitly	name	the	columns	you	are	interested	in,	such	as:

mysql> SELECT language_id, name, last_update
    -> FROM language;
+-------------+----------+---------------------+
| language_id | name     | last_update         |
+-------------+----------+---------------------+
|           1 | English  | 2006-02-15 05:02:19 |
|           2 | Italian  | 2006-02-15 05:02:19 |
|           3 | Japanese | 2006-02-15 05:02:19 |
|           4 | Mandarin | 2006-02-15 05:02:19 |
|           5 | French   | 2006-02-15 05:02:19 |
|           6 | German   | 2006-02-15 05:02:19 |
+-------------+----------+---------------------+
6 rows in set (0.00 sec)

The	results	are	identical	to	the	first	query,	since	all	the	columns	in	the
language	table	(language_id,	name,	and	last_update)	are	named	in	the
select	clause.	You	can	choose	to	include	only	a	subset	of	the	columns	in
the	language	table	as	well:

mysql> SELECT name
    -> FROM language;
+----------+
| name     |
+----------+
| English  |
| Italian  |
| Japanese |
| Mandarin |
| French   |



| German   |
+----------+
6 rows in set (0.00 sec)

The	job	of	the	select	clause,	therefore,	is	as	follows:

The	select	clause	determines	which	of	all	possible	columns	should	be
included	in	the	query’s	result	set.

If	you	were	limited	to	including	only	columns	from	the	table	or	tables
named	in	the	from	clause,	things	would	be	rather	dull.	However,	you	can
spice	things	up	in	your	select	clause	by	including	things	such	as:

Literals,	such	as	numbers	or	strings

Expressions,	such	as	transaction.amount * −1

Built-in	function	calls,	such	as	ROUND(transaction.amount, 2)

User-defined	function	calls

The	next	query	demonstrates	the	use	of	a	table	column,	a	literal,	an
expression,	and	a	built-in	function	call	in	a	single	query	against	the
employee	table:

mysql> SELECT language_id,
    ->   'COMMON' language_usage,
    ->   language_id * 3.1415927 lang_pi_value,
    ->   upper(name) language_name
    -> FROM language;
+-------------+----------------+---------------+---------------+
| language_id | language_usage | lang_pi_value | language_name |
+-------------+----------------+---------------+---------------+
|           1 | COMMON         |     3.1415927 | ENGLISH       |
|           2 | COMMON         |     6.2831854 | ITALIAN       |
|           3 | COMMON         |     9.4247781 | JAPANESE      |
|           4 | COMMON         |    12.5663708 | MANDARIN      |
|           5 | COMMON         |    15.7079635 | FRENCH        |
|           6 | COMMON         |    18.8495562 | GERMAN        |
+-------------+----------------+---------------+---------------+
6 rows in set (0.04 sec)



We	cover	expressions	and	built-in	functions	in	detail	later,	but	I	wanted	to
give	you	a	feel	for	what	kinds	of	things	can	be	included	in	the	select
clause.	If	you	only	need	to	execute	a	built-in	function	or	evaluate	a	simple
expression,	you	can	skip	the	from	clause	entirely.	Here’s	an	example:

mysql> SELECT version(),
    ->   user(),
    ->   database();
+-----------+----------------+------------+
| version() | user()         | database() |
+-----------+----------------+------------+
| 8.0.15    | root@localhost | sakila     |
+-----------+----------------+------------+
1 row in set (0.00 sec)

Since	this	query	simply	calls	three	built-in	functions	and	doesn’t	retrieve
data	from	any	tables,	there	is	no	need	for	a	from	clause.

Column	Aliases

Although	the	mysql	tool	will	generate	labels	for	the	columns	returned	by
your	queries,	you	may	want	to	assign	your	own	labels.	While	you	might
want	to	assign	a	new	label	to	a	column	from	a	table	(if	it	is	poorly	or
ambiguously	named),	you	will	almost	certainly	want	to	assign	your	own
labels	to	those	columns	in	your	result	set	that	are	generated	by	expressions
or	built-in	function	calls.	You	can	do	so	by	adding	a	column	alias	after
each	element	of	your	select	clause.	Here’s	the	previous	query	against	the
language	table,	which	included	column	aliases	for	three	of	the	columns:

mysql> SELECT language_id,
    ->   'COMMON' language_usage,

    ->   language_id * 3.1415927 lang_pi_value,

    ->   upper(name) language_name

    -> FROM language;
+-------------+----------------+---------------+---------------+
| language_id | language_usage | lang_pi_value | language_name |
+-------------+----------------+---------------+---------------+
|           1 | COMMON         |     3.1415927 | ENGLISH       |



|           2 | COMMON         |     6.2831854 | ITALIAN       |
|           3 | COMMON         |     9.4247781 | JAPANESE      |
|           4 | COMMON         |    12.5663708 | MANDARIN      |
|           5 | COMMON         |    15.7079635 | FRENCH        |
|           6 | COMMON         |    18.8495562 | GERMAN        |
+-------------+----------------+---------------+---------------+
6 rows in set (0.04 sec)

If	you	look	at	the	select	clause,	you	can	see	how	the	column	aliases
language_usage,	lang_pi_value,	and	language_name	are	added	after
the	second,	third,	and	fourth	columns.	I	think	you	will	agree	that	the
output	is	easier	to	understand	with	column	aliases	in	place,	and	it	would	be
easier	to	work	with	programmatically	if	you	were	issuing	the	query	from
within	Java	or	Python	rather	than	interactively	via	the	mysql	tool.	In	order
to	make	your	column	aliases	stand	out	even	more,	you	also	have	the
option	of	using	the	as	keyword	before	the	alias	name,	as	in:

mysql> SELECT language_id,
    ->   'COMMON' AS	language_usage,

    ->   language_id * 3.1415927 AS	lang_pi_value,

    ->   upper(name) AS	language_name

    -> FROM language;

Many	people	feel	that	including	the	optional	as	keyword	improves
readability,	although	I	have	chosen	not	to	use	it	for	the	examples	in	this
book.

Removing	Duplicates

In	some	cases,	a	query	might	return	duplicate	rows	of	data.	For	example,	if
you	were	to	retrieve	the	IDs	of	all	actors	who	appeared	in	a	film,	you
would	see	the	following:

mysql> SELECT actor_id FROM film_actor ORDER BY actor_id;
+----------+
| actor_id |
+----------+



|        1 |
|        1 |
|        1 |
|        1 |
|        1 |
|        1 |
|        1 |
|        1 |
|        1 |
|        1 |
...
|      200 |
|      200 |
|      200 |
|      200 |
|      200 |
|      200 |
|      200 |
|      200 |
|      200 |
+----------+
5462 rows in set (0.01 sec)

Since	some	actors	appeared	in	more	than	one	film,	you	will	see	the	same
actor	ID	multiple	times.	What	you	probably	want	in	this	case	is	the	distinct
set	of	actors,	instead	of	seeing	the	actor	IDs	repeated	for	each	film	in
which	they	appeared.	You	can	achieve	this	by	adding	the	keyword
distinct	directly	after	the	select	keyword,	as	demonstrated	by	the
following:

mysql> SELECT DISTINCT actor_id FROM film_actor ORDER BY actor_id;
+----------+
| actor_id |
+----------+
|        1 |
|        2 |
|        3 |
|        4 |
|        5 |
|        6 |
|        7 |
|        8 |
|        9 |
|       10 |
...



|      192 |
|      193 |
|      194 |
|      195 |
|      196 |
|      197 |
|      198 |
|      199 |
|      200 |
+----------+
200 rows in set (0.01 sec)

The	result	set	now	contains	200	rows,	one	for	each	distinct	actor,	rather
than	5,462	rows,	one	for	each	film	appearance	by	an	actor.

NOTE
If	you	simply	want	a	list	of	all	actors,	you	can	query	the	actor	table	rather	than	reading	through
all	the	rows	in	film_actor	and	removing	duplicates.

If	you	do	not	want	the	server	to	remove	duplicate	data	or	you	are	sure
there	will	be	no	duplicates	in	your	result	set,	you	can	specify	the	all
keyword	instead	of	specifying	distinct.	However,	the	all	keyword	is
the	default	and	never	needs	to	be	explicitly	named,	so	most	programmers
do	not	include	all	in	their	queries.

WARNING
Keep	in	mind	that	generating	a	distinct	set	of	results	requires	the	data	to	be	sorted,	which	can	be
time	consuming	for	large	result	sets.	Don’t	fall	into	the	trap	of	using	distinct	just	to	be	sure
there	are	no	duplicates;	instead,	take	the	time	to	understand	the	data	you	are	working	with	so	that
you	will	know	whether	duplicates	are	possible.

The	from	Clause



Thus	far,	you	have	seen	queries	whose	from	clauses	contain	a	single	table.
Although	most	SQL	books	define	the	from	clause	as	simply	a	list	of	one
or	more	tables,	I	would	like	to	broaden	the	definition	as	follows:

The	from	clause	defines	the	tables	used	by	a	query,	along	with	the
means	of	linking	the	tables	together.

This	definition	is	composed	of	two	separate	but	related	concepts,	which
we	explore	in	the	following	sections.

Tables

When	confronted	with	the	term	table,	most	people	think	of	a	set	of	related
rows	stored	in	a	database.	While	this	does	describe	one	type	of	table,	I
would	like	to	use	the	word	in	a	more	general	way	by	removing	any	notion
of	how	the	data	might	be	stored	and	concentrating	on	just	the	set	of	related
rows.	Four	different	types	of	tables	meet	this	relaxed	definition:

Permanent	tables	(i.e.,	created	using	the	create table
statement)

Derived	tables	(i.e.,	rows	returned	by	a	subquery	and	held	in
memory)

Temporary	tables	(i.e.,	volatile	data	held	in	memory)

Virtual	tables	(i.e.,	created	using	the	create view	statement)

Each	of	these	table	types	may	be	included	in	a	query’s	from	clause.	By
now,	you	should	be	comfortable	with	including	a	permanent	table	in	a
from	clause,	so	I	will	briefly	describe	the	other	types	of	tables	that	can	be
referenced	in	a	from	clause.

DERIVED	(SUBQUERY-GENERATED)	TABLES



A	subquery	is	a	query	contained	within	another	query.	Subqueries	are
surrounded	by	parentheses	and	can	be	found	in	various	parts	of	a	select
statement;	within	the	from	clause,	however,	a	subquery	serves	the	role	of
generating	a	derived	table	that	is	visible	from	all	other	query	clauses	and
can	interact	with	other	tables	named	in	the	from	clause.	Here’s	a	simple
example:

mysql> SELECT concat(cust.last_name, ', ', cust.first_name) full_name
    -> FROM
    ->  (SELECT first_name, last_name, email
    ->   FROM customer
    ->   WHERE first_name = 'JESSIE'
    ->  ) cust;

+---------------+
| full_name     |
+---------------+
| BANKS, JESSIE |
| MILAM, JESSIE |
+---------------+
2 rows in set (0.00 sec)

In	this	example,	a	subquery	against	the	customer	table	returns	three
columns,	and	the	containing	query	references	two	of	the	three	available
columns.	The	subquery	is	referenced	by	the	containing	query	via	its	alias,
which,	in	this	case,	is	cust.	The	data	in	cust	is	held	in	memory	for	the
duration	of	the	query	and	is	then	discarded.	This	is	a	simplistic	and	not
particularly	useful	example	of	a	subquery	in	a	from	clause;	you	will	find
detailed	coverage	of	subqueries	in	Chapter	9.

TEMPORARY	TABLES

Although	the	implementations	differ,	every	relational	database	allows	the
ability	to	define	volatile,	or	temporary,	tables.	These	tables	look	just	like
permanent	tables,	but	any	data	inserted	into	a	temporary	table	will
disappear	at	some	point	(generally	at	the	end	of	a	transaction	or	when	your
database	session	is	closed).	Here’s	a	simple	example	showing	how	actors



whose	last	names	start	with	J	can	be	stored	temporarily:

mysql> CREATE TEMPORARY TABLE actors_j
    ->  (actor_id smallint(5),
    ->   first_name varchar(45),
    ->   last_name varchar(45)
    ->  );
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO actors_j
    -> SELECT actor_id, first_name, last_name
    -> FROM actor
    -> WHERE last_name LIKE 'J%';
Query OK, 7 rows affected (0.03 sec)
Records: 7  Duplicates: 0  Warnings: 0

mysql> SELECT * FROM actors_j;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
|      119 | WARREN     | JACKMAN   |
|      131 | JANE       | JACKMAN   |
|        8 | MATTHEW    | JOHANSSON |
|       64 | RAY        | JOHANSSON |
|      146 | ALBERT     | JOHANSSON |
|       82 | WOODY      | JOLIE     |
|       43 | KIRK       | JOVOVICH  |
+----------+------------+-----------+
7 rows in set (0.00 sec)

These	seven	rows	are	held	in	memory	temporarily	and	will	disappear	after
your	session	is	closed.

NOTE
Most	database	servers	also	drop	the	temporary	table	when	the	session	ends.	The	exception	is
Oracle	Database,	which	keeps	the	definition	of	the	temporary	table	available	for	future	sessions.

VIEWS



A	view	is	a	query	that	is	stored	in	the	data	dictionary.	It	looks	and	acts	like
a	table,	but	there	is	no	data	associated	with	a	view	(this	is	why	I	call	it	a
virtual	table).	When	you	issue	a	query	against	a	view,	your	query	is
merged	with	the	view	definition	to	create	a	final	query	to	be	executed.

To	demonstrate,	here’s	a	view	definition	that	queries	the	employee	table
and	includes	four	of	the	available	columns:

mysql> CREATE VIEW cust_vw AS
    -> SELECT customer_id, first_name, last_name, active
    -> FROM customer;
Query OK, 0 rows affected (0.12 sec)

When	the	view	is	created,	no	additional	data	is	generated	or	stored:	the
server	simply	tucks	away	the	select	statement	for	future	use.	Now	that
the	view	exists,	you	can	issue	queries	against	it,	as	in:

mysql> SELECT first_name, last_name
    -> FROM cust_vw
    -> WHERE active = 0;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| SANDRA     | MARTIN    |
| JUDITH     | COX       |
| SHEILA     | WELLS     |
| ERICA      | MATTHEWS  |
| HEIDI      | LARSON    |
| PENNY      | NEAL      |
| KENNETH    | GOODEN    |
| HARRY      | ARCE      |
| NATHAN     | RUNYON    |
| THEODORE   | CULP      |
| MAURICE    | CRAWLEY   |
| BEN        | EASTER    |
| CHRISTIAN  | JUNG      |
| JIMMIE     | EGGLESTON |
| TERRANCE   | ROUSH     |
+------------+-----------+
15 rows in set (0.00 sec)



Views	are	created	for	various	reasons,	including	to	hide	columns	from
users	and	to	simplify	complex	database	designs.

Table	Links

The	second	deviation	from	the	simple	from	clause	definition	is	the
mandate	that	if	more	than	one	table	appears	in	the	from	clause,	the
conditions	used	to	link	the	tables	must	be	included	as	well.	This	is	not	a
requirement	of	MySQL	or	any	other	database	server,	but	it	is	the	ANSI-
approved	method	of	joining	multiple	tables,	and	it	is	the	most	portable
across	the	various	database	servers.	We	explore	joining	multiple	tables	in
depth	in	Chapters	5	and	10,	but	here’s	a	simple	example	in	case	I	have
piqued	your	curiosity:

mysql> SELECT customer.first_name, customer.last_name,
    ->   time(rental.rental_date) rental_time
    -> FROM customer
    ->   INNER JOIN rental
    ->   ON	customer.customer_id	=	rental.customer_id

    -> WHERE date(rental.rental_date) = '2005-06-14';
+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
| JEFFERY    | PINSON    | 22:53:33    |
| ELMER      | NOE       | 22:55:13    |
| MINNIE     | ROMERO    | 23:00:34    |
| MIRIAM     | MCKINNEY  | 23:07:08    |
| DANIEL     | CABRAL    | 23:09:38    |
| TERRANCE   | ROUSH     | 23:12:46    |
| JOYCE      | EDWARDS   | 23:16:26    |
| GWENDOLYN  | MAY       | 23:16:27    |
| CATHERINE  | CAMPBELL  | 23:17:03    |
| MATTHEW    | MAHAN     | 23:25:58    |
| HERMAN     | DEVORE    | 23:35:09    |
| AMBER      | DIXON     | 23:42:56    |
| TERRENCE   | GUNDERSON | 23:47:35    |
| SONIA      | GREGORY   | 23:50:11    |
| CHARLES    | KOWALSKI  | 23:54:34    |
| JEANETTE   | GREENE    | 23:54:46    |
+------------+-----------+-------------+
16 rows in set (0.01 sec)



The	previous	query	displays	data	from	both	the	customer	table
(first_name,	last_name)	and	the	rental	table	(rental_date),	so	both
tables	are	included	in	the	from	clause.	The	mechanism	for	linking	the	two
tables	(referred	to	as	a	join)	is	the	customer	ID	stored	in	both	the
customer	and	rental	tables.	Thus,	the	database	server	is	instructed	to	use
the	value	of	the	customer_id	column	in	the	customer	table	to	find	all	of
the	customer’s	rentals	in	the	rental	table.	Join	conditions	for	the	two
tables	are	found	in	the	on	subclause	of	the	from	clause;	in	this	case,	the
join	condition	is	ON customer.customer_id = rental.customer_id.
The	where	clause	is	not	part	of	the	join	and	is	only	included	to	keep	the
result	set	fairly	small,	since	there	are	more	than	16,000	rows	in	the	rental
table.	Again,	please	refer	to	Chapter	5	for	a	thorough	discussion	of	joining
multiple	tables.

Defining	Table	Aliases

When	multiple	tables	are	joined	in	a	single	query,	you	need	a	way	to
identify	which	table	you	are	referring	to	when	you	reference	columns	in
the	select,	where,	group by,	having,	and	order by	clauses.	You	have
two	choices	when	referencing	a	table	outside	the	from	clause:

Use	the	entire	table	name,	such	as	employee.emp_id.

Assign	each	table	an	alias	and	use	the	alias	throughout	the	query.

In	the	previous	query,	I	chose	to	use	the	entire	table	name	in	the	select
and	on	clauses.	Here’s	what	the	same	query	looks	like	using	table	aliases:

SELECT c.first_name, c.last_name,
  time(r.rental_date) rental_time
FROM customer c

  INNER JOIN rental r

  ON c.customer_id = r.customer_id
WHERE date(r.rental_date) = '2005-06-14';



If	you	look	closely	at	the	from	clause,	you	will	see	that	the	customer	table
is	assigned	the	alias	c,	and	the	rental	table	is	assigned	the	alias	r.	These
aliases	are	then	used	in	the	on	clause	when	defining	the	join	condition	as
well	as	in	the	select	clause	when	specifying	the	columns	to	include	in	the
result	set.	I	hope	you	will	agree	that	using	aliases	makes	for	a	more
compact	statement	without	causing	confusion	(as	long	as	your	choices	for
alias	names	are	reasonable).	Additionally,	you	may	use	the	as	keyword
with	your	table	aliases,	similar	to	what	was	demonstrated	earlier	for
column	aliases:

SELECT c.first_name, c.last_name,
  time(r.rental_date) rental_time
FROM customer AS	c

  INNER JOIN rental AS	r

  ON c.customer_id = r.customer_id
WHERE date(r.rental_date) = '2005-06-14';

I	have	found	that	roughly	half	of	the	database	developers	I	have	worked
with	use	the	as	keyword	with	their	column	and	table	aliases,	and	half	do
not.

The	where	Clause
In	some	cases,	you	may	want	to	retrieve	all	rows	from	a	table,	especially
for	small	tables	such	as	language.	Most	of	the	time,	however,	you	will	not
want	to	retrieve	every	row	from	a	table	but	will	want	a	way	to	filter	out
those	rows	that	are	not	of	interest.	This	is	a	job	for	the	where	clause.

The	where	clause	is	the	mechanism	for	filtering	out	unwanted	rows
from	your	result	set.

For	example,	perhaps	you	are	interested	in	renting	a	film	but	you	are	only
interested	in	movies	rated	G	that	can	be	kept	for	at	least	a	week.	The



following	query	employs	a	where	clause	to	retrieve	only	the	films	meeting
these	criteria:

mysql> SELECT title
    -> FROM film
    -> WHERE	rating	=	'G'	AND	rental_duration	>=	7;

+-------------------------+
| title                   |
+-------------------------+
| BLANKET BEVERLY         |
| BORROWERS BEDAZZLED     |
| BRIDE INTRIGUE          |
| CATCH AMISTAD           |
| CITIZEN SHREK           |
| COLDBLOODED DARLING     |
| CONTROL ANTHEM          |
| CRUELTY UNFORGIVEN      |
| DARN FORRESTER          |
| DESPERATE TRAINSPOTTING |
| DIARY PANIC             |
| DRACULA CRYSTAL         |
| EMPIRE MALKOVICH        |
| FIREHOUSE VIETNAM       |
| GILBERT PELICAN         |
| GRADUATE LORD           |
| GREASE YOUTH            |
| GUN BONNIE              |
| HOOK CHARIOTS           |
| MARRIED GO              |
| MENAGERIE RUSHMORE      |
| MUSCLE BRIGHT           |
| OPERATION OPERATION     |
| PRIMARY GLASS           |
| REBEL AIRPORT           |
| SPIKING ELEMENT         |
| TRUMAN CRAZY            |
| WAKE JAWS               |
| WAR NOTTING             |
+-------------------------+
29 rows in set (0.00 sec)

In	this	case,	the	where	clause	filtered	out	971	of	the	1000	rows	in	the	film
table.	This	where	clause	contains	two	filter	conditions,	but	you	can
include	as	many	conditions	as	are	required;	individual	conditions	are
separated	using	operators	such	as	and,	or,	and	not	(see	Chapter	4	for	a



complete	discussion	of	the	where	clause	and	filter	conditions).

Let’s	see	what	would	happen	if	you	change	the	operator	separating	the	two
conditions	from	and	to	or:

mysql> SELECT title
    -> FROM film
    -> WHERE rating = 'G' OR	rental_duration >= 7;

+---------------------------+
| title                     |
+---------------------------+
| ACE GOLDFINGER            |
| ADAPTATION HOLES          |
| AFFAIR PREJUDICE          |
| AFRICAN EGG               |
| ALAMO VIDEOTAPE           |
| AMISTAD MIDSUMMER         |
| ANGELS LIFE               |
| ANNIE IDENTITY            |
|...                        |
| WATERSHIP FRONTIER        |
| WEREWOLF LOLA             |
| WEST LION                 |
| WESTWARD SEABISCUIT       |
| WOLVES DESIRE             |
| WON DARES                 |
| WORKER TARZAN             |
| YOUNG LANGUAGE            |
+---------------------------+
340 rows in set (0.00 sec)

When	you	separate	conditions	using	the	and	operator,	all	conditions	must
evaluate	to	true	to	be	included	in	the	result	set;	when	you	use	or,
however,	only	one	of	the	conditions	needs	to	evaluate	to	true	for	a	row	to
be	included,	which	explains	why	the	size	of	the	result	set	has	jumped	from
29	to	340	rows.

So,	what	should	you	do	if	you	need	to	use	both	and	and	or	operators	in
your	where	clause?	Glad	you	asked.	You	should	use	parentheses	to	group
conditions	together.	The	next	query	specifies	that	only	those	films	that	are



rated	G	and	are	available	for	7	or	more	days,	or	are	rated	PG-13	and	are
available	3	or	fewer	days,	be	included	in	the	result	set:

mysql> SELECT title, rating, rental_duration
    -> FROM film
    -> WHERE (rating = 'G' AND rental_duration >= 7)
    ->   OR (rating = 'PG-13' AND rental_duration < 4);
+-------------------------+--------+-----------------+
| title                   | rating | rental_duration |
+-------------------------+--------+-----------------+
| ALABAMA DEVIL           | PG-13  |               3 |
| BACKLASH UNDEFEATED     | PG-13  |               3 |
| BILKO ANONYMOUS         | PG-13  |               3 |
| BLANKET BEVERLY         | G      |               7 |
| BORROWERS BEDAZZLED     | G      |               7 |
| BRIDE INTRIGUE          | G      |               7 |
| CASPER DRAGONFLY        | PG-13  |               3 |
| CATCH AMISTAD           | G      |               7 |
| CITIZEN SHREK           | G      |               7 |
| COLDBLOODED DARLING     | G      |               7 |
|...                                                 |
| TREASURE COMMAND        | PG-13  |               3 |
| TRUMAN CRAZY            | G      |               7 |
| WAIT CIDER              | PG-13  |               3 |
| WAKE JAWS               | G      |               7 |
| WAR NOTTING             | G      |               7 |
| WORLD LEATHERNECKS      | PG-13  |               3 |
+-------------------------+--------+-----------------+
68 rows in set (0.00 sec)

You	should	always	use	parentheses	to	separate	groups	of	conditions	when
mixing	different	operators	so	that	you,	the	database	server,	and	anyone
who	comes	along	later	to	modify	your	code	will	be	on	the	same	page.

The	group	by	and	having	Clauses
All	the	queries	thus	far	have	retrieved	raw	data	without	any	manipulation.
Sometimes,	however,	you	will	want	to	find	trends	in	your	data	that	will
require	the	database	server	to	cook	the	data	a	bit	before	you	retrieve	your
result	set.	One	such	mechanism	is	the	group by	clause,	which	is	used	to



group	data	by	column	values.	For	example,	let’s	say	you	wanted	to	find	all
of	the	customers	who	have	rented	40	or	more	films.	Rather	than	looking
through	all	16,044	rows	in	the	rental	table,	you	can	write	a	query	that
instructs	the	server	to	group	all	rentals	by	customer,	count	the	number	of
rentals	for	each	customer,	and	then	return	only	those	customers	whose
rental	count	is	at	least	40.	When	using	the	group by	clause	to	generate
groups	of	rows,	you	may	also	use	the	having	clause,	which	allows	you	to
filter	grouped	data	in	the	same	way	the	where	clause	lets	you	filter	raw
data.

Here’s	what	the	query	looks	like:

mysql> SELECT c.first_name, c.last_name, count(*)
    -> FROM customer c
    ->   INNER JOIN rental r
    ->   ON c.customer_id = r.customer_id
    -> GROUP BY c.first_name, c.last_name
    -> HAVING count(*) >= 40;
+------------+-----------+----------+
| first_name | last_name | count(*) |
+------------+-----------+----------+
| TAMMY      | SANDERS   |       41 |
| CLARA      | SHAW      |       42 |
| ELEANOR    | HUNT      |       46 |
| SUE        | PETERS    |       40 |
| MARCIA     | DEAN      |       42 |
| WESLEY     | BULL      |       40 |
| KARL       | SEAL      |       45 |
+------------+-----------+----------+
7 rows in set (0.03 sec)

I	wanted	to	briefly	mention	these	two	clauses	so	that	they	don’t	catch	you
by	surprise	later	in	the	book,	but	they	are	a	bit	more	advanced	than	the
other	four	select	clauses.	Therefore,	I	ask	that	you	wait	until	Chapter	8
for	a	full	description	of	how	and	when	to	use	group by	and	having.

The	order	by	Clause



In	general,	the	rows	in	a	result	set	returned	from	a	query	are	not	in	any
particular	order.	If	you	want	your	result	set	to	be	sorted,	you	will	need	to
instruct	the	server	to	sort	the	results	using	the	order by	clause:

The	order by	clause	is	the	mechanism	for	sorting	your	result	set	using
either	raw	column	data	or	expressions	based	on	column	data.

For	example,	here’s	another	look	at	an	earlier	query	that	returns	all
customers	who	rented	a	film	on	June	14,	2005:

mysql> SELECT c.first_name, c.last_name,
    ->   time(r.rental_date) rental_time
    -> FROM customer c
    ->   INNER JOIN rental r
    ->   ON c.customer_id = r.customer_id
    -> WHERE date(r.rental_date) = '2005-06-14';
+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
| JEFFERY    | PINSON    | 22:53:33    |
| ELMER      | NOE       | 22:55:13    |
| MINNIE     | ROMERO    | 23:00:34    |
| MIRIAM     | MCKINNEY  | 23:07:08    |
| DANIEL     | CABRAL    | 23:09:38    |
| TERRANCE   | ROUSH     | 23:12:46    |
| JOYCE      | EDWARDS   | 23:16:26    |
| GWENDOLYN  | MAY       | 23:16:27    |
| CATHERINE  | CAMPBELL  | 23:17:03    |
| MATTHEW    | MAHAN     | 23:25:58    |
| HERMAN     | DEVORE    | 23:35:09    |
| AMBER      | DIXON     | 23:42:56    |
| TERRENCE   | GUNDERSON | 23:47:35    |
| SONIA      | GREGORY   | 23:50:11    |
| CHARLES    | KOWALSKI  | 23:54:34    |
| JEANETTE   | GREENE    | 23:54:46    |
+------------+-----------+-------------+
16 rows in set (0.01 sec)

If	you	would	like	the	results	to	be	in	alphabetical	order	by	last	name,	you
can	add	the	last_name	column	to	the	order by	clause:

mysql> SELECT c.first_name, c.last_name,
    ->   time(r.rental_date) rental_time



    -> FROM customer c
    ->   INNER JOIN rental r
    ->   ON c.customer_id = r.customer_id
    -> WHERE date(r.rental_date) = '2005-06-14'
    -> ORDER	BY	c.last_name;

+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
| DANIEL     | CABRAL    | 23:09:38    |
| CATHERINE  | CAMPBELL  | 23:17:03    |
| HERMAN     | DEVORE    | 23:35:09    |
| AMBER      | DIXON     | 23:42:56    |
| JOYCE      | EDWARDS   | 23:16:26    |
| JEANETTE   | GREENE    | 23:54:46    |
| SONIA      | GREGORY   | 23:50:11    |
| TERRENCE   | GUNDERSON | 23:47:35    |
| CHARLES    | KOWALSKI  | 23:54:34    |
| MATTHEW    | MAHAN     | 23:25:58    |
| GWENDOLYN  | MAY       | 23:16:27    |
| MIRIAM     | MCKINNEY  | 23:07:08    |
| ELMER      | NOE       | 22:55:13    |
| JEFFERY    | PINSON    | 22:53:33    |
| MINNIE     | ROMERO    | 23:00:34    |
| TERRANCE   | ROUSH     | 23:12:46    |
+------------+-----------+-------------+
16 rows in set (0.01 sec)

While	it	is	not	the	case	in	this	example,	large	customer	lists	will	often
contain	multiple	people	having	the	same	last	name,	so	you	may	want	to
extend	the	sort	criteria	to	include	the	person’s	first	name	as	well.

You	can	accomplish	this	by	adding	the	first_name	column	after	the
last_name	column	in	the	order by	clause:

mysql> SELECT c.first_name, c.last_name,
    ->   time(r.rental_date) rental_time
    -> FROM customer c
    ->   INNER JOIN rental r
    ->   ON c.customer_id = r.customer_id
    -> WHERE date(r.rental_date) = '2005-06-14'
    -> ORDER BY c.last_name,	c.first_name;

+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
| DANIEL     | CABRAL    | 23:09:38    |



| CATHERINE  | CAMPBELL  | 23:17:03    |
| HERMAN     | DEVORE    | 23:35:09    |
| AMBER      | DIXON     | 23:42:56    |
| JOYCE      | EDWARDS   | 23:16:26    |
| JEANETTE   | GREENE    | 23:54:46    |
| SONIA      | GREGORY   | 23:50:11    |
| TERRENCE   | GUNDERSON | 23:47:35    |
| CHARLES    | KOWALSKI  | 23:54:34    |
| MATTHEW    | MAHAN     | 23:25:58    |
| GWENDOLYN  | MAY       | 23:16:27    |
| MIRIAM     | MCKINNEY  | 23:07:08    |
| ELMER      | NOE       | 22:55:13    |
| JEFFERY    | PINSON    | 22:53:33    |
| MINNIE     | ROMERO    | 23:00:34    |
| TERRANCE   | ROUSH     | 23:12:46    |
+------------+-----------+-------------+
16 rows in set (0.01 sec)

The	order	in	which	columns	appear	in	your	order by	clause	does	make	a
difference	when	you	include	more	than	one	column.	If	you	were	to	switch
the	order	of	the	two	columns	in	the	order by	clause,	Amber	Dixon	would
appear	first	in	the	result	set.

Ascending	Versus	Descending	Sort	Order

When	sorting,	you	have	the	option	of	specifying	ascending	or	descending
order	via	the	asc	and	desc	keywords.	The	default	is	ascending,	so	you
will	need	to	add	the	desc	keyword	if	you	want	to	use	a	descending	sort.
For	example,	the	following	query	shows	all	customers	who	rented	films	on
June	14,	2005,	in	descending	order	of	rental	time:

mysql> SELECT c.first_name, c.last_name,
    ->   time(r.rental_date) rental_time
    -> FROM customer c
    ->   INNER JOIN rental r
    ->   ON c.customer_id = r.customer_id
    -> WHERE date(r.rental_date) = '2005-06-14'
    -> ORDER BY time(r.rental_date) desc;

+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
| JEANETTE   | GREENE    | 23:54:46    |



| CHARLES    | KOWALSKI  | 23:54:34    |
| SONIA      | GREGORY   | 23:50:11    |
| TERRENCE   | GUNDERSON | 23:47:35    |
| AMBER      | DIXON     | 23:42:56    |
| HERMAN     | DEVORE    | 23:35:09    |
| MATTHEW    | MAHAN     | 23:25:58    |
| CATHERINE  | CAMPBELL  | 23:17:03    |
| GWENDOLYN  | MAY       | 23:16:27    |
| JOYCE      | EDWARDS   | 23:16:26    |
| TERRANCE   | ROUSH     | 23:12:46    |
| DANIEL     | CABRAL    | 23:09:38    |
| MIRIAM     | MCKINNEY  | 23:07:08    |
| MINNIE     | ROMERO    | 23:00:34    |
| ELMER      | NOE       | 22:55:13    |
| JEFFERY    | PINSON    | 22:53:33    |
+------------+-----------+-------------+
16 rows in set (0.01 sec)

Descending	sorts	are	commonly	used	for	ranking	queries,	such	as	“show
me	the	top	five	account	balances.”	MySQL	includes	a	limit	clause	that
allows	you	to	sort	your	data	and	then	discard	all	but	the	first	X	rows.

Sorting	via	Numeric	Placeholders

If	you	are	sorting	using	the	columns	in	your	select	clause,	you	can	opt	to
reference	the	columns	by	their	position	in	the	select	clause	rather	than	by
name.	This	can	be	especially	helpful	if	you	are	sorting	on	an	expression,
such	as	in	the	previous	example.	Here’s	the	previous	example	one	last
time,	with	an	order by	clause	specifying	a	descending	sort	using	the	third
element	in	the	select	clause:

mysql> SELECT c.first_name, c.last_name,
    ->   time(r.rental_date) rental_time
    -> FROM customer c
    ->   INNER JOIN rental r
    ->   ON c.customer_id = r.customer_id
    -> WHERE date(r.rental_date) = '2005-06-14'
    -> ORDER	BY	3 desc;

+------------+-----------+-------------+
| first_name | last_name | rental_time |
+------------+-----------+-------------+
| JEANETTE   | GREENE    | 23:54:46    |



| CHARLES    | KOWALSKI  | 23:54:34    |
| SONIA      | GREGORY   | 23:50:11    |
| TERRENCE   | GUNDERSON | 23:47:35    |
| AMBER      | DIXON     | 23:42:56    |
| HERMAN     | DEVORE    | 23:35:09    |
| MATTHEW    | MAHAN     | 23:25:58    |
| CATHERINE  | CAMPBELL  | 23:17:03    |
| GWENDOLYN  | MAY       | 23:16:27    |
| JOYCE      | EDWARDS   | 23:16:26    |
| TERRANCE   | ROUSH     | 23:12:46    |
| DANIEL     | CABRAL    | 23:09:38    |
| MIRIAM     | MCKINNEY  | 23:07:08    |
| MINNIE     | ROMERO    | 23:00:34    |
| ELMER      | NOE       | 22:55:13    |
| JEFFERY    | PINSON    | 22:53:33    |
+------------+-----------+-------------+
16 rows in set (0.01 sec)

You	might	want	to	use	this	feature	sparingly,	since	adding	a	column	to	the
select	clause	without	changing	the	numbers	in	the	order by	clause	can
lead	to	unexpected	results.	Personally,	I	may	reference	columns
positionally	when	writing	ad	hoc	queries,	but	I	always	reference	columns
by	name	when	writing	code.

Test	Your	Knowledge
The	following	exercises	are	designed	to	strengthen	your	understanding	of
the	select	statement	and	its	various	clauses.	Please	see	Appendix	B	for
solutions.

Exercise	3-1

Retrieve	the	actor	ID,	first	name,	and	last	name	for	all	actors.	Sort	by	last
name	and	then	by	first	name.

Exercise	3-2

Retrieve	the	actor	ID,	first	name,	and	last	name	for	all	actors	whose	last



name	equals	'WILLIAMS'	or	'DAVIS'.

Exercise	3-3

Write	a	query	against	the	rental	table	that	returns	the	IDs	of	the
customers	who	rented	a	film	on	July	5,	2005	(use	the
rental.rental_date	column,	and	you	can	use	the	date()	function	to
ignore	the	time	component).	Include	a	single	row	for	each	distinct
customer	ID.

Exercise	3-4

Fill	in	the	blanks	(denoted	by	<#>)	for	this	multitable	query	to	achieve	the
following	results:

mysql> SELECT c.email, r.return_date
    -> FROM customer c
    ->   INNER JOIN rental <1>
    ->   ON c.customer_id = <2>
    -> WHERE date(r.rental_date) = '2005-06-14'
    -> ORDER BY <3> <4>;
+---------------------------------------+---------------------+
| email                                 | return_date         |
+---------------------------------------+---------------------+
| DANIEL.CABRAL@sakilacustomer.org      | 2005-06-23 22:00:38 |
| TERRANCE.ROUSH@sakilacustomer.org     | 2005-06-23 21:53:46 |
| MIRIAM.MCKINNEY@sakilacustomer.org    | 2005-06-21 17:12:08 |
| GWENDOLYN.MAY@sakilacustomer.org      | 2005-06-20 02:40:27 |
| JEANETTE.GREENE@sakilacustomer.org    | 2005-06-19 23:26:46 |
| HERMAN.DEVORE@sakilacustomer.org      | 2005-06-19 03:20:09 |
| JEFFERY.PINSON@sakilacustomer.org     | 2005-06-18 21:37:33 |
| MATTHEW.MAHAN@sakilacustomer.org      | 2005-06-18 05:18:58 |
| MINNIE.ROMERO@sakilacustomer.org      | 2005-06-18 01:58:34 |
| SONIA.GREGORY@sakilacustomer.org      | 2005-06-17 21:44:11 |
| TERRENCE.GUNDERSON@sakilacustomer.org | 2005-06-17 05:28:35 |
| ELMER.NOE@sakilacustomer.org          | 2005-06-17 02:11:13 |
| JOYCE.EDWARDS@sakilacustomer.org      | 2005-06-16 21:00:26 |
| AMBER.DIXON@sakilacustomer.org        | 2005-06-16 04:02:56 |
| CHARLES.KOWALSKI@sakilacustomer.org   | 2005-06-16 02:26:34 |
| CATHERINE.CAMPBELL@sakilacustomer.org | 2005-06-15 20:43:03 |
+---------------------------------------+---------------------+
16 rows in set (0.03 sec)



Chapter	4.	Filtering

Sometimes	you	will	want	to	work	with	every	row	in	a	table,	such	as:

Purging	all	data	from	a	table	used	to	stage	new	data	warehouse
feeds

Modifying	all	rows	in	a	table	after	a	new	column	has	been	added

Retrieving	all	rows	from	a	message	queue	table

In	cases	like	these,	your	SQL	statements	won’t	need	to	have	a	where
clause,	since	you	don’t	need	to	exclude	any	rows	from	consideration.	Most
of	the	time,	however,	you	will	want	to	narrow	your	focus	to	a	subset	of	a
table’s	rows.	Therefore,	all	the	SQL	data	statements	(except	the	insert
statement)	include	an	optional	where	clause	containing	one	or	more	filter
conditions	used	to	restrict	the	number	of	rows	acted	on	by	the	SQL
statement.	Additionally,	the	select	statement	includes	a	having	clause	in
which	filter	conditions	pertaining	to	grouped	data	may	be	included.	This
chapter	explores	the	various	types	of	filter	conditions	that	you	can	employ
in	the	where	clauses	of	select,	update,	and	delete	statements;	I
demonstrate	the	use	of	filter	conditions	in	the	having	clause	of	a	select
statement	in	Chapter	8.

Condition	Evaluation
A	where	clause	may	contain	one	or	more	conditions,	separated	by	the
operators	and	and	or.	If	multiple	conditions	are	separated	only	by	the	and
operator,	then	all	the	conditions	must	evaluate	to	true	for	the	row	to	be
included	in	the	result	set.	Consider	the	following	where	clause:



WHERE first_name = 'STEVEN' AND create_date > '2006-01-01'

Given	these	two	conditions,	only	rows	where	the	first	name	is	Steven	and
the	creation	date	was	after	January	1,	2006,	will	be	included	in	the	result
set.	Though	this	example	uses	only	two	conditions,	no	matter	how	many
conditions	are	in	your	where	clause,	if	they	are	separated	by	the	and
operator,	they	must	all	evaluate	to	true	for	the	row	to	be	included	in	the
result	set.

If	all	conditions	in	the	where	clause	are	separated	by	the	or	operator,
however,	only	one	of	the	conditions	must	evaluate	to	true	for	the	row	to
be	included	in	the	result	set.	Consider	the	following	two	conditions:

WHERE first_name = 'STEVEN' OR create_date > '2006-01-01'

There	are	now	various	ways	for	a	given	row	to	be	included	in	the	result
set:

The	first	name	is	Steven,	and	the	creation	date	was	after	January
1,	2006.

The	first	name	is	Steven,	and	the	creation	date	was	on	or	before
January	1,	2006.

The	first	name	is	anything	other	than	Steven,	but	the	creation	date
was	after	January	1,	2006.

Table	4-1	shows	the	possible	outcomes	for	a	where	clause	containing	two
conditions	separated	by	the	or	operator.

Table	4-1.	Two-condition	evaluation	using	or

Intermediate	result Final	result

	
	 	 	
WHERE true OR true

	
	 	 	
true



WHERE true OR true
	
	 	 	

true
	
	 	 	

	
	 	 	
WHERE true OR false
	
	 	 	

	
	 	 	
true
	
	 	 	

	
	 	 	
WHERE false OR true
	
	 	 	

	
	 	 	
true
	
	 	 	

	
	 	 	
WHERE false OR false
	
	 	 	

	
	 	 	
false
	
	 	 	

In	the	case	of	the	preceding	example,	the	only	way	for	a	row	to	be
excluded	from	the	result	set	is	if	the	person’s	first	name	was	not	Steven
and	the	creation	date	was	on	or	before	January	1,	2006.

Using	Parentheses

If	your	where	clause	includes	three	or	more	conditions	using	both	the	and
and	or	operators,	you	should	use	parentheses	to	make	your	intent	clear,
both	to	the	database	server	and	to	anyone	else	reading	your	code.	Here’s	a
where	clause	that	extends	the	previous	example	by	checking	to	make	sure
that	the	first	name	is	Steven	or	the	last	name	is	Young,	and	the	creation
date	is	after	January	1,	2006:

WHERE (first_name = 'STEVEN' OR last_name = 'YOUNG')
  AND create_date > '2006-01-01'

There	are	now	three	conditions;	for	a	row	to	make	it	to	the	final	result	set,



either	the	first	or	second	condition	(or	both)	must	evaluate	to	true,	and
the	third	condition	must	evaluate	to	true.	Table	4-2	shows	the	possible
outcomes	for	this	where	clause.

Table	4-2.	Three-condition	evaluation	using	and,	or

Intermediate	result Final	result

	
	 	 	
WHERE (true OR true) AND true
	
	 	 	

	
	 	 	
true
	
	 	 	

	
	 	 	
WHERE (true OR false) AND true
	
	 	 	

	
	 	 	
true
	
	 	 	

	
	 	 	
WHERE (false OR true) AND true
	
	 	 	

	
	 	 	
true
	
	 	 	

	
	 	 	
WHERE (false OR false) AND true
	
	 	 	

	
	 	 	
false
	
	 	 	

	
	 	 	
WHERE (true OR true) AND false
	
	 	 	

	
	 	 	
false
	
	 	 	

	
	 	 	
WHERE (true OR false) AND false
	
	 	 	

	
	 	 	
false
	
	 	 	

	
	 	 	

	
	 	 	



	 	 	
WHERE (false OR true) AND false
	
	 	 	

	 	 	
false
	
	 	 	

	
	 	 	
WHERE (false OR false) AND false
	
	 	 	

	
	 	 	
false
	
	 	 	

As	you	can	see,	the	more	conditions	you	have	in	your	where	clause,	the
more	combinations	there	are	for	the	server	to	evaluate.	In	this	case,	only
three	of	the	eight	combinations	yield	a	final	result	of	true.

Using	the	not	Operator

Hopefully,	the	previous	three-condition	example	is	fairly	easy	to
understand.	Consider	the	following	modification,	however:

WHERE NOT (first_name = 'STEVEN' OR last_name = 'YOUNG')

  AND create_date > '2006-01-01'

Did	you	spot	the	change	from	the	previous	example?	I	added	the	not
operator	before	the	first	set	of	conditions.	Now,	instead	of	looking	for
people	with	the	first	name	of	Steven	or	the	last	name	of	Young	whose
record	was	created	after	January	1,	2006,	I	am	retrieving	only	rows	where
the	first	name	is	not	Steven	or	the	last	name	is	not	Young	whose	record
was	created	after	January	1,	2006.	Table	4-3	shows	the	possible	outcomes
for	this	example.

Table	4-3.	Three-condition	evaluation	using	and,	or,	and	not

Intermediate	result Final	result

	
	 	 	
WHERE NOT (true OR true) AND true

	
	 	 	
false



WHERE NOT (true OR true) AND true
	
	 	 	

false
	
	 	 	

	
	 	 	
WHERE NOT (true OR false) AND true
	
	 	 	

	
	 	 	
false
	
	 	 	

	
	 	 	
WHERE NOT (false OR true) AND true
	
	 	 	

	
	 	 	
false
	
	 	 	

	
	 	 	
WHERE NOT (false OR false) AND true
	
	 	 	

	
	 	 	
true
	
	 	 	

	
	 	 	
WHERE NOT (true OR true) AND false
	
	 	 	

	
	 	 	
false
	
	 	 	

	
	 	 	
WHERE NOT (true OR false) AND false
	
	 	 	

	
	 	 	
false
	
	 	 	

	
	 	 	
WHERE NOT (false OR true) AND false
	
	 	 	

	
	 	 	
false
	
	 	 	

	
	 	 	
WHERE NOT (false OR false) AND false
	
	 	 	

	
	 	 	
false
	
	 	 	

While	it	is	easy	for	the	database	server	to	handle,	it	is	typically	difficult



for	a	person	to	evaluate	a	where	clause	that	includes	the	not	operator,
which	is	why	you	won’t	encounter	it	very	often.	In	this	case,	you	can
rewrite	the	where	clause	to	avoid	using	the	not	operator:

WHERE first_name <> 'STEVEN' AND last_name <> 'YOUNG'
  AND create_date > '2006-01-01'

While	I’m	sure	that	the	server	doesn’t	have	a	preference,	you	probably
have	an	easier	time	understanding	this	version	of	the	where	clause.

Building	a	Condition
Now	that	you	have	seen	how	the	server	evaluates	multiple	conditions,	let’s
take	a	step	back	and	look	at	what	comprises	a	single	condition.	A
condition	is	made	up	of	one	or	more	expressions	combined	with	one	or
more	operators.	An	expression	can	be	any	of	the	following:

A	number

A	column	in	a	table	or	view

A	string	literal,	such	as	'Maple Street'

A	built-in	function,	such	as	concat('Learning', ' ', 'SQL')

A	subquery

A	list	of	expressions,	such	as	('Boston', 'New York',
'Chicago')

The	operators	used	within	conditions	include:

Comparison	operators,	such	as	=,	!=,	<,	>,	<>,	like,	in,	and
between

Arithmetic	operators,	such	as	+,	−,	*,	and	/



The	following	section	demonstrates	how	you	can	combine	these
expressions	and	operators	to	manufacture	the	various	types	of	conditions.

Condition	Types
There	are	many	different	ways	to	filter	out	unwanted	data.	You	can	look
for	specific	values,	sets	of	values,	or	ranges	of	values	to	include	or
exclude,	or	you	can	use	various	pattern-searching	techniques	to	look	for
partial	matches	when	dealing	with	string	data.	The	next	four	subsections
explore	each	of	these	condition	types	in	detail.

Equality	Conditions

A	large	percentage	of	the	filter	conditions	that	you	write	or	come	across
will	be	of	the	form	'column	=	expression'	as	in:

title = 'RIVER OUTLAW'
fed_id = '111-11-1111'
amount = 375.25
film_id = (SELECT film_id FROM film WHERE title = 'RIVER OUTLAW')

Conditions	such	as	these	are	called	equality	conditions	because	they
equate	one	expression	to	another.	The	first	three	examples	equate	a
column	to	a	literal	(two	strings	and	a	number),	and	the	fourth	example
equates	a	column	to	the	value	returned	from	a	subquery.	The	following
query	uses	two	equality	conditions,	one	in	the	on	clause	(a	join	condition)
and	the	other	in	the	where	clause	(a	filter	condition):

mysql> SELECT c.email
    -> FROM customer c
    ->   INNER JOIN rental r
    ->   ON c.customer_id = r.customer_id
    -> WHERE date(r.rental_date) = '2005-06-14';
+---------------------------------------+
| email                                 |



+---------------------------------------+
| CATHERINE.CAMPBELL@sakilacustomer.org |
| JOYCE.EDWARDS@sakilacustomer.org      |
| AMBER.DIXON@sakilacustomer.org        |
| JEANETTE.GREENE@sakilacustomer.org    |
| MINNIE.ROMERO@sakilacustomer.org      |
| GWENDOLYN.MAY@sakilacustomer.org      |
| SONIA.GREGORY@sakilacustomer.org      |
| MIRIAM.MCKINNEY@sakilacustomer.org    |
| CHARLES.KOWALSKI@sakilacustomer.org   |
| DANIEL.CABRAL@sakilacustomer.org      |
| MATTHEW.MAHAN@sakilacustomer.org      |
| JEFFERY.PINSON@sakilacustomer.org     |
| HERMAN.DEVORE@sakilacustomer.org      |
| ELMER.NOE@sakilacustomer.org          |
| TERRANCE.ROUSH@sakilacustomer.org     |
| TERRENCE.GUNDERSON@sakilacustomer.org |
+---------------------------------------+
16 rows in set (0.03 sec)

This	query	shows	all	email	addresses	of	every	customer	who	rented	a	film
on	June	14,	2005.

INEQUALITY	CONDITIONS

Another	fairly	common	type	of	condition	is	the	inequality	condition,
which	asserts	that	two	expressions	are	not	equal.	Here’s	the	previous
query	with	the	filter	condition	in	the	where	clause	changed	to	an
inequality	condition:

mysql> SELECT c.email
    -> FROM customer c
    ->   INNER JOIN rental r
    ->   ON c.customer_id = r.customer_id
    -> WHERE date(r.rental_date) <> '2005-06-14';

+-----------------------------------+
| email                             |
+-----------------------------------+
| MARY.SMITH@sakilacustomer.org     |
| MARY.SMITH@sakilacustomer.org     |
| MARY.SMITH@sakilacustomer.org     |
| MARY.SMITH@sakilacustomer.org     |
| MARY.SMITH@sakilacustomer.org     |



| MARY.SMITH@sakilacustomer.org     |
| MARY.SMITH@sakilacustomer.org     |
| MARY.SMITH@sakilacustomer.org     |
| MARY.SMITH@sakilacustomer.org     |
| MARY.SMITH@sakilacustomer.org     |
...
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
| AUSTIN.CINTRON@sakilacustomer.org |
+-----------------------------------+
16028 rows in set (0.03 sec)
 

This	query	returns	all	email	addresses	for	films	rented	on	any	other	date
than	June	14,	2005.	When	building	inequality	conditions,	you	may	choose
to	use	either	the	!=	or	<>	operator.

DATA	MODIFICATION	USING	EQUALITY	CONDITIONS

Equality/inequality	conditions	are	commonly	used	when	modifying	data.
For	example,	let’s	say	that	the	movie	rental	company	has	a	policy	of
removing	old	account	rows	once	per	year.	Your	task	is	to	remove	rows
from	the	rental	table	where	the	rental	date	was	in	2004.	Here’s	one	way
to	tackle	it:

DELETE FROM rental
WHERE year(rental_date) = 2004;

This	statement	includes	a	single	equality	condition;	here’s	an	example	that
uses	two	inequality	conditions	to	remove	any	rows	where	the	rental	date
was	not	in	2005	or	2006:

DELETE FROM rental
WHERE year(rental_date) <> 2005 AND year(rental_date) <> 2006;



NOTE
When	crafting	examples	of	delete	and	update	statements,	I	try	to	write	each	statement	such
that	no	rows	are	modified.	That	way,	when	you	execute	the	statements,	your	data	will	remain
unchanged,	and	your	output	from	select	statements	will	always	match	that	shown	in	this	book.

Since	MySQL	sessions	are	in	auto-commit	mode	by	default	(see	Chapter	12),	you	would	not	be
able	to	roll	back	(undo)	any	changes	made	to	the	example	data	if	one	of	my	statements	modified
the	data.	You	may,	of	course,	do	whatever	you	want	with	the	example	data,	including	wiping	it
clean	and	rerunning	the	scripts	to	populate	the	tables,	but	I	try	to	leave	it	intact.

Range	Conditions

Along	with	checking	that	an	expression	is	equal	to	(or	not	equal	to)
another	expression,	you	can	build	conditions	that	check	whether	an
expression	falls	within	a	certain	range.	This	type	of	condition	is	common
when	working	with	numeric	or	temporal	data.	Consider	the	following
query:

mysql> SELECT customer_id, rental_date
    -> FROM rental
    -> WHERE rental_date < '2005-05-25';
+-------------+---------------------+
| customer_id | rental_date         |
+-------------+---------------------+
|         130 | 2005-05-24 22:53:30 |
|         459 | 2005-05-24 22:54:33 |
|         408 | 2005-05-24 23:03:39 |
|         333 | 2005-05-24 23:04:41 |
|         222 | 2005-05-24 23:05:21 |
|         549 | 2005-05-24 23:08:07 |
|         269 | 2005-05-24 23:11:53 |
|         239 | 2005-05-24 23:31:46 |
+-------------+---------------------+
8 rows in set (0.00 sec)

This	query	finds	all	film	rentals	prior	to	May	25,	2005.	As	well	as
specifying	an	upper	limit	for	the	rental	date,	you	may	also	want	to	specify



a	lower	range:

mysql> SELECT customer_id, rental_date
    -> FROM rental
    -> WHERE rental_date <= '2005-06-16'
    ->   AND rental_date >= '2005-06-14';
+-------------+---------------------+
| customer_id | rental_date         |
+-------------+---------------------+
|         416 | 2005-06-14 22:53:33 |
|         516 | 2005-06-14 22:55:13 |
|         239 | 2005-06-14 23:00:34 |
|         285 | 2005-06-14 23:07:08 |
|         310 | 2005-06-14 23:09:38 |
|         592 | 2005-06-14 23:12:46 |
...
|         148 | 2005-06-15 23:20:26 |
|         237 | 2005-06-15 23:36:37 |
|         155 | 2005-06-15 23:55:27 |
|         341 | 2005-06-15 23:57:20 |
|         149 | 2005-06-15 23:58:53 |
+-------------+---------------------+
364 rows in set (0.00 sec)

This	version	of	the	query	retrieves	all	films	rented	on	June	14	or	15	of
2005.

THE	BETWEEN	OPERATOR

When	you	have	both	an	upper	and	lower	limit	for	your	range,	you	may
choose	to	use	a	single	condition	that	utilizes	the	between	operator	rather
than	using	two	separate	conditions,	as	in:

mysql> SELECT customer_id, rental_date
    -> FROM rental
    -> WHERE rental_date BETWEEN '2005-06-14' AND '2005-06-16';
+-------------+---------------------+
| customer_id | rental_date         |
+-------------+---------------------+
|         416 | 2005-06-14 22:53:33 |
|         516 | 2005-06-14 22:55:13 |
|         239 | 2005-06-14 23:00:34 |
|         285 | 2005-06-14 23:07:08 |
|         310 | 2005-06-14 23:09:38 |



|         592 | 2005-06-14 23:12:46 |
...
|         148 | 2005-06-15 23:20:26 |
|         237 | 2005-06-15 23:36:37 |
|         155 | 2005-06-15 23:55:27 |
|         341 | 2005-06-15 23:57:20 |
|         149 | 2005-06-15 23:58:53 |
+-------------+---------------------+
364 rows in set (0.00 sec)

When	using	the	between	operator,	there	are	a	couple	of	things	to	keep	in
mind.	You	should	always	specify	the	lower	limit	of	the	range	first	(after
between)	and	the	upper	limit	of	the	range	second	(after	and).	Here’s	what
happens	if	you	mistakenly	specify	the	upper	limit	first:

mysql> SELECT customer_id, rental_date
    -> FROM rental
    -> WHERE rental_date BETWEEN '2005-06-16' AND '2005-06-14';
Empty set (0.00 sec)

As	you	can	see,	no	data	is	returned.	This	is	because	the	server	is,	in	effect,
generating	two	conditions	from	your	single	condition	using	the	<=	and	>=
operators,	as	in:

SELECT customer_id, rental_date
    -> FROM rental
    -> WHERE rental_date >= '2005-06-16' 
    ->   AND rental_date <= '2005-06-14'
Empty set (0.00 sec)

Since	it	is	impossible	to	have	a	date	that	is	both	greater	than	June	16,
2005,	and	less	than	June	14,	2005,	the	query	returns	an	empty	set.	This
brings	me	to	the	second	pitfall	when	using	between,	which	is	to	remember
that	your	upper	and	lower	limits	are	inclusive,	meaning	that	the	values	you
provide	are	included	in	the	range	limits.	In	this	case,	I	want	to	return	any
films	rented	on	June	14	or	15,	so	I	specify	2005-06-14	as	the	lower	end	of
the	range	and	2005-06-16	as	the	upper	end.	Since	I	am	not	specifying	the
time	component	of	the	date,	the	time	defaults	to	midnight,	so	the	effective



range	is	2005-06-14	00:00:00	to	2005-06-16	00:00:00,	which	will	include
any	rentals	made	on	June	14	or	15.

Along	with	dates,	you	can	also	build	conditions	to	specify	ranges	of
numbers.	Numeric	ranges	are	fairly	easy	to	grasp,	as	demonstrated	by	the
following:

mysql> SELECT customer_id, payment_date, amount
    -> FROM payment
    -> WHERE amount BETWEEN 10.0 AND 11.99;
+-------------+---------------------+--------+
| customer_id | payment_date        | amount |
+-------------+---------------------+--------+
|           2 | 2005-07-30 13:47:43 |  10.99 |
|           3 | 2005-07-27 20:23:12 |  10.99 |
|          12 | 2005-08-01 06:50:26 |  10.99 |
|          13 | 2005-07-29 22:37:41 |  11.99 |
|          21 | 2005-06-21 01:04:35 |  10.99 |
|          29 | 2005-07-09 21:55:19 |  10.99 |
...
|         571 | 2005-06-20 08:15:27 |  10.99 |
|         572 | 2005-06-17 04:05:12 |  10.99 |
|         573 | 2005-07-31 12:14:19 |  10.99 |
|         591 | 2005-07-07 20:45:51 |  11.99 |
|         592 | 2005-07-06 22:58:31 |  11.99 |
|         595 | 2005-07-31 11:51:46 |  10.99 |
+-------------+---------------------+--------+
114 rows in set (0.01 sec)

All	payments	between	$10	and	$11.99	are	returned.	Again,	make	sure	that
you	specify	the	lower	amount	first.

STRING	RANGES

While	ranges	of	dates	and	numbers	are	easy	to	understand,	you	can	also
build	conditions	that	search	for	ranges	of	strings,	which	are	a	bit	harder	to
visualize.	Say,	for	example,	you	are	searching	for	customers	whose	last
name	falls	within	a	range.	Here’s	a	query	that	returns	customers	whose
last	name	falls	between	FA	and	FR:



mysql> SELECT last_name, first_name
    -> FROM customer
    -> WHERE last_name BETWEEN 'FA' AND 'FR';
+------------+------------+
| last_name  | first_name |
+------------+------------+
| FARNSWORTH | JOHN       |
| FENNELL    | ALEXANDER  |
| FERGUSON   | BERTHA     |
| FERNANDEZ  | MELINDA    |
| FIELDS     | VICKI      |
| FISHER     | CINDY      |
| FLEMING    | MYRTLE     |
| FLETCHER   | MAE        |
| FLORES     | JULIA      |
| FORD       | CRYSTAL    |
| FORMAN     | MICHEAL    |
| FORSYTHE   | ENRIQUE    |
| FORTIER    | RAUL       |
| FORTNER    | HOWARD     |
| FOSTER     | PHYLLIS    |
| FOUST      | JACK       |
| FOWLER     | JO         |
| FOX        | HOLLY      |
+------------+------------+
18 rows in set (0.00 sec)

While	there	are	five	customers	whose	last	name	starts	with	FR,	they	are
not	included	in	the	results,	since	a	name	like	FRANKLIN	is	outside	of	the
range.	However,	we	can	pick	up	four	of	the	five	customers	by	extending
the	righthand	range	to	FRB:

mysql> SELECT last_name, first_name
    -> FROM customer
    -> WHERE last_name BETWEEN 'FA' AND 'FRB';
+------------+------------+
| last_name  | first_name |
+------------+------------+
| FARNSWORTH | JOHN       |
| FENNELL    | ALEXANDER  |
| FERGUSON   | BERTHA     |
| FERNANDEZ  | MELINDA    |
| FIELDS     | VICKI      |
| FISHER     | CINDY      |
| FLEMING    | MYRTLE     |
| FLETCHER   | MAE        |



| FLORES     | JULIA      |
| FORD       | CRYSTAL    |
| FORMAN     | MICHEAL    |
| FORSYTHE   | ENRIQUE    |
| FORTIER    | RAUL       |
| FORTNER    | HOWARD     |
| FOSTER     | PHYLLIS    |
| FOUST      | JACK       |
| FOWLER     | JO         |
| FOX        | HOLLY      |
| FRALEY     | JUAN       |
| FRANCISCO  | JOEL       |
| FRANKLIN   | BETH       |
| FRAZIER    | GLENDA     |
+------------+------------+
22 rows in set (0.00 sec)

To	work	with	string	ranges,	you	need	to	know	the	order	of	the	characters
within	your	character	set	(the	order	in	which	the	characters	within	a
character	set	are	sorted	is	called	a	collation).

Membership	Conditions

In	some	cases,	you	will	not	be	restricting	an	expression	to	a	single	value	or
range	of	values	but	rather	to	a	finite	set	of	values.	For	example,	you	might
want	to	locate	all	films	that	have	a	rating	of	either	'G'	or	'PG':

mysql> SELECT title, rating
    -> FROM film
    -> WHERE rating = 'G' OR rating = 'PG';
+---------------------------+--------+
| title                     | rating |
+---------------------------+--------+
| ACADEMY DINOSAUR          | PG     |
| ACE GOLDFINGER            | G      |
| AFFAIR PREJUDICE          | G      |
| AFRICAN EGG               | G      |
| AGENT TRUMAN              | PG     |
| ALAMO VIDEOTAPE           | G      |
| ALASKA PHANTOM            | PG     |
| ALI FOREVER               | PG     |
| AMADEUS HOLY              | PG     |
...
| WEDDING APOLLO            | PG     |



| WEREWOLF LOLA             | G      |
| WEST LION                 | G      |
| WIZARD COLDBLOODED        | PG     |
| WON DARES                 | PG     |
| WONDERLAND CHRISTMAS      | PG     |
| WORDS HUNTER              | PG     |
| WORST BANGER              | PG     |
| YOUNG LANGUAGE            | G      |
+---------------------------+--------+
372 rows in set (0.00 sec)

While	this	where	clause	(two	conditions	or’d	together)	wasn’t	too	tedious
to	generate,	imagine	if	the	set	of	expressions	contained	10	or	20	members.
For	these	situations,	you	can	use	the	in	operator	instead:

SELECT title, rating
FROM film
WHERE rating IN ('G','PG');

With	the	in	operator,	you	can	write	a	single	condition	no	matter	how
many	expressions	are	in	the	set.

USING	SUBQUERIES

Along	with	writing	your	own	set	of	expressions,	such	as	('G','PG'),	you
can	use	a	subquery	to	generate	a	set	for	you	on	the	fly.	For	example,	if	you
can	assume	that	any	film	whose	title	includes	the	string	'PET'	would	be
safe	for	family	viewing,	you	could	execute	a	subquery	against	the	film
table	to	retrieve	all	ratings	associated	with	these	films	and	then	retrieve	all
films	having	any	of	these	ratings:

mysql> SELECT title, rating
    -> FROM film
    -> WHERE rating IN (SELECT rating FROM film WHERE title LIKE '%PET%');
+---------------------------+--------+
| title                     | rating |
+---------------------------+--------+
| ACADEMY DINOSAUR          | PG     |
| ACE GOLDFINGER            | G      |
| AFFAIR PREJUDICE          | G      |



| AFRICAN EGG               | G      |
| AGENT TRUMAN              | PG     |
| ALAMO VIDEOTAPE           | G      |
| ALASKA PHANTOM            | PG     |
| ALI FOREVER               | PG     |
| AMADEUS HOLY              | PG     |
...
| WEDDING APOLLO            | PG     |
| WEREWOLF LOLA             | G      |
| WEST LION                 | G      |
| WIZARD COLDBLOODED        | PG     |
| WON DARES                 | PG     |
| WONDERLAND CHRISTMAS      | PG     |
| WORDS HUNTER              | PG     |
| WORST BANGER              | PG     |
| YOUNG LANGUAGE            | G      |
+---------------------------+--------+
372 rows in set (0.00 sec)

The	subquery	returns	the	set	'G'	and	'PG',	and	the	main	query	checks	to
see	whether	the	value	of	the	rating	column	can	be	found	in	the	set
returned	by	the	subquery.

USING	NOT	IN

Sometimes	you	want	to	see	whether	a	particular	expression	exists	within	a
set	of	expressions,	and	sometimes	you	want	to	see	whether	the	expression
does	not	exist	within	the	set.	For	these	situations,	you	can	use	the	not in
operator:

SELECT title, rating
FROM film
WHERE rating NOT IN ('PG-13','R', 'NC-17');

This	query	finds	all	accounts	that	are	not	rated	'PG-13'	,'R',	or	'NC-17',
which	will	return	the	same	set	of	372	rows	as	the	previous	queries.

Matching	Conditions

So	far,	you	have	been	introduced	to	conditions	that	identify	an	exact



string,	a	range	of	strings,	or	a	set	of	strings;	the	final	condition	type	deals
with	partial	string	matches.	You	may,	for	example,	want	to	find	all
customers	whose	last	name	begins	with	Q.	You	could	use	a	built-in
function	to	strip	off	the	first	letter	of	the	last_name	column,	as	in	the
following:

mysql> SELECT last_name, first_name
    -> FROM customer
    -> WHERE left(last_name, 1) = 'Q';
+-------------+------------+
| last_name   | first_name |
+-------------+------------+
| QUALLS      | STEPHEN    |
| QUINTANILLA | ROGER      |
| QUIGLEY     | TROY       |
+-------------+------------+
3 rows in set (0.00 sec)

While	the	built-in	function	left()	does	the	job,	it	doesn’t	give	you	much
flexibility.	Instead,	you	can	use	wildcard	characters	to	build	search
expressions,	as	demonstrated	in	the	next	section.

USING	WILDCARDS

When	searching	for	partial	string	matches,	you	might	be	interested	in:

Strings	beginning/ending	with	a	certain	character

Strings	beginning/ending	with	a	substring

Strings	containing	a	certain	character	anywhere	within	the	string

Strings	containing	a	substring	anywhere	within	the	string

Strings	with	a	specific	format,	regardless	of	individual	characters

You	can	build	search	expressions	to	identify	these	and	many	other	partial
string	matches	by	using	the	wildcard	characters	shown	in	Table	4-4.

Table	4-4.	Wildcard	characters



Table	4-4.	Wildcard	characters

Wildcard	character Matches

	
	 	 	
_
	
	 	 	

	
	 	 	
Exactly	one	character
	
	 	 	

	
	 	 	
%
	
	 	 	

	
	 	 	
Any	number	of	characters	(including	0)
	
	 	 	

The	underscore	character	takes	the	place	of	a	single	character,	while	the
percent	sign	can	take	the	place	of	a	variable	number	of	characters.	When
building	conditions	that	utilize	search	expressions,	you	use	the	like
operator,	as	in:

mysql> SELECT last_name, first_name
    -> FROM customer
    -> WHERE last_name LIKE '_A_T%S';
+-----------+------------+
| last_name | first_name |
+-----------+------------+
| MATTHEWS  | ERICA      |
| WALTERS   | CASSANDRA  |
| WATTS     | SHELLY     |
+-----------+------------+
3 rows in set (0.00 sec)

The	search	expression	in	the	previous	example	specifies	strings	containing
an	A	in	the	second	position	and	a	T	in	the	fourth	position,	followed	by	any
number	of	characters	and	ending	in	S.	Table	4-5	shows	some	more	search
expressions	and	their	interpretations.

Table	4-5.	Sample	search	expressions

Search



Search
expression Interpretation

	
	 	 	
F%
	
	 	 	

	
	 	 	
Strings	beginning	with	F
	
	 	 	

	
	 	 	
%t
	
	 	 	

	
	 	 	
Strings	ending	with	t
	
	 	 	

	
	 	 	
%bas%
	
	 	 	

	
	 	 	
Strings	containing	the	substring	'bas'
	
	 	 	

	
	 	 	
_ _t_
	
	 	 	

	
	 	 	
Four-character	strings	with	a	t	in	the	third	position
	
	 	 	

	
	 	 	
_ _ _-_ _-_ _ _ _
	
	 	 	

	
	 	 	
11-character	strings	with	dashes	in	the	fourth	and	seventh	
positions
	
	 	 	

The	wildcard	characters	work	fine	for	building	simple	search	expressions;
if	your	needs	are	a	bit	more	sophisticated,	however,	you	can	use	multiple
search	expressions,	as	demonstrated	by	the	following:

mysql> SELECT last_name, first_name
    -> FROM customer
    -> WHERE last_name LIKE 'Q%' OR last_name LIKE 'Y%';
+-------------+------------+
| last_name   | first_name |
+-------------+------------+
| QUALLS      | STEPHEN    |
| QUIGLEY     | TROY       |



| QUINTANILLA | ROGER      |
| YANEZ       | LUIS       |
| YEE         | MARVIN     |
| YOUNG       | CYNTHIA    |
+-------------+------------+
6 rows in set (0.00 sec)

This	query	finds	all	customers	whose	last	name	begins	with	Q	or	Y.

USING	REGULAR	EXPRESSIONS

If	you	find	that	the	wildcard	characters	don’t	provide	enough	flexibility,
you	can	use	regular	expressions	to	build	search	expressions.	A	regular
expression	is,	in	essence,	a	search	expression	on	steroids.	If	you	are	new	to
SQL	but	have	coded	using	programming	languages	such	as	Perl,	then	you
might	already	be	intimately	familiar	with	regular	expressions.	If	you	have
never	used	regular	expressions,	then	you	may	want	to	consult	Jeffrey	E.	F.
Friedl’s	Mastering	Regular	Expressions	(O’Reilly),	since	it	is	far	too	large
a	topic	to	try	to	cover	in	this	book.

Here’s	what	the	previous	query	(find	all	customers	whose	last	name	starts
with	Q	or	Y)	would	look	like	using	the	MySQL	implementation	of	regular
expressions:

mysql> SELECT last_name, first_name
    -> FROM customer
    -> WHERE last_name REGEXP '^[QY]';
+-------------+------------+
| last_name   | first_name |
+-------------+------------+
| YOUNG       | CYNTHIA    |
| QUALLS      | STEPHEN    |
| QUINTANILLA | ROGER      |
| YANEZ       | LUIS       |
| YEE         | MARVIN     |
| QUIGLEY     | TROY       |
+-------------+------------+
6 rows in set (0.16 sec)

http://oreilly.com/catalog/9780596528126/


The	regexp	operator	takes	a	regular	expression	('^[QY]'	in	this	example)
and	applies	it	to	the	expression	on	the	lefthand	side	of	the	condition	(the
column	last_name).	The	query	now	contains	a	single	condition	using	a
regular	expression	rather	than	two	conditions	using	wildcard	characters.

Both	Oracle	Database	and	Microsoft	SQL	Server	also	support	regular
expressions.	With	Oracle	Database,	you	would	use	the	regexp_like
function	instead	of	the	regexp	operator	shown	in	the	previous	example,
whereas	SQL	Server	allows	regular	expressions	to	be	used	with	the	like
operator.

Null:	That	Four-Letter	Word
I	put	it	off	as	long	as	I	could,	but	it’s	time	to	broach	a	topic	that	tends	to	be
met	with	fear,	uncertainty,	and	dread:	the	null	value.	null	is	the	absence
of	a	value;	before	an	employee	is	terminated,	for	example,	her	end_date
column	in	the	employee	table	should	be	null.	There	is	no	value	that	can
be	assigned	to	the	end_date	column	that	would	make	sense	in	this
situation.	null	is	a	bit	slippery,	however,	as	there	are	various	flavors	of
null:

Not	applicable

Such	as	the	employee	ID	column	for	a	transaction	that	took	place	at	an
ATM	machine

Value	not	yet	known

Such	as	when	the	federal	ID	is	not	known	at	the	time	a	customer	row
is	created

Value	undefined

Such	as	when	an	account	is	created	for	a	product	that	has	not	yet	been



added	to	the	database

NOTE
Some	theorists	argue	that	there	should	be	a	different	expression	to	cover	each	of	these	(and
more)	situations,	but	most	practitioners	would	agree	that	having	multiple	null	values	would	be
far	too	confusing.

When	working	with	null,	you	should	remember:

An	expression	can	be	null,	but	it	can	never	equal	null.

Two	nulls	are	never	equal	to	each	other.

To	test	whether	an	expression	is	null,	you	need	to	use	the	is null
operator,	as	demonstrated	by	the	following:

mysql> SELECT rental_id, customer_id
    -> FROM rental
    -> WHERE return_date IS NULL;
+-----------+-------------+
| rental_id | customer_id |
+-----------+-------------+
|     11496 |         155 |
|     11541 |         335 |
|     11563 |          83 |
|     11577 |         219 |
|     11593 |          99 |
...
|     15867 |         505 |
|     15875 |          41 |
|     15894 |         168 |
|     15966 |         374 |
+-----------+-------------+
183 rows in set (0.01 sec)

This	query	finds	all	film	rentals	that	were	never	returned.	Here’s	the	same
query	using	= null	instead	of	is null:



mysql> SELECT rental_id, customer_id
    -> FROM rental
    -> WHERE return_date = NULL;
Empty set (0.01 sec)

As	you	can	see,	the	query	parses	and	executes	but	does	not	return	any
rows.	This	is	a	common	mistake	made	by	inexperienced	SQL
programmers,	and	the	database	server	will	not	alert	you	to	your	error,	so
be	careful	when	constructing	conditions	that	test	for	null.

If	you	want	to	see	whether	a	value	has	been	assigned	to	a	column,	you	can
use	the	is not null	operator,	as	in:

mysql> SELECT rental_id, customer_id, return_date
    -> FROM rental
    -> WHERE return_date IS NOT NULL;
+-----------+-------------+---------------------+
| rental_id | customer_id | return_date         |
+-----------+-------------+---------------------+
|         1 |         130 | 2005-05-26 22:04:30 |
|         2 |         459 | 2005-05-28 19:40:33 |
|         3 |         408 | 2005-06-01 22:12:39 |
|         4 |         333 | 2005-06-03 01:43:41 |
|         5 |         222 | 2005-06-02 04:33:21 |
|         6 |         549 | 2005-05-27 01:32:07 |
|         7 |         269 | 2005-05-29 20:34:53 |
...
|     16043 |         526 | 2005-08-31 03:09:03 |
|     16044 |         468 | 2005-08-25 04:08:39 |
|     16045 |          14 | 2005-08-25 23:54:26 |
|     16046 |          74 | 2005-08-27 18:02:47 |
|     16047 |         114 | 2005-08-25 02:48:48 |
|     16048 |         103 | 2005-08-31 21:33:07 |
|     16049 |         393 | 2005-08-30 01:01:12 |
+-----------+-------------+---------------------+
15861 rows in set (0.02 sec)

This	version	of	the	query	returns	all	rentals	that	were	returned,	which	is
the	majority	of	the	rows	in	the	table	(15,861	out	of	16,044).

Before	putting	null	aside	for	a	while,	it	would	be	helpful	to	investigate



one	more	potential	pitfall.	Suppose	that	you	have	been	asked	to	find	all
rentals	that	were	not	returned	during	May	through	August	of	2005.	Your
first	instinct	might	be	to	do	the	following:

mysql> SELECT rental_id, customer_id, return_date
    -> FROM rental
    -> WHERE return_date NOT BETWEEN '2005-05-01' AND '2005-09-01';
+-----------+-------------+---------------------+
| rental_id | customer_id | return_date         |
+-----------+-------------+---------------------+
|     15365 |         327 | 2005-09-01 03:14:17 |
|     15388 |          50 | 2005-09-01 03:50:23 |
|     15392 |         410 | 2005-09-01 01:14:15 |
|     15401 |         103 | 2005-09-01 03:44:10 |
|     15415 |         204 | 2005-09-01 02:05:56 |
...
|     15977 |         550 | 2005-09-01 22:12:10 |
|     15982 |         370 | 2005-09-01 21:51:31 |
|     16005 |         466 | 2005-09-02 02:35:22 |
|     16020 |         311 | 2005-09-01 18:17:33 |
|     16033 |         226 | 2005-09-01 02:36:15 |
|     16037 |          45 | 2005-09-01 02:48:04 |
|     16040 |         195 | 2005-09-02 02:19:33 |
+-----------+-------------+---------------------+
62 rows in set (0.01 sec)

While	it	is	true	that	these	62	rentals	were	returned	outside	of	the	May	to
August	window,	if	you	look	carefully	at	the	data,	you	will	see	that	all	of
the	rows	returned	have	a	non-null	return	date.	But	what	about	the	183
rentals	that	were	never	returned?	One	might	argue	that	these	183	rows
were	also	not	returned	between	May	and	August,	so	they	should	also	be
included	in	the	result	set.	To	answer	the	question	correctly,	therefore,	you
need	to	account	for	the	possibility	that	some	rows	might	contain	a	null	in
the	return_date	column:

mysql> SELECT rental_id, customer_id, return_date
    -> FROM rental
    -> WHERE return_date IS NULL
    ->   OR return_date NOT BETWEEN '2005-05-01' AND '2005-09-01';
+-----------+-------------+---------------------+
| rental_id | customer_id | return_date         |



+-----------+-------------+---------------------+
|     11496 |         155 | NULL                |
|     11541 |         335 | NULL                |
|     11563 |          83 | NULL                |
|     11577 |         219 | NULL                |
|     11593 |          99 | NULL                |
...
|     15939 |         382 | 2005-09-01 17:25:21 |
|     15942 |         210 | 2005-09-01 18:39:40 |
|     15966 |         374 | NULL                |
|     15971 |         187 | 2005-09-02 01:28:33 |
|     15973 |         343 | 2005-09-01 20:08:41 |
|     15977 |         550 | 2005-09-01 22:12:10 |
|     15982 |         370 | 2005-09-01 21:51:31 |
|     16005 |         466 | 2005-09-02 02:35:22 |
|     16020 |         311 | 2005-09-01 18:17:33 |
|     16033 |         226 | 2005-09-01 02:36:15 |
|     16037 |          45 | 2005-09-01 02:48:04 |
|     16040 |         195 | 2005-09-02 02:19:33 |
+-----------+-------------+---------------------+
245 rows in set (0.01 sec)

The	result	set	now	includes	the	62	rentals	that	were	returned	outside	of	the
May	to	August	window,	along	with	the	183	rentals	that	were	never
returned,	for	a	total	of	245	rows.	When	working	with	a	database	that	you
are	not	familiar	with,	it	is	a	good	idea	to	find	out	which	columns	in	a	table
allow	nulls	so	that	you	can	take	appropriate	measures	with	your	filter
conditions	to	keep	data	from	slipping	through	the	cracks.

Test	Your	Knowledge
The	following	exercises	test	your	understanding	of	filter	conditions.	Please
see	Appendix	B	for	solutions.

You’ll	need	to	refer	to	the	following	subset	of	rows	from	the	payment
table	for	the	first	two	exercises:

+------------+-------------+--------+--------------------+
| payment_id | customer_id | amount | date(payment_date) |
+------------+-------------+--------+--------------------+



|        101 |           4 |   8.99 | 2005-08-18         |
|        102 |           4 |   1.99 | 2005-08-19         |
|        103 |           4 |   2.99 | 2005-08-20         |
|        104 |           4 |   6.99 | 2005-08-20         |
|        105 |           4 |   4.99 | 2005-08-21         |
|        106 |           4 |   2.99 | 2005-08-22         |
|        107 |           4 |   1.99 | 2005-08-23         |
|        108 |           5 |   0.99 | 2005-05-29         |
|        109 |           5 |   6.99 | 2005-05-31         |
|        110 |           5 |   1.99 | 2005-05-31         |
|        111 |           5 |   3.99 | 2005-06-15         |
|        112 |           5 |   2.99 | 2005-06-16         |
|        113 |           5 |   4.99 | 2005-06-17         |
|        114 |           5 |   2.99 | 2005-06-19         |
|        115 |           5 |   4.99 | 2005-06-20         |
|        116 |           5 |   4.99 | 2005-07-06         |
|        117 |           5 |   2.99 | 2005-07-08         |
|        118 |           5 |   4.99 | 2005-07-09         |
|        119 |           5 |   5.99 | 2005-07-09         |
|        120 |           5 |   1.99 | 2005-07-09         |
+------------+-------------+--------+--------------------+

Exercise	4-1

Which	of	the	payment	IDs	would	be	returned	by	the	following	filter
conditions?

customer_id <> 5 AND (amount > 8 OR date(payment_date) = '2005-08-23')

Exercise	4-2

Which	of	the	payment	IDs	would	be	returned	by	the	following	filter
conditions?

customer_id = 5 AND NOT (amount > 6 OR date(payment_date) = '2005-06-19')

Exercise	4-3

Construct	a	query	that	retrieves	all	rows	from	the	payments	table	where
the	amount	is	either	1.98,	7.98,	or	9.98.

Exercise	4-4



Exercise	4-4

Construct	a	query	that	finds	all	customers	whose	last	name	contains	an	A
in	the	second	position	and	a	W	anywhere	after	the	A.



Chapter	5.	Querying	Multiple
Tables

Back	in	Chapter	2,	I	demonstrated	how	related	concepts	are	broken	into
separate	pieces	through	a	process	known	as	normalization.	The	end	result
of	this	exercise	was	two	tables:	person	and	favorite_food.	If,	however,
you	want	to	generate	a	single	report	showing	a	person’s	name,	address,
and	favorite	foods,	you	will	need	a	mechanism	to	bring	the	data	from
these	two	tables	back	together	again;	this	mechanism	is	known	as	a	join,
and	this	chapter	concentrates	on	the	simplest	and	most	common	join,	the
inner	join.	Chapter	10	demonstrates	all	of	the	different	join	types.

What	Is	a	Join?
Queries	against	a	single	table	are	certainly	not	rare,	but	you	will	find	that
most	of	your	queries	will	require	two,	three,	or	even	more	tables.	To
illustrate,	let’s	look	at	the	definitions	for	the	customer	and	address	tables
and	then	define	a	query	that	retrieves	data	from	both	tables:

mysql> desc customer;
+-------------+----------------------+------+-----+-------------------+
| Field       | Type                 | Null | Key | Default           |
+-------------+----------------------+------+-----+-------------------+
| customer_id | smallint(5) unsigned | NO   | PRI | NULL              |
| store_id    | tinyint(3) unsigned  | NO   | MUL | NULL              |
| first_name  | varchar(45)          | NO   |     | NULL              |
| last_name   | varchar(45)          | NO   | MUL | NULL              |
| email       | varchar(50)          | YES  |     | NULL              |
| address_id  | smallint(5) unsigned | NO   | MUL | NULL              |

| active      | tinyint(1)           | NO   |     | 1                 |
| create_date | datetime             | NO   |     | NULL              |
| last_update | timestamp            | YES  |     | CURRENT_TIMESTAMP |



+-------------+----------------------+------+-----+-------------------+

mysql> desc address;
+-------------+----------------------+------+-----+-------------------+
| Field       | Type                 | Null | Key | Default           |
+-------------+----------------------+------+-----+-------------------+
| address_id  | smallint(5) unsigned | NO   | PRI | NULL              |

| address     | varchar(50)          | NO   |     | NULL              |
| address2    | varchar(50)          | YES  |     | NULL              |
| district    | varchar(20)          | NO   |     | NULL              |
| city_id     | smallint(5) unsigned | NO   | MUL | NULL              |
| postal_code | varchar(10)          | YES  |     | NULL              |
| phone       | varchar(20)          | NO   |     | NULL              |
| location    | geometry             | NO   | MUL | NULL              |
| last_update | timestamp            | NO   |     | CURRENT_TIMESTAMP |
+-------------+----------------------+------+-----+-------------------+

Let’s	say	you	want	to	retrieve	the	first	and	last	names	of	each	customer,
along	with	their	street	address.	Your	query	will	therefore	need	to	retrieve
the	customer.first_name,	customer.last_name,	and
address.address	columns.	But	how	can	you	retrieve	data	from	both
tables	in	the	same	query?	The	answer	lies	in	the	customer.address_id
column,	which	holds	the	ID	of	the	customer’s	record	in	the	address	table
(in	more	formal	terms,	the	customer.address_id	column	is	the	foreign
key	to	the	address	table).	The	query,	which	you	will	see	shortly,	instructs
the	server	to	use	the	customer.address_id	column	as	the	transportation
between	the	customer	and	address	tables,	thereby	allowing	columns
from	both	tables	to	be	included	in	the	query’s	result	set.	This	type	of
operation	is	known	as	a	join.

NOTE
A	foreign	key	constraint	can	optionally	be	created	to	verify	that	the	values	in	one	table	exist	in
another	table.	For	the	previous	example,	a	foreign	key	constraint	could	be	created	on	the
customer	table	to	ensure	that	any	values	inserted	into	the	customer.address_id	column	can
be	found	in	the	address.address_id	column.	Please	note	that	it	is	not	necessary	to	have	a
foreign	key	constraint	in	place	in	order	to	join	two	tables.



Cartesian	Product

The	easiest	way	to	start	is	to	put	the	customer	and	address	tables	into	the
from	clause	of	a	query	and	see	what	happens.	Here’s	a	query	that	retrieves
the	customer’s	first	and	last	names	along	with	the	street	address,	with	a
from	clause	naming	both	tables	separated	by	the	join	keyword:

mysql> SELECT c.first_name, c.last_name, a.address
    -> FROM customer c JOIN address a;
+------------+-----------+----------------------+
| first_name | last_name | address              |
+------------+-----------+----------------------+
| MARY       | SMITH     | 47 MySakila Drive    |
| PATRICIA   | JOHNSON   | 47 MySakila Drive    |
| LINDA      | WILLIAMS  | 47 MySakila Drive    |
| BARBARA    | JONES     | 47 MySakila Drive    |
| ELIZABETH  | BROWN     | 47 MySakila Drive    |
| JENNIFER   | DAVIS     | 47 MySakila Drive    |
| MARIA      | MILLER    | 47 MySakila Drive    |
| SUSAN      | WILSON    | 47 MySakila Drive    |
...
| SETH       | HANNON    | 1325 Fukuyama Street |
| KENT       | ARSENAULT | 1325 Fukuyama Street |
| TERRANCE   | ROUSH     | 1325 Fukuyama Street |
| RENE       | MCALISTER | 1325 Fukuyama Street |
| EDUARDO    | HIATT     | 1325 Fukuyama Street |
| TERRENCE   | GUNDERSON | 1325 Fukuyama Street |
| ENRIQUE    | FORSYTHE  | 1325 Fukuyama Street |
| FREDDIE    | DUGGAN    | 1325 Fukuyama Street |
| WADE       | DELVALLE  | 1325 Fukuyama Street |
| AUSTIN     | CINTRON   | 1325 Fukuyama Street |
+------------+-----------+----------------------+
361197 rows in set (0.03 sec)

Hmmm...there	are	only	599	customers	and	603	rows	in	the	address	table,
so	how	did	the	result	set	end	up	with	361,197	rows?	Looking	more
closely,	you	can	see	that	many	of	the	customers	seem	to	have	the	same
street	address.	Because	the	query	didn’t	specify	how	the	two	tables	should
be	joined,	the	database	server	generated	the	Cartesian	product,	which	is
every	permutation	of	the	two	tables	(599	customers	x	603	addresses	=



361,197	permutations).	This	type	of	join	is	known	as	a	cross	join,	and	it	is
rarely	used	(on	purpose,	at	least).	Cross	joins	are	one	of	the	join	types	that
we	study	in	Chapter	10.

Inner	Joins

To	modify	the	previous	query	so	that	only	a	single	row	is	returned	for	each
customer,	you	need	to	describe	how	the	two	tables	are	related.	Earlier,	I
showed	that	the	customer.address_id	column	serves	as	the	link	between
the	two	tables,	so	this	information	needs	to	be	added	to	the	on	subclause	of
the	from	clause:

mysql> SELECT c.first_name, c.last_name, a.address
    -> FROM customer c JOIN address a
    ->   ON c.address_id = a.address_id;
+-------------+--------------+----------------------------------------+
| first_name  | last_name    | address                                |
+-------------+--------------+----------------------------------------+
| MARY        | SMITH        | 1913 Hanoi Way                         |
| PATRICIA    | JOHNSON      | 1121 Loja Avenue                       |
| LINDA       | WILLIAMS     | 692 Joliet Street                      |
| BARBARA     | JONES        | 1566 Inegl Manor                       |
| ELIZABETH   | BROWN        | 53 Idfu Parkway                        |
| JENNIFER    | DAVIS        | 1795 Santiago de Compostela Way        |
| MARIA       | MILLER       | 900 Santiago de Compostela Parkway     |
| SUSAN       | WILSON       | 478 Joliet Way                         |
| MARGARET    | MOORE        | 613 Korolev Drive                      |
...
| TERRANCE    | ROUSH        | 42 Fontana Avenue                      |
| RENE        | MCALISTER    | 1895 Zhezqazghan Drive                 |
| EDUARDO     | HIATT        | 1837 Kaduna Parkway                    |
| TERRENCE    | GUNDERSON    | 844 Bucuresti Place                    |
| ENRIQUE     | FORSYTHE     | 1101 Bucuresti Boulevard               |
| FREDDIE     | DUGGAN       | 1103 Quilmes Boulevard                 |
| WADE        | DELVALLE     | 1331 Usak Boulevard                    |
| AUSTIN      | CINTRON      | 1325 Fukuyama Street                   |
+-------------+--------------+----------------------------------------+
599 rows in set (0.00 sec)

Instead	of	361,197	rows,	you	now	have	the	expected	599	rows	due	to	the
addition	of	the	on	subclause,	which	instructs	the	server	to	join	the



customer	and	address	tables	by	using	the	address_id	column	to
traverse	from	one	table	to	the	other.	For	example,	Mary	Smith’s	row	in	the
customer	table	contains	a	value	of	5	in	the	address_id	column	(not
shown	in	the	example).	The	server	uses	this	value	to	look	up	the	row	in	the
address	table	having	a	value	of	5	in	its	address_id	column	and	then
retrieves	the	value	'1913 Hanoi Way'	from	the	address	column	in	that
row.

If	a	value	exists	for	the	address_id	column	in	one	table	but	not	the	other,
then	the	join	fails	for	the	rows	containing	that	value,	and	those	rows	are
excluded	from	the	result	set.	This	type	of	join	is	known	as	an	inner	join,
and	it	is	the	most	commonly	used	type	of	join.	To	clarify,	if	a	row	in	the
customer	table	has	the	value	999	in	the	address_id	column	and	there’s
no	row	in	the	address	table	with	a	value	of	999	in	the	address_id
column,	then	that	customer	row	would	not	be	included	in	the	result	set.	If
you	want	to	include	all	rows	from	one	table	or	the	other	regardless	of
whether	a	match	exists,	you	need	to	specify	an	outer	join,	but	this	will	be
explored	Chapter	10.

In	the	previous	example,	I	did	not	specify	in	the	from	clause	which	type	of
join	to	use.	However,	when	you	wish	to	join	two	tables	using	an	inner
join,	you	should	explicitly	specify	this	in	your	from	clause;	here’s	the
same	example,	with	the	addition	of	the	join	type	(note	the	keyword
inner):

SELECT c.first_name, c.last_name, a.address
FROM customer c INNER	JOIN address a

  ON c.address_id = a.address_id;

If	you	do	not	specify	the	type	of	join,	then	the	server	will	do	an	inner	join
by	default.	As	you	will	see	later	in	the	book,	however,	there	are	several



types	of	joins,	so	you	should	get	in	the	habit	of	specifying	the	exact	type
of	join	that	you	require,	especially	for	the	benefit	of	any	other	people	who
might	use/maintain	your	queries	in	the	future.

If	the	names	of	the	columns	used	to	join	the	two	tables	are	identical,	which
is	true	in	the	previous	query,	you	can	use	the	using	subclause	instead	of
the	on	subclause,	as	in:

SELECT c.first_name, c.last_name, a.address
FROM customer c INNER JOIN address a
  USING	(address_id);

Since	using	is	a	shorthand	notation	that	you	can	use	in	only	a	specific
situation,	I	prefer	always	to	use	the	on	subclause	to	avoid	confusion.

The	ANSI	Join	Syntax

The	notation	used	throughout	this	book	for	joining	tables	was	introduced
in	the	SQL92	version	of	the	ANSI	SQL	standard.	All	the	major	databases
(Oracle	Database,	Microsoft	SQL	Server,	MySQL,	IBM	DB2	Universal
Database,	and	Sybase	Adaptive	Server)	have	adopted	the	SQL92	join
syntax.	Because	most	of	these	servers	have	been	around	since	before	the
release	of	the	SQL92	specification,	they	all	include	an	older	join	syntax	as
well.	For	example,	all	these	servers	would	understand	the	following
variation	of	the	previous	query:

mysql> SELECT c.first_name, c.last_name, a.address
    -> FROM customer c, address a
    -> WHERE c.address_id = a.address_id;
+------------+------------+------------------------------------+
| first_name | last_name  | address                            |
+------------+------------+------------------------------------+
| MARY       | SMITH      | 1913 Hanoi Way                     |
| PATRICIA   | JOHNSON    | 1121 Loja Avenue                   |
| LINDA      | WILLIAMS   | 692 Joliet Street                  |
| BARBARA    | JONES      | 1566 Inegl Manor                   |



| ELIZABETH  | BROWN      | 53 Idfu Parkway                    |
| JENNIFER   | DAVIS      | 1795 Santiago de Compostela Way    |
| MARIA      | MILLER     | 900 Santiago de Compostela Parkway |
| SUSAN      | WILSON     | 478 Joliet Way                     |
| MARGARET   | MOORE      | 613 Korolev Drive                  |
...
| TERRANCE   | ROUSH      | 42 Fontana Avenue                  |
| RENE       | MCALISTER  | 1895 Zhezqazghan Drive             |
| EDUARDO    | HIATT      | 1837 Kaduna Parkway                |
| TERRENCE   | GUNDERSON  | 844 Bucuresti Place                |
| ENRIQUE    | FORSYTHE   | 1101 Bucuresti Boulevard           |
| FREDDIE    | DUGGAN     | 1103 Quilmes Boulevard             |
| WADE       | DELVALLE   | 1331 Usak Boulevard                |
| AUSTIN     | CINTRON    | 1325 Fukuyama Street               |
+------------+------------+------------------------------------+
599 rows in set (0.00 sec)

This	older	method	of	specifying	joins	does	not	include	the	on	subclause;
instead,	tables	are	named	in	the	from	clause	separated	by	commas,	and
join	conditions	are	included	in	the	where	clause.	While	you	may	decide	to
ignore	the	SQL92	syntax	in	favor	of	the	older	join	syntax,	the	ANSI	join
syntax	has	the	following	advantages:

Join	conditions	and	filter	conditions	are	separated	into	two
different	clauses	(the	on	subclause	and	the	where	clause,
respectively),	making	a	query	easier	to	understand.

The	join	conditions	for	each	pair	of	tables	are	contained	in	their
own	on	clause,	making	it	less	likely	that	part	of	a	join	will	be
mistakenly	omitted.

Queries	that	use	the	SQL92	join	syntax	are	portable	across
database	servers,	whereas	the	older	syntax	is	slightly	different
across	the	different	servers.

The	benefits	of	the	SQL92	join	syntax	are	easier	to	identify	for	complex
queries	that	include	both	join	and	filter	conditions.	Consider	the	following
query,	which	returns	only	those	customers	whose	postal	code	is	52137:

mysql> SELECT c.first_name, c.last_name, a.address



    -> FROM customer c, address a
    -> WHERE c.address_id = a.address_id
    ->   AND a.postal_code = 52137;
+------------+-----------+------------------------+
| first_name | last_name | address                |
+------------+-----------+------------------------+
| JAMES      | GANNON    | 1635 Kuwana Boulevard  |
| FREDDIE    | DUGGAN    | 1103 Quilmes Boulevard |
+------------+-----------+------------------------+
2 rows in set (0.01 sec)

At	first	glance,	it	is	not	so	easy	to	determine	which	conditions	in	the
where	clause	are	join	conditions	and	which	are	filter	conditions.	It	is	also
not	readily	apparent	which	type	of	join	is	being	employed	(to	identify	the
type	of	join,	you	would	need	to	look	closely	at	the	join	conditions	in	the
where	clause	to	see	whether	any	special	characters	are	employed),	nor	is	it
easy	to	determine	whether	any	join	conditions	have	been	mistakenly	left
out.	Here’s	the	same	query	using	the	SQL92	join	syntax:

mysql> SELECT c.first_name, c.last_name, a.address
    -> FROM customer c INNER JOIN address a
    ->   ON c.address_id = a.address_id
    -> WHERE a.postal_code = 52137;
+------------+-----------+------------------------+
| first_name | last_name | address                |
+------------+-----------+------------------------+
| JAMES      | GANNON    | 1635 Kuwana Boulevard  |
| FREDDIE    | DUGGAN    | 1103 Quilmes Boulevard |
+------------+-----------+------------------------+
2 rows in set (0.00 sec)

With	this	version,	it	is	clear	which	condition	is	used	for	the	join	and	which
condition	is	used	for	filtering.	Hopefully,	you	will	agree	that	the	version
using	SQL92	join	syntax	is	easier	to	understand.

Joining	Three	or	More	Tables
Joining	three	tables	is	similar	to	joining	two	tables,	but	with	one	slight



wrinkle.	With	a	two-table	join,	there	are	two	tables	and	one	join	type	in
the	from	clause,	and	a	single	on	subclause	to	define	how	the	tables	are
joined.	With	a	three-table	join,	there	are	three	tables	and	two	join	types	in
the	from	clause,	and	two	on	subclauses.

To	illustrate,	let’s	change	the	previous	query	to	return	the	customer’s	city
rather	than	their	street	address.	The	city	name,	however,	is	not	stored	in
the	address	table	but	is	accessed	via	a	foreign	key	to	the	city	table.	Here
are	the	table	definitions:

mysql> desc address;
+-------------+----------------------+------+-----+-------------------+
| Field       | Type                 | Null | Key | Default           |
+-------------+----------------------+------+-----+-------------------+
| address_id  | smallint(5) unsigned | NO   | PRI | NULL              |
| address     | varchar(50)          | NO   |     | NULL              |
| address2    | varchar(50)          | YES  |     | NULL              |
| district    | varchar(20)          | NO   |     | NULL              |
| city_id     | smallint(5) unsigned | NO   | MUL | NULL              |

| postal_code | varchar(10)          | YES  |     | NULL              |
| phone       | varchar(20)          | NO   |     | NULL              |
| location    | geometry             | NO   | MUL | NULL              |
| last_update | timestamp            | NO   |     | CURRENT_TIMESTAMP |
+-------------+----------------------+------+-----+-------------------+

mysql> desc city;
+-------------+----------------------+------+-----+-------------------+
| Field       | Type                 | Null | Key | Default           |
+-------------+----------------------+------+-----+-------------------+
| city_id     | smallint(5) unsigned | NO   | PRI | NULL              |

| city        | varchar(50)          | NO   |     | NULL              |
| country_id  | smallint(5) unsigned | NO   | MUL | NULL              |
| last_update | timestamp            | NO   |     | CURRENT_TIMESTAMP |
+-------------+----------------------+------+-----+-------------------+

To	show	each	customer’s	city,	you	will	need	to	traverse	from	the
customer	table	to	the	address	table	using	the	address_id	column	and
then	from	the	address	table	to	the	city	table	using	the	city_id	column.
The	query	would	look	like	the	following:



mysql> SELECT c.first_name, c.last_name, ct.city
    -> FROM customer c
    ->   INNER JOIN address a
    ->   ON c.address_id = a.address_id
    ->   INNER JOIN city ct
    ->   ON a.city_id = ct.city_id;
+-------------+--------------+----------------------------+
| first_name  | last_name    | city                       |
+-------------+--------------+----------------------------+
| JULIE       | SANCHEZ      | A Corua (La Corua)         |
| PEGGY       | MYERS        | Abha                       |
| TOM         | MILNER       | Abu Dhabi                  |
| GLEN        | TALBERT      | Acua                       |
| LARRY       | THRASHER     | Adana                      |
| SEAN        | DOUGLASS     | Addis Abeba                |
...
| MICHELE     | GRANT        | Yuncheng                   |
| GARY        | COY          | Yuzhou                     |
| PHYLLIS     | FOSTER       | Zalantun                   |
| CHARLENE    | ALVAREZ      | Zanzibar                   |
| FRANKLIN    | TROUTMAN     | Zaoyang                    |
| FLOYD       | GANDY        | Zapopan                    |
| CONSTANCE   | REID         | Zaria                      |
| JACK        | FOUST        | Zeleznogorsk               |
| BYRON       | BOX          | Zhezqazghan                |
| GUY         | BROWNLEE     | Zhoushan                   |
| RONNIE      | RICKETTS     | Ziguinchor                 |
+-------------+--------------+----------------------------+
599 rows in set (0.03 sec)

For	this	query,	there	are	three	tables,	two	join	types,	and	two	on
subclauses	in	the	from	clause,	so	things	have	gotten	quite	a	bit	busier.	At
first	glance,	it	might	seem	like	the	order	in	which	the	tables	appear	in	the
from	clause	is	important,	but	if	you	switch	the	table	order,	you	will	get	the
exact	same	results.	All	three	of	these	variations	return	the	same	results:

SELECT c.first_name, c.last_name, ct.city
FROM customer c
  INNER JOIN address a
  ON c.address_id = a.address_id
  INNER JOIN city ct
  ON a.city_id = ct.city_id;

SELECT c.first_name, c.last_name, ct.city
FROM city ct



  INNER JOIN address a
  ON a.city_id = ct.city_id
  INNER JOIN customer c
  ON c.address_id = a.address_id;

SELECT c.first_name, c.last_name, ct.city
FROM address a
  INNER JOIN city ct
  ON a.city_id = ct.city_id
  INNER JOIN customer c
  ON c.address_id = a.address_id;

The	only	difference	you	may	see	would	be	the	order	in	which	the	rows	are
returned,	since	there	is	no	order by	clause	to	specify	how	the	results
should	be	ordered.

DOES	JOIN	ORDER	MATTER?
If	you	are	confused	about	why	all	three	versions	of	the	customer/address/city	query	yield	the	same	results,
keep	in	mind	that	SQL	is	a	nonprocedural	language,	meaning	that	you	describe	what	you	want	to	retrieve
and	which	database	objects	need	to	be	involved,	but	it	is	up	to	the	database	server	to	determine	how	best
to	execute	your	query.	Using	statistics	gathered	from	your	database	objects,	the	server	must	pick	one	of
three	tables	as	a	starting	point	(the	chosen	table	is	thereafter	known	as	the	driving	table)	and	then	decide
in	which	order	to	join	the	remaining	tables.	Therefore,	the	order	in	which	tables	appear	in	your	from	clause
is	not	significant.

If,	however,	you	believe	that	the	tables	in	your	query	should	always	be	joined	in	a	particular	order,	you	can
place	the	tables	in	the	desired	order	and	then	specify	the	keyword	straight_join	in	MySQL,	request	the
force order	option	in	SQL	Server,	or	use	either	the	ordered	or	the	leading	optimizer	hint	in	Oracle
Database.	For	example,	to	tell	the	MySQL	server	to	use	the	city	table	as	the	driving	table	and	to	then	join
the	address	and	customer	tables,	you	could	do	the	following:

SELECT STRAIGHT_JOIN c.first_name, c.last_name, ct.city
FROM city ct
  INNER JOIN address a
  ON a.city_id = ct.city_id
  INNER JOIN customer c
  ON c.address_id = a.address_id

Using	Subqueries	as	Tables

You	have	already	seen	several	examples	of	queries	that	include	multiple
tables,	but	there	is	one	variation	worth	mentioning:	what	to	do	if	some	of



the	data	sets	are	generated	by	subqueries.	Subqueries	are	the	focus	of
Chapter	9,	but	I	already	introduced	the	concept	of	a	subquery	in	the	from
clause	in	the	previous	chapter.	The	following	query	joins	the	customer
table	to	a	subquery	against	the	address	and	city	tables:

mysql> SELECT c.first_name, c.last_name, addr.address, addr.city
    -> FROM customer c
    ->   INNER JOIN
    ->    (SELECT a.address_id, a.address, ct.city

    ->     FROM address a
    ->       INNER JOIN city ct
    ->       ON a.city_id = ct.city_id
    ->     WHERE a.district = 'California'
    ->    )	addr

    ->   ON c.address_id = addr.address_id;
+------------+-----------+------------------------+----------------+
| first_name | last_name | address                | city           |
+------------+-----------+------------------------+----------------+
| PATRICIA   | JOHNSON   | 1121 Loja Avenue       | San Bernardino |
| BETTY      | WHITE     | 770 Bydgoszcz Avenue   | Citrus Heights |
| ALICE      | STEWART   | 1135 Izumisano Parkway | Fontana        |
| ROSA       | REYNOLDS  | 793 Cam Ranh Avenue    | Lancaster      |
| RENEE      | LANE      | 533 al-Ayn Boulevard   | Compton        |
| KRISTIN    | JOHNSTON  | 226 Brest Manor        | Sunnyvale      |
| CASSANDRA  | WALTERS   | 920 Kumbakonam Loop    | Salinas        |
| JACOB      | LANCE     | 1866 al-Qatif Avenue   | El Monte       |
| RENE       | MCALISTER | 1895 Zhezqazghan Drive | Garden Grove   |
+------------+-----------+------------------------+----------------+
9 rows in set (0.00 sec)

The	subquery,	which	starts	on	line	4	and	is	given	the	alias	addr,	finds	all
addresses	that	are	in	California.	The	outer	query	joins	the	subquery	results
to	the	customer	table	to	return	the	first	name,	last	name,	street	address,
and	city	of	all	customers	who	live	in	California.	While	this	query	could
have	been	written	without	the	use	of	a	subquery	by	simply	joining	the
three	tables,	it	can	sometimes	be	advantageous	from	a	performance	and/or
readability	aspect	to	use	one	or	more	subqueries.

One	way	to	visualize	what	is	going	on	is	to	run	the	subquery	by	itself	and
look	at	the	results.	Here	are	the	results	of	the	subquery	from	the	prior



example:

mysql> SELECT a.address_id, a.address, ct.city
    -> FROM address a
    ->   INNER JOIN city ct
    ->   ON a.city_id = ct.city_id
    -> WHERE a.district = 'California';
+------------+------------------------+----------------+
| address_id | address                | city           |
+------------+------------------------+----------------+
|          6 | 1121 Loja Avenue       | San Bernardino |
|         18 | 770 Bydgoszcz Avenue   | Citrus Heights |
|         55 | 1135 Izumisano Parkway | Fontana        |
|        116 | 793 Cam Ranh Avenue    | Lancaster      |
|        186 | 533 al-Ayn Boulevard   | Compton        |
|        218 | 226 Brest Manor        | Sunnyvale      |
|        274 | 920 Kumbakonam Loop    | Salinas        |
|        425 | 1866 al-Qatif Avenue   | El Monte       |
|        599 | 1895 Zhezqazghan Drive | Garden Grove   |
+------------+------------------------+----------------+
9 rows in set (0.00 sec)

This	result	set	consists	of	all	nine	California	addresses.	When	joined	to	the
customer	table	via	the	address_id	column,	your	result	set	will	contain
information	about	the	customers	assigned	to	these	addresses.

Using	the	Same	Table	Twice

If	you	are	joining	multiple	tables,	you	might	find	that	you	need	to	join	the
same	table	more	than	once.	In	the	sample	database,	for	example,	actors	are
related	to	the	films	in	which	they	appeared	via	the	film_actor	table.	If
you	want	to	find	all	of	the	films	in	which	two	specific	actors	appear,	you
could	write	a	query	such	as	this	one,	which	joins	the	film	table	to	the
film_actor	table	to	the	actor	table:

mysql> SELECT f.title
    -> FROM film f
    ->   INNER JOIN film_actor fa
    ->   ON f.film_id = fa.film_id
    ->   INNER JOIN actor a
    ->   ON fa.actor_id = a.actor_id



    -> WHERE ((a.first_name = 'CATE' AND a.last_name = 'MCQUEEN')
    ->     OR (a.first_name = 'CUBA' AND a.last_name = 'BIRCH'));
+----------------------+
| title                |
+----------------------+
| ATLANTIS CAUSE       |
| BLOOD ARGONAUTS      |
| COMMANDMENTS EXPRESS |
| DYNAMITE TARZAN      |
| EDGE KISSING         |
...
| TOWERS HURRICANE     |
| TROJAN TOMORROW      |
| VIRGIN DAISY         |
| VOLCANO TEXAS        |
| WATERSHIP FRONTIER   |
+----------------------+
54 rows in set (0.00 sec)

This	query	returns	all	movies	in	which	either	Cate	McQueen	or	Cuba
Birch	appeared.	However,	let’s	say	that	you	want	to	retrieve	only	those
films	in	which	both	of	these	actors	appeared.	To	accomplish	this,	you	will
need	to	find	all	rows	in	the	film	table	that	have	two	rows	in	the
film_actor	table,	one	of	which	is	associated	with	Cate	McQueen,	and	the
other	associated	with	Cuba	Birch.	Therefore,	you	will	need	to	include	the
film_actor	and	actor	tables	twice,	each	with	a	different	alias	so	that	the
server	knows	which	one	you	are	referring	to	in	the	various	clauses:

mysql> SELECT f.title
    ->  FROM film f
    ->    INNER JOIN film_actor fa1
    ->    ON f.film_id = fa1.film_id
    ->    INNER JOIN actor a1
    ->    ON fa1.actor_id = a1.actor_id
    ->    INNER JOIN film_actor fa2
    ->    ON f.film_id = fa2.film_id
    ->    INNER JOIN actor a2
    ->    ON fa2.actor_id = a2.actor_id
    -> WHERE (a1.first_name = 'CATE' AND a1.last_name = 'MCQUEEN')
    ->   AND (a2.first_name = 'CUBA' AND a2.last_name = 'BIRCH');
+------------------+
| title            |
+------------------+



| BLOOD ARGONAUTS  |
| TOWERS HURRICANE |
+------------------+
2 rows in set (0.00 sec)

Between	them,	the	two	actors	appeared	in	52	different	films,	but	there	are
only	two	films	in	which	both	actors	appeared.	This	is	one	example	of	a
query	that	requires	the	use	of	table	aliases,	since	the	same	tables	are	used
multiple	times.

Self-Joins
Not	only	can	you	include	the	same	table	more	than	once	in	the	same
query,	but	you	can	actually	join	a	table	to	itself.	This	might	seem	like	a
strange	thing	to	do	at	first,	but	there	are	valid	reasons	for	doing	so.	Some
tables	include	a	self-referencing	foreign	key,	which	means	that	it	includes
a	column	that	points	to	the	primary	key	within	the	same	table.	While	the
sample	database	doesn’t	include	such	a	relationship,	let’s	imagine	that	the
film	table	includes	the	column	prequel_film_id,	which	points	to	the
film’s	parent	(e.g.,	the	film	Fiddler	Lost	II	would	use	this	column	to	point
to	the	parent	film	Fiddler	Lost).	Here’s	what	the	table	would	look	like	if
we	were	to	add	this	additional	column:

mysql> desc film;
+----------------------+-----------------------+------+-----+-------------------+

| Field                | Type                  | Null | Key | 
Default           |
+----------------------+-----------------------+------+-----+-------------------+

| film_id              | smallint(5) unsigned  | NO   | PRI | 
NULL              |
| title                | varchar(255)          | NO   | MUL | 
NULL              |
| description          | text                  | YES  |     | 
NULL              |
| release_year         | year(4)               | YES  |     | 
NULL              |



| language_id          | tinyint(3) unsigned   | NO   | MUL | 
NULL              |
| original_language_id | tinyint(3) unsigned   | YES  | MUL | 
NULL              |
| rental_duration      | tinyint(3) unsigned   | NO   |     | 
3                 |
| rental_rate          | decimal(4,2)          | NO   |     | 
4.99              |
| length               | smallint(5) unsigned  | YES  |     | 
NULL              |
| replacement_cost     | decimal(5,2)          | NO   |     | 
19.99             |
| rating               | enum('G','PG','PG-13',
                           'R','NC-17')        | YES  |     | G                 
|
| special_features     | set('Trailers',...,
                           'Behind the Scenes')| YES  |     | 
NULL              |
| last_update          | timestamp             | NO   |     | CURRENT_
                                                                TIMESTAMP       
|
| prequel_film_id      | smallint(5) unsigned  | YES  | MUL | 

NULL              |
+----------------------+-----------------------+------+-----+-------------------+

Using	a	self-join,	you	can	write	a	query	that	lists	every	film	that	has	a
prequel,	along	with	the	prequel’s	title:

mysql> SELECT f.title, f_prnt.title prequel
    -> FROM film f

    ->   INNER JOIN film f_prnt

    ->   ON f_prnt.film_id = f.prequel_film_id
    -> WHERE f.prequel_film_id IS NOT NULL;
+-----------------+--------------+
| title           | prequel      |
+-----------------+--------------+
| FIDDLER LOST II | FIDDLER LOST |
+-----------------+--------------+
1 row in set (0.00 sec)

This	query	joins	the	film	table	to	itself	using	the	prequel_film_id
foreign	key,	and	the	table	aliases	f	and	f_prnt	are	assigned	in	order	to
make	it	clear	which	table	is	used	for	which	purpose.



Test	Your	Knowledge
The	following	exercises	are	designed	to	test	your	understanding	of	inner
joins.	Please	see	Appendix	B	for	the	solutions	to	these	exercises.

Exercise	5-1

Fill	in	the	blanks	(denoted	by	<#>)	for	the	following	query	to	obtain	the
results	that	follow:

mysql> SELECT c.first_name, c.last_name, a.address, ct.city
    -> FROM customer c
    ->   INNER JOIN address <1>
    ->   ON c.address_id = a.address_id
    ->   INNER JOIN city ct
    ->   ON a.city_id = <2>
    -> WHERE a.district = 'California';
+------------+-----------+------------------------+----------------+
| first_name | last_name | address                | city           |
+------------+-----------+------------------------+----------------+
| PATRICIA   | JOHNSON   | 1121 Loja Avenue       | San Bernardino |
| BETTY      | WHITE     | 770 Bydgoszcz Avenue   | Citrus Heights |
| ALICE      | STEWART   | 1135 Izumisano Parkway | Fontana        |
| ROSA       | REYNOLDS  | 793 Cam Ranh Avenue    | Lancaster      |
| RENEE      | LANE      | 533 al-Ayn Boulevard   | Compton        |
| KRISTIN    | JOHNSTON  | 226 Brest Manor        | Sunnyvale      |
| CASSANDRA  | WALTERS   | 920 Kumbakonam Loop    | Salinas        |
| JACOB      | LANCE     | 1866 al-Qatif Avenue   | El Monte       |
| RENE       | MCALISTER | 1895 Zhezqazghan Drive | Garden Grove   |
+------------+-----------+------------------------+----------------+
9 rows in set (0.00 sec)

Exercise	5-2

Write	a	query	that	returns	the	title	of	every	film	in	which	an	actor	with	the
first	name	JOHN	appeared.

Exercise	5-3

Construct	a	query	that	returns	all	addresses	that	are	in	the	same	city.	You



will	need	to	join	the	address	table	to	itself,	and	each	row	should	include
two	different	addresses.



Chapter	6.	Working	with	Sets

Although	you	can	interact	with	the	data	in	a	database	one	row	at	a	time,
relational	databases	are	really	all	about	sets.	This	chapter	explores	how
you	can	combine	multiple	result	sets	using	various	set	operators.	After	a
quick	overview	of	set	theory,	I’ll	demonstrate	how	to	use	the	set	operators
union,	intersect,	and	except	to	blend	multiple	data	sets	together.

Set	Theory	Primer
In	many	parts	of	the	world,	basic	set	theory	is	included	in	elementary-level
math	curriculums.	Perhaps	you	recall	looking	at	something	like	what	is
shown	in	Figure	6-1.



Figure	6-1.	The	union	operation

The	shaded	area	in	Figure	6-1	represents	the	union	of	sets	A	and	B,	which
is	the	combination	of	the	two	sets	(with	any	overlapping	regions	included
only	once).	Is	this	starting	to	look	familiar?	If	so,	then	you’ll	finally	get	a
chance	to	put	that	knowledge	to	use;	if	not,	don’t	worry,	because	it’s	easy
to	visualize	using	a	couple	of	diagrams.

Using	circles	to	represent	two	data	sets	(A	and	B),	imagine	a	subset	of
data	that	is	common	to	both	sets;	this	common	data	is	represented	by	the



overlapping	area	shown	in	Figure	6-1.	Since	set	theory	is	rather
uninteresting	without	an	overlap	between	data	sets,	I	use	the	same	diagram
to	illustrate	each	set	operation.	There	is	another	set	operation	that	is
concerned	only	with	the	overlap	between	two	data	sets;	this	operation	is
known	as	the	intersection	and	is	demonstrated	in	Figure	6-2.

Figure	6-2.	The	intersection	operation

The	data	set	generated	by	the	intersection	of	sets	A	and	B	is	just	the	area
of	overlap	between	the	two	sets.	If	the	two	sets	have	no	overlap,	then	the



intersection	operation	yields	the	empty	set.

The	third	and	final	set	operation,	which	is	demonstrated	in	Figure	6-3,	is
known	as	the	except	operation.

Figure	6-3	shows	the	results	of	A except B,	which	is	the	whole	of	set	A
minus	any	overlap	with	set	B.	If	the	two	sets	have	no	overlap,	then	the
operation	A except B	yields	the	whole	of	set	A.

Figure	6-3.	The	except	operation



Using	these	three	operations,	or	by	combining	different	operations
together,	you	can	generate	whatever	results	you	need.	For	example,
imagine	that	you	want	to	build	a	set	demonstrated	by	Figure	6-4.

Figure	6-4.	Mystery	data	set

The	data	set	you	are	looking	for	includes	all	of	sets	A	and	B	without	the
overlapping	region.	You	can’t	achieve	this	outcome	with	just	one	of	the
three	operations	shown	earlier;	instead,	you	will	need	to	first	build	a	data
set	that	encompasses	all	of	sets	A	and	B,	and	then	utilize	a	second



operation	to	remove	the	overlapping	region.	If	the	combined	set	is
described	as	A union B,	and	the	overlapping	region	is	described	as	A
intersect B,	then	the	operation	needed	to	generate	the	data	set
represented	by	Figure	6-4	would	look	as	follows:

(A union B) except (A intersect B)

Of	course,	there	are	often	multiple	ways	to	achieve	the	same	results;	you
could	reach	a	similar	outcome	using	the	following	operation:

(A except B) union (B except A)

While	these	concepts	are	fairly	easy	to	understand	using	diagrams,	the
next	sections	show	you	how	these	concepts	are	applied	to	a	relational
database	using	the	SQL	set	operators.

Set	Theory	in	Practice
The	circles	used	in	the	previous	section’s	diagrams	to	represent	data	sets
don’t	convey	anything	about	what	the	data	sets	comprise.	When	dealing
with	actual	data,	however,	there	is	a	need	to	describe	the	composition	of
the	data	sets	involved	if	they	are	to	be	combined.	Imagine,	for	example,
what	would	happen	if	you	tried	to	generate	the	union	of	the	customer
table	and	the	city	table,	whose	definitions	are	as	follows:

mysql> desc customer;
+-------------+----------------------+------+-----+-------------------+
| Field       | Type                 | Null | Key | Default           |
+-------------+----------------------+------+-----+-------------------+
| customer_id | smallint(5) unsigned | NO   | PRI | NULL              |
| store_id    | tinyint(3) unsigned  | NO   | MUL | NULL              |
| first_name  | varchar(45)          | NO   |     | NULL              |
| last_name   | varchar(45)          | NO   | MUL | NULL              |
| email       | varchar(50)          | YES  |     | NULL              |
| address_id  | smallint(5) unsigned | NO   | MUL | NULL              |
| active      | tinyint(1)           | NO   |     | 1                 |



| create_date | datetime             | NO   |     | NULL              |
| last_update | timestamp            | YES  |     | CURRENT_TIMESTAMP |
+-------------+----------------------+------+-----+-------------------+

mysql> desc city;
+-------------+----------------------+------+-----+-------------------+
| Field       | Type                 | Null | Key | Default           |
+-------------+----------------------+------+-----+-------------------+
| city_id     | smallint(5) unsigned | NO   | PRI | NULL              |
| city        | varchar(50)          | NO   |     | NULL              |
| country_id  | smallint(5) unsigned | NO   | MUL | NULL              |
| last_update | timestamp            | NO   |     | CURRENT_TIMESTAMP |
+-------------+----------------------+------+-----+-------------------+

When	combined,	the	first	column	in	the	result	set	would	include	both	the
customer.customer_id	and	city.city_id	columns,	the	second	column
would	be	the	combination	of	the	customer.store_id	and	city.city
columns,	and	so	forth.	While	some	column	pairs	are	easy	to	combine	(e.g.,
two	numeric	columns),	it	is	unclear	how	other	column	pairs	should	be
combined,	such	as	a	numeric	column	with	a	string	column	or	a	string
column	with	a	date	column.	Additionally,	the	fifth	through	ninth	columns
of	the	combined	tables	would	include	data	from	only	the	customer	table’s
fifth	through	ninth	columns,	since	the	city	table	has	only	four	columns.
Clearly,	there	needs	to	be	some	commonality	between	two	data	sets	that
you	wish	to	combine.

Therefore,	when	performing	set	operations	on	two	data	sets,	the	following
guidelines	must	apply:

Both	data	sets	must	have	the	same	number	of	columns.

The	data	types	of	each	column	across	the	two	data	sets	must	be
the	same	(or	the	server	must	be	able	to	convert	one	to	the	other).

With	these	rules	in	place,	it	is	easier	to	envision	what	“overlapping	data”
means	in	practice;	each	column	pair	from	the	two	sets	being	combined
must	contain	the	same	string,	number,	or	date	for	rows	in	the	two	tables	to



be	considered	the	same.

You	perform	a	set	operation	by	placing	a	set	operator	between	two
select	statements,	as	demonstrated	by	the	following:

mysql> SELECT	1	num,	'abc'	str

    -> UNION

    -> SELECT	9	num,	'xyz'	str;

+-----+-----+
| num | str |
+-----+-----+
|   1 | abc |
|   9 | xyz |
+-----+-----+
2 rows in set (0.02 sec)

Each	of	the	individual	queries	yields	a	data	set	consisting	of	a	single	row
having	a	numeric	column	and	a	string	column.	The	set	operator,	which	in
this	case	is	union,	tells	the	database	server	to	combine	all	rows	from	the
two	sets.	Thus,	the	final	set	includes	two	rows	of	two	columns.	This	query
is	known	as	a	compound	query	because	it	comprises	multiple,	otherwise-
independent	queries.	As	you	will	see	later,	compound	queries	may	include
more	than	two	queries	if	multiple	set	operations	are	needed	to	attain	the
final	results.

Set	Operators
The	SQL	language	includes	three	set	operators	that	allow	you	to	perform
each	of	the	various	set	operations	described	earlier	in	the	chapter.
Additionally,	each	set	operator	has	two	flavors,	one	that	includes
duplicates	and	another	that	removes	duplicates	(but	not	necessarily	all	of
the	duplicates).	The	following	subsections	define	each	operator	and
demonstrate	how	they	are	used.

The	union	Operator



The	union	Operator

The	union	and	union all	operators	allow	you	to	combine	multiple	data
sets.	The	difference	between	the	two	is	that	union	sorts	the	combined	set
and	removes	duplicates,	whereas	union all	does	not.	With	union all,
the	number	of	rows	in	the	final	data	set	will	always	equal	the	sum	of	the
number	of	rows	in	the	sets	being	combined.	This	operation	is	the	simplest
set	operation	to	perform	(from	the	server’s	point	of	view),	since	there	is	no
need	for	the	server	to	check	for	overlapping	data.	The	following	example
demonstrates	how	you	can	use	the	union all	operator	to	generate	a	set	of
first	and	last	names	from	multiple	tables:

mysql> SELECT 'CUST' typ, c.first_name, c.last_name
    -> FROM customer c
    -> UNION ALL
    -> SELECT 'ACTR' typ, a.first_name, a.last_name
    -> FROM actor a;
+------+------------+-------------+
| typ  | first_name | last_name   |
+------+------------+-------------+
| CUST | MARY       | SMITH       |
| CUST | PATRICIA   | JOHNSON     |
| CUST | LINDA      | WILLIAMS    |
| CUST | BARBARA    | JONES       |
| CUST | ELIZABETH  | BROWN       |
| CUST | JENNIFER   | DAVIS       |
| CUST | MARIA      | MILLER      |
| CUST | SUSAN      | WILSON      |
| CUST | MARGARET   | MOORE       |
| CUST | DOROTHY    | TAYLOR      |
| CUST | LISA       | ANDERSON    |
| CUST | NANCY      | THOMAS      |
| CUST | KAREN      | JACKSON     |
...
| ACTR | BURT       | TEMPLE      |
| ACTR | MERYL      | ALLEN       |
| ACTR | JAYNE      | SILVERSTONE |
| ACTR | BELA       | WALKEN      |
| ACTR | REESE      | WEST        |
| ACTR | MARY       | KEITEL      |
| ACTR | JULIA      | FAWCETT     |
| ACTR | THORA      | TEMPLE      |
+------+------------+-------------+
799 rows in set (0.00 sec)



The	query	returns	799	names,	with	599	rows	coming	from	the	customer
table	and	the	other	200	coming	from	the	actor	table.	The	first	column,
which	has	the	alias		typ,	is	not	necessary,	but	was	added	to	show	the
source	of	each	name	returned	by	the	query.

Just	to	drive	home	the	point	that	the	union all	operator	doesn’t	remove
duplicates,	here’s	another	version	of	the	previous	example,	but	with	two
identical	queries	against	the	actor	table:

mysql> SELECT 'ACTR' typ, a.first_name, a.last_name
    -> FROM actor a
    -> UNION ALL
    -> SELECT 'ACTR' typ, a.first_name, a.last_name
    -> FROM actor a;
+------+-------------+--------------+
| typ  | first_name  | last_name    |
+------+-------------+--------------+
| ACTR | PENELOPE    | GUINESS      |
| ACTR | NICK        | WAHLBERG     |
| ACTR | ED          | CHASE        |
| ACTR | JENNIFER    | DAVIS        |
| ACTR | JOHNNY      | LOLLOBRIGIDA |
| ACTR | BETTE       | NICHOLSON    |
| ACTR | GRACE       | MOSTEL       |
...
| ACTR | BURT        | TEMPLE       |
| ACTR | MERYL       | ALLEN        |
| ACTR | JAYNE       | SILVERSTONE  |
| ACTR | BELA        | WALKEN       |
| ACTR | REESE       | WEST         |
| ACTR | MARY        | KEITEL       |
| ACTR | JULIA       | FAWCETT      |
| ACTR | THORA       | TEMPLE       |
+------+-------------+--------------+
400 rows in set (0.00 sec)

As	you	can	see	by	the	results,	the	200	rows	from	the	actor	table	are
included	twice,	for	a	total	of	400	rows.

While	you	are	unlikely	to	repeat	the	same	query	twice	in	a	compound
query,	here	is	another	compound	query	that	returns	duplicate	data:



mysql> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
    -> UNION ALL
    -> SELECT a.first_name, a.last_name
    -> FROM actor a
    -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| JENNIFER   | DAVIS     |
| JENNIFER   | DAVIS     |
| JUDY       | DEAN      |
| JODIE      | DEGENERES |
| JULIANNE   | DENCH     |
+------------+-----------+
5 rows in set (0.00 sec)

Both	queries	return	the	names	of	people	having	the	initials	JD.	Of	the	five
rows	in	the	result	set,	one	of	them	is	a	duplicate	(Jennifer	Davis).	If	you
would	like	your	combined	table	to	exclude	duplicate	rows,	you	need	to	use
the	union	operator	instead	of	union all:

mysql> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
    -> UNION

    -> SELECT a.first_name, a.last_name
    -> FROM actor a
    -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| JENNIFER   | DAVIS     |
| JUDY       | DEAN      |
| JODIE      | DEGENERES |
| JULIANNE   | DENCH     |
+------------+-----------+
4 rows in set (0.00 sec)

For	this	version	of	the	query,	only	the	four	distinct	names	are	included	in
the	result	set,	rather	than	the	five	rows	returned	when	using	union all.

The	intersect	Operator



The	intersect	Operator

The	ANSI	SQL	specification	includes	the	intersect	operator	for
performing	intersections.	Unfortunately,	version	8.0	of	MySQL	does	not
implement	the	intersect	operator.	If	you	are	using	Oracle	or	SQL	Server
2008,	you	will	be	able	to	use	intersect;	since	I	am	using	MySQL	for	all
examples	in	this	book,	however,	the	result	sets	for	the	example	queries	in
this	section	are	fabricated	and	cannot	be	executed	with	any	versions	up	to
and	including	version	8.0.	I	also	refrain	from	showing	the	MySQL	prompt
(mysql>),	since	the	statements	are	not	being	executed	by	the	MySQL
server.

If	the	two	queries	in	a	compound	query	return	nonoverlapping	data	sets,
then	the	intersection	will	be	an	empty	set.	Consider	the	following	query:

SELECT c.first_name, c.last_name
FROM customer c
WHERE c.first_name LIKE 'D%' AND c.last_name LIKE 'T%'
INTERSECT

SELECT a.first_name, a.last_name
FROM actor a
WHERE a.first_name LIKE 'D%' AND a.last_name LIKE 'T%';
Empty set (0.04 sec)

While	there	are	both	actors	and	customers	having	the	initials	DT,	these
sets	are	completely	nonoverlapping,	so	the	intersection	of	the	two	sets
yields	the	empty	set.	If	we	switch	back	to	the	initials	JD,	however,	the
intersection	will	yield	a	single	row:

SELECT c.first_name, c.last_name
FROM customer c
WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
INTERSECT
SELECT a.first_name, a.last_name
FROM actor a
WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+



| JENNIFER   | DAVIS     |
+------------+-----------+
1 row in set (0.00 sec)

The	intersection	of	these	two	queries	yields	Jennifer	Davis,	which	is	the
only	name	found	in	both	queries’	result	sets.

Along	with	the	intersect	operator,	which	removes	any	duplicate	rows
found	in	the	overlapping	region,	the	ANSI	SQL	specification	calls	for	an
intersect all	operator,	which	does	not	remove	duplicates.	The	only
database	server	that	currently	implements	the	intersect all	operator	is
IBM’s	DB2	Universal	Server.

The	except	Operator

The	ANSI	SQL	specification	includes	the	except	operator	for	performing
the	except	operation.	Once	again,	unfortunately,	version	8.0	of	MySQL
does	not	implement	the	except	operator,	so	the	same	rules	apply	for	this
section	as	for	the	previous	section.

NOTE
If	you	are	using	Oracle	Database,	you	will	need	to	use	the	non-ANSI-compliant	minus	operator
instead.

The	except	operator	returns	the	first	result	set	minus	any	overlap	with	the
second	result	set.	Here’s	the	example	from	the	previous	section,	but	using
except	instead	of	intersect,	and	with	the	order	of	the	queries	reversed:

SELECT a.first_name, a.last_name
FROM actor a
WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
EXCEPT



SELECT c.first_name, c.last_name
FROM customer c
WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| JUDY       | DEAN      |
| JODIE      | DEGENERES |
| JULIANNE   | DENCH     |
+------------+-----------+
3 rows in set (0.00 sec)

In	this	version	of	the	query,	the	result	set	consists	of	the	three	rows	from
the	first	query	minus	Jennifer	Davis,	who	is	found	in	the	result	sets	from
both	queries.	There	is	also	an	except all	operator	specified	in	the	ANSI
SQL	specification,	but	once	again,	only	IBM’s	DB2	Universal	Server	has
implemented	the	except all	operator.

The	except all	operator	is	a	bit	tricky,	so	here	is	an	example	that
demonstrates	how	duplicate	data	is	handled.	Let’s	say	you	have	two	data
sets	that	look	like	the	following:

Set	A

+----------+
| actor_id |
+----------+
|       10 |
|       11 |
|       12 |
|       10 |
|       10 |
+----------+

Set	B

+----------+
| actor_id |
+----------+
|       10 |
|       10 |



|       10 |
+----------+

The	operation	A except B	yields	the	following:

+----------+
| actor_id |
+----------+
|       11 |
|       12 |
+----------+

If	you	change	the	operation	to	A except all B,	you	will	see	the
following:

+----------+
| actor_id |
+----------+
|       10 |
|       11 |
|       12 |
+----------+

Therefore,	the	difference	between	the	two	operations	is	that	except
removes	all	occurrences	of	duplicate	data	from	set	A,	whereas	except
all	removes	only	one	occurrence	of	duplicate	data	from	set	A	for	every
occurrence	in	set	B.

Set	Operation	Rules
The	following	sections	outline	some	rules	that	you	must	follow	when
working	with	compound	queries.

Sorting	Compound	Query	Results

If	you	want	the	results	of	your	compound	query	to	be	sorted,	you	can	add
an	order by	clause	after	the	last	query.	When	specifying	column	names



in	the	order by	clause,	you	will	need	to	choose	from	the	column	names	in
the	first	query	of	the	compound	query.	Frequently,	the	column	names	are
the	same	for	both	queries	in	a	compound	query,	but	this	does	not	need	to
be	the	case,	as	demonstrated	by	the	following:

mysql> SELECT a.first_name fname, a.last_name lname

    -> FROM actor a
    -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
    -> UNION ALL
    -> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
    -> ORDER BY lname,	fname;

+----------+-----------+
| fname    | lname     |
+----------+-----------+
| JENNIFER | DAVIS     |
| JENNIFER | DAVIS     |
| JUDY     | DEAN      |
| JODIE    | DEGENERES |
| JULIANNE | DENCH     |
+----------+-----------+
5 rows in set (0.00 sec)

The	column	names	specified	in	the	two	queries	are	different	in	this
example.	If	you	specify	a	column	name	from	the	second	query	in	your
order by	clause,	you	will	see	the	following	error:

mysql> SELECT a.first_name fname, a.last_name lname
    -> FROM actor a
    -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
    -> UNION ALL
    -> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
    -> ORDER BY last_name,	first_name;

ERROR 1054 (42S22): Unknown column 'last_name' in 'order clause'

I	recommend	giving	the	columns	in	both	queries	identical	column	aliases
in	order	to	avoid	this	issue.

Set	Operation	Precedence



Set	Operation	Precedence

If	your	compound	query	contains	more	than	two	queries	using	different	set
operators,	you	need	to	think	about	the	order	in	which	to	place	the	queries
in	your	compound	statement	to	achieve	the	desired	results.	Consider	the
following	three-query	compound	statement:

mysql> SELECT a.first_name, a.last_name
    -> FROM actor a
    -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
    -> UNION	ALL

    -> SELECT a.first_name, a.last_name
    -> FROM actor a
    -> WHERE a.first_name LIKE 'M%' AND a.last_name LIKE 'T%'
    -> UNION

    -> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| JENNIFER   | DAVIS     |
| JUDY       | DEAN      |
| JODIE      | DEGENERES |
| JULIANNE   | DENCH     |
| MARY       | TANDY     |
| MENA       | TEMPLE    |
+------------+-----------+
6	rows in set (0.00 sec)

This	compound	query	includes	three	queries	that	return	sets	of	nonunique
names;	the	first	and	second	queries	are	separated	with	the	union all
operator,	while	the	second	and	third	queries	are	separated	with	the	union
operator.	While	it	might	not	seem	to	make	much	difference	where	the
union	and	union all	operators	are	placed,	it	does,	in	fact,	make	a
difference.	Here’s	the	same	compound	query	with	the	set	operators
reversed:

mysql> SELECT a.first_name, a.last_name
    -> FROM actor a
    -> WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'



    -> UNION

    -> SELECT a.first_name, a.last_name
    -> FROM actor a
    -> WHERE a.first_name LIKE 'M%' AND a.last_name LIKE 'T%'
    -> UNION	ALL

    -> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| JENNIFER   | DAVIS     |
| JUDY       | DEAN      |
| JODIE      | DEGENERES |
| JULIANNE   | DENCH     |
| MARY       | TANDY     |
| MENA       | TEMPLE    |
| JENNIFER   | DAVIS     |
+------------+-----------+
7	rows in set (0.00 sec)

Looking	at	the	results,	it’s	obvious	that	it	does	make	a	difference	how	the
compound	query	is	arranged	when	using	different	set	operators.	In
general,	compound	queries	containing	three	or	more	queries	are	evaluated
in	order	from	top	to	bottom,	but	with	the	following	caveats:

The	ANSI	SQL	specification	calls	for	the	intersect	operator	to
have	precedence	over	the	other	set	operators.

You	may	dictate	the	order	in	which	queries	are	combined	by
enclosing	multiple	queries	in	parentheses.

MySQL	does	not	yet	allow	parentheses	in	compound	queries,	but	if	you
are	using	a	different	database	server,	you	can	wrap	adjoining	queries	in
parentheses	to	override	the	default	top-to-bottom	processing	of	compound
queries,	as	in:

SELECT a.first_name, a.last_name
FROM actor a
WHERE a.first_name LIKE 'J%' AND a.last_name LIKE 'D%'
UNION
(SELECT a.first_name, a.last_name



 FROM actor a
 WHERE a.first_name LIKE 'M%' AND a.last_name LIKE 'T%'
 UNION ALL
 SELECT c.first_name, c.last_name
 FROM customer c
 WHERE c.first_name LIKE 'J%' AND c.last_name LIKE 'D%'
)

For	this	compound	query,	the	second	and	third	queries	would	be	combined
using	the	union all	operator,	then	the	results	would	be	combined	with
the	first	query	using	the	union	operator.

Test	Your	Knowledge
The	following	exercises	are	designed	to	test	your	understanding	of	set
operations.	See	Appendix	B	for	the	answers	to	these	exercises.

Exercise	6-1

If	set	A	=	{L	M	N	O	P}	and	set	B	=	{P	Q	R	S	T},	what	sets	are	generated
by	the	following	operations?

A union B

A union all B

A intersect B

A except B

Exercise	6-2

Write	a	compound	query	that	finds	the	first	and	last	names	of	all	actors
and	customers	whose	last	name	starts	with	L.

Exercise	6-3



Sort	the	results	from	Exercise	6-2	by	the	last_name	column.



Chapter	7.	Data	Generation,
Manipulation,	and	Conversion

As	I	mentioned	in	the	preface,	this	book	strives	to	teach	generic	SQL
techniques	that	can	be	applied	across	multiple	database	servers.	This
chapter,	however,	deals	with	the	generation,	conversion,	and	manipulation
of	string,	numeric,	and	temporal	data,	and	the	SQL	language	does	not
include	commands	covering	this	functionality.	Rather,	built-in	functions
are	used	to	facilitate	data	generation,	conversion,	and	manipulation,	and
while	the	SQL	standard	does	specify	some	functions,	the	database	vendors
often	do	not	comply	with	the	function	specifications.

Therefore,	my	approach	for	this	chapter	is	to	show	you	some	of	the
common	ways	in	which	data	is	generated	and	manipulated	within	SQL
statements	and	then	demonstrate	some	of	the	built-in	functions
implemented	by	Microsoft	SQL	Server,	Oracle	Database,	and	MySQL.
Along	with	reading	this	chapter,	I	strongly	recommend	you	download	a
reference	guide	covering	all	the	functions	implemented	by	your	server.	If
you	work	with	more	than	one	database	server,	there	are	several	reference
guides	that	cover	multiple	servers,	such	as	Kevin	Kline	et	al.’s	SQL	in	a
Nutshell	and	Jonathan	Gennick’s	SQL	Pocket	Guide,	both	from	O’Reilly.

Working	with	String	Data
When	working	with	string	data,	you	will	be	using	one	of	the	following
character	data	types:

http://shop.oreilly.com/product/9780596518851.do
http://shop.oreilly.com/product/9780596526887.do


CHAR

Holds	fixed-length,	blank-padded	strings.	MySQL	allows	CHAR	values
up	to	255	characters	in	length,	Oracle	Database	permits	up	to	2,000
characters,	and	SQL	Server	allows	up	to	8,000	characters.

varchar

Holds	variable-length	strings.	MySQL	permits	up	to	65,535	characters
in	a	varchar	column,	Oracle	Database	(via	the	varchar2	type)	allows
up	to	4,000	characters,	and	SQL	Server	allows	up	to	8,000	characters.

text	(MySQL	and	SQL	Server)	or	clob	(Oracle	Database)

Holds	very	large	variable-length	strings	(generally	referred	to	as
documents	in	this	context).	MySQL	has	multiple	text	types	(tinytext,
text,	mediumtext,	and	longtext)	for	documents	up	to	4	GB	in	size.
SQL	Server	has	a	single	text	type	for	documents	up	to	2	GB	in	size,
and	Oracle	Database	includes	the	clob	data	type,	which	can	hold
documents	up	to	a	whopping	128	TB.	SQL	Server	2005	also	includes
the	varchar(max)	data	type	and	recommends	its	use	instead	of	the
text	type,	which	will	be	removed	from	the	server	in	some	future
release.

To	demonstrate	how	you	can	use	these	various	types,	I	use	the	following
table	for	some	of	the	examples	in	this	section:

CREATE TABLE string_tbl
 (char_fld CHAR(30),
  vchar_fld VARCHAR(30),
  text_fld TEXT
 );

The	next	two	subsections	show	how	you	can	generate	and	manipulate
string	data.

String	Generation

The	simplest	way	to	populate	a	character	column	is	to	enclose	a	string	in



quotes,	as	in	the	following	examples:

mysql> INSERT INTO string_tbl (char_fld, vchar_fld, text_fld)
    -> VALUES ('This is char data',
    ->   'This is varchar data',
    ->   'This is text data');
Query OK, 1 row affected (0.00 sec)

When	inserting	string	data	into	a	table,	remember	that	if	the	length	of	the
string	exceeds	the	maximum	size	for	the	character	column	(either	the
designated	maximum	or	the	maximum	allowed	for	the	data	type),	the
server	will	throw	an	exception.	Although	this	is	the	default	behavior	for	all
three	servers,	you	can	configure	MySQL	and	SQL	Server	to	silently
truncate	the	string	instead	of	throwing	an	exception.	To	demonstrate	how
MySQL	handles	this	situation,	the	following	update	statement	attempts	to
modify	the	vchar_fld	column,	whose	maximum	length	is	defined	as	30,
with	a	string	that	is	46	characters	in	length:

mysql> UPDATE string_tbl
    -> SET vchar_fld = 'This is a piece of extremely long varchar data';
ERROR 1406 (22001): Data too long for column 'vchar_fld' at row 1

Since	MySQL	6.0,	the	default	behavior	is	now	“strict”	mode,	which	means
that	exceptions	are	thrown	when	problems	arise,	whereas	in	older	versions
of	the	server	the	string	would	have	been	truncated	and	a	warning	issued.	If
you	would	rather	have	the	engine	truncate	the	string	and	issue	a	warning
instead	of	raising	an	exception,	you	can	opt	to	be	in	ANSI	mode.	The
following	example	shows	how	to	check	which	mode	you	are	in	and	then
how	to	change	the	mode	using	the	set	command:

mysql> SELECT @@session.sql_mode;
+----------------------------------------------------------------+
| @@session.sql_mode                                             |
+----------------------------------------------------------------+
| STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION |
+----------------------------------------------------------------+



1 row in set (0.00 sec)

mysql> SET sql_mode='ansi';
Query OK, 0 rows affected (0.08 sec)

mysql> SELECT @@session.sql_mode;
+--------------------------------------------------------------------------------+

| @@session.sql_mode                                                             
|
+--------------------------------------------------------------------------------+

| 
REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ONLY_FULL_GROUP_BY,ANSI
 |
+--------------------------------------------------------------------------------+

1 row in set (0.00 sec)

If	you	rerun	the	previous	update	statement,	you	will	find	that	the	column
has	been	modified,	but	the	following	warning	is	generated:

mysql> SHOW WARNINGS;
+---------+------+------------------------------------------------+
| Level   | Code | Message                                        |
+---------+------+------------------------------------------------+
| Warning | 1265 | Data truncated for column 'vchar_fld' at row 1 |
+---------+------+------------------------------------------------+
1 row in set (0.00 sec)

If	you	retrieve	the	vchar_fld	column,	you	will	see	that	the	string	has
indeed	been	truncated:

mysql> SELECT vchar_fld
    -> FROM string_tbl;
+--------------------------------+
| vchar_fld                      |
+--------------------------------+
| This is a piece of extremely l |
+--------------------------------+
1 row in set (0.05 sec)

As	you	can	see,	only	the	first	30	characters	of	the	46-character	string	made
it	into	the	vchar_fld	column.	The	best	way	to	avoid	string	truncation	(or



exceptions,	in	the	case	of	Oracle	Database	or	MySQL	in	strict	mode)
when	working	with	varchar	columns	is	to	set	the	upper	limit	of	a	column
to	a	high	enough	value	to	handle	the	longest	strings	that	might	be	stored	in
the	column	(keeping	in	mind	that	the	server	allocates	only	enough	space	to
store	the	string,	so	it	is	not	wasteful	to	set	a	high	upper	limit	for	varchar
columns).

INCLUDING	SINGLE	QUOTES

Since	strings	are	demarcated	by	single	quotes,	you	will	need	to	be	alert	for
strings	that	include	single	quotes	or	apostrophes.	For	example,	you	won’t
be	able	to	insert	the	following	string	because	the	server	will	think	that	the
apostrophe	in	the	word	doesn’t	marks	the	end	of	the	string:

UPDATE string_tbl
SET text_fld = 'This string doesn't work';

To	make	the	server	ignore	the	apostrophe	in	the	word	doesn’t,	you	will
need	to	add	an	escape	to	the	string	so	that	the	server	treats	the	apostrophe
like	any	other	character	in	the	string.	All	three	servers	allow	you	to	escape
a	single	quote	by	adding	another	single	quote	directly	before,	as	in:

mysql> UPDATE string_tbl
    -> SET text_fld = 'This string didn''t work, but it does now';
Query OK, 1 row affected (0.01 sec)
Rows matched: 1  Changed: 1  Warnings: 0

NOTE
Oracle	Database	and	MySQL	users	may	also	choose	to	escape	a	single	quote	by	adding	a
backslash	character	immediately	before,	as	in:

UPDATE string_tbl SET text_fld =
  'This string didn\'t work, but it does now'



If	you	retrieve	a	string	for	use	in	a	screen	or	report	field,	you	don’t	need	to
do	anything	special	to	handle	embedded	quotes:

mysql> SELECT text_fld
    -> FROM string_tbl;
+------------------------------------------+
| text_fld                                 |
+------------------------------------------+
| This string didn't work, but it does now |
+------------------------------------------+
1 row in set (0.00 sec)

However,	if	you	are	retrieving	the	string	to	add	to	a	file	that	another
program	will	read,	you	may	want	to	include	the	escape	as	part	of	the
retrieved	string.	If	you	are	using	MySQL,	you	can	use	the	built-in	function
quote(),	which	places	quotes	around	the	entire	string	and	adds	escapes	to
any	single	quotes/apostrophes	within	the	string.	Here’s	what	our	string
looks	like	when	retrieved	via	the	quote()	function:

mysql> SELECT quote(text_fld)
    -> FROM string_tbl;
+---------------------------------------------+
| QUOTE(text_fld)                             |
+---------------------------------------------+
| 'This string didn\'t work, but it does now' |
+---------------------------------------------+
1 row in set (0.04 sec)

When	retrieving	data	for	data	export,	you	may	want	to	use	the	quote()
function	for	all	non-system-generated	character	columns,	such	as	a
customer_notes	column.

INCLUDING	SPECIAL	CHARACTERS

If	your	application	is	multinational	in	scope,	you	might	find	yourself
working	with	strings	that	include	characters	that	do	not	appear	on	your
keyboard.	When	working	with	the	French	and	German	languages,	for



example,	you	might	need	to	include	accented	characters	such	as	é	and	ö.
The	SQL	Server	and	MySQL	servers	include	the	built-in	function	char()
so	that	you	can	build	strings	from	any	of	the	255	characters	in	the	ASCII
character	set	(Oracle	Database	users	can	use	the	chr()	function).	To
demonstrate,	the	next	example	retrieves	a	typed	string	and	its	equivalent
built	via	individual	characters:

mysql> SELECT 'abcdefg', CHAR(97,98,99,100,101,102,103);
+---------+--------------------------------+
| abcdefg | CHAR(97,98,99,100,101,102,103) |
+---------+--------------------------------+
| abcdefg | abcdefg                        |
+---------+--------------------------------+
1 row in set (0.01 sec)

Thus,	the	97th	character	in	the	ASCII	character	set	is	the	letter	a.	While
the	characters	shown	in	the	preceding	example	are	not	special,	the
following	examples	show	the	location	of	the	accented	characters	along
with	other	special	characters,	such	as	currency	symbols:

mysql> SELECT CHAR(128,129,130,131,132,133,134,135,136,137);
+-----------------------------------------------+
| CHAR(128,129,130,131,132,133,134,135,136,137) |
+-----------------------------------------------+
| Çüéâäàåçêë                                    |
+-----------------------------------------------+
1 row in set (0.01 sec)

mysql> SELECT CHAR(138,139,140,141,142,143,144,145,146,147);
+-----------------------------------------------+
| CHAR(138,139,140,141,142,143,144,145,146,147) |
+-----------------------------------------------+
| èïîìÄÅÉæÆô                                    |
+-----------------------------------------------+
1 row in set (0.01 sec)

mysql> SELECT CHAR(148,149,150,151,152,153,154,155,156,157);
+-----------------------------------------------+
| CHAR(148,149,150,151,152,153,154,155,156,157) |
+-----------------------------------------------+
| öòûùÿÖÜø£Ø                                    |
+-----------------------------------------------+



1 row in set (0.00 sec)

mysql> SELECT CHAR(158,159,160,161,162,163,164,165);
+---------------------------------------+
| CHAR(158,159,160,161,162,163,164,165) |
+---------------------------------------+
| ×ƒáíóúñÑ                              |
+---------------------------------------+
1 row in set (0.01 sec)

NOTE
I	am	using	the	utf8mb4	character	set	for	the	examples	in	this	section.	If	your	session	is
configured	for	a	different	character	set,	you	will	see	a	different	set	of	characters	than	what	is
shown	here.	The	same	concepts	apply,	but	you	will	need	to	familiarize	yourself	with	the	layout
of	your	character	set	to	locate	specific	characters.

Building	strings	character	by	character	can	be	quite	tedious,	especially	if
only	a	few	of	the	characters	in	the	string	are	accented.	Fortunately,	you
can	use	the	concat()	function	to	concatenate	individual	strings,	some	of
which	you	can	type	while	others	you	can	generate	via	the	char()
function.	For	example,	the	following	shows	how	to	build	the	phrase	danke
schön	using	the	concat()	and	char()	functions:

mysql> SELECT CONCAT('danke sch', CHAR(148), 'n');
+-------------------------------------+
| CONCAT('danke sch', CHAR(148), 'n') |
+-------------------------------------+
| danke schön                         |
+-------------------------------------+
1 row in set (0.00 sec)

NOTE
Oracle	Database	users	can	use	the	concatenation	operator	(||)	instead	of	the	concat()	function,
as	in:

SELECT 'danke sch' || CHR(148) || 'n'
FROM dual;



FROM dual;

SQL	Server	does	not	include	a	concat()	function,	so	you	will	need	to	use	the	concatenation
operator	(+),	as	in:

SELECT 'danke sch' + CHAR(148) + 'n'

If	you	have	a	character	and	need	to	find	its	ASCII	equivalent,	you	can	use
the	ascii()	function,	which	takes	the	leftmost	character	in	the	string	and
returns	a	number:

mysql> SELECT ASCII('ö');
+------------+
| ASCII('ö') |
+------------+
|        148 |
+------------+
1 row in set (0.00 sec)

Using	the	char(),	ascii(),	and	concat()	functions	(or	concatenation
operators),	you	should	be	able	to	work	with	any	Roman	language	even	if
you	are	using	a	keyboard	that	does	not	include	accented	or	special
characters.

String	Manipulation

Each	database	server	includes	many	built-in	functions	for	manipulating
strings.	This	section	explores	two	types	of	string	functions:	those	that
return	numbers	and	those	that	return	strings.	Before	I	begin,	however,	I
reset	the	data	in	the	string_tbl	table	to	the	following:

mysql> DELETE FROM string_tbl;
Query OK, 1 row affected (0.02 sec)

mysql> INSERT INTO string_tbl (char_fld, vchar_fld, text_fld)
    -> VALUES ('This string is 28 characters',
    ->   'This string is 28 characters',



    ->   'This string is 28 characters');
Query OK, 1 row affected (0.00 sec)

STRING	FUNCTIONS	THAT	RETURN	NUMBERS

Of	the	string	functions	that	return	numbers,	one	of	the	most	commonly
used	is	the	length()	function,	which	returns	the	number	of	characters	in
the	string	(SQL	Server	users	will	need	to	use	the	len()	function).	The
following	query	applies	the	length()	function	to	each	column	in	the
string_tbl	table:

mysql> SELECT LENGTH(char_fld) char_length,
    ->   LENGTH(vchar_fld) varchar_length,
    ->   LENGTH(text_fld) text_length
    -> FROM string_tbl;
+-------------+----------------+-------------+
| char_length | varchar_length | text_length |
+-------------+----------------+-------------+
|          28 |             28 |          28 |
+-------------+----------------+-------------+
1 row in set (0.00 sec)

While	the	lengths	of	the	varchar	and	text	columns	are	as	expected,	you
might	have	expected	the	length	of	the	char	column	to	be	30,	since	I	told
you	that	strings	stored	in	char	columns	are	right-padded	with	spaces.	The
MySQL	server	removes	trailing	spaces	from	char	data	when	it	is
retrieved,	however,	so	you	will	see	the	same	results	from	all	string
functions	regardless	of	the	type	of	column	in	which	the	strings	are	stored.

Along	with	finding	the	length	of	a	string,	you	might	want	to	find	the
location	of	a	substring	within	a	string.	For	example,	if	you	want	to	find	the
position	at	which	the	string	'characters'	appears	in	the	vchar_fld
column,	you	could	use	the	position()	function,	as	demonstrated	by	the
following:

mysql> SELECT POSITION('characters' IN vchar_fld)
    -> FROM string_tbl;



+-------------------------------------+
| POSITION('characters' IN vchar_fld) |
+-------------------------------------+
|                                  19 |
+-------------------------------------+
1 row in set (0.12 sec)

If	the	substring	cannot	be	found,	the	position()	function	returns	0.

WARNING
For	those	of	you	who	program	in	a	language	such	as	C	or	C++,	where	the	first	element	of	an
array	is	at	position	0,	remember	when	working	with	databases	that	the	first	character	in	a	string
is	at	position	1.	A	return	value	of	0	from	instr()	indicates	that	the	substring	could	not	be
found,	not	that	the	substring	was	found	at	the	first	position	in	the	string.

If	you	want	to	start	your	search	at	something	other	than	the	first	character
of	your	target	string,	you	will	need	to	use	the	locate()	function,	which	is
similar	to	the	position()	function	except	that	it	allows	an	optional	third
parameter,	which	is	used	to	define	the	search’s	start	position.	The
locate()	function	is	also	proprietary,	whereas	the	position()	function
is	part	of	the	SQL:2003	standard.	Here’s	an	example	asking	for	the
position	of	the	string	'is'	starting	at	the	fifth	character	in	the	vchar_fld
column:

mysql> SELECT LOCATE('is', vchar_fld, 5)
    -> FROM string_tbl;
+----------------------------+
| LOCATE('is', vchar_fld, 5) |
+----------------------------+
|                         13 |
+----------------------------+
1 row in set (0.02 sec)

NOTE



Oracle	Database	does	not	include	the	position()	or	locate()	function,	but	it	does	include	the
instr()	function,	which	mimics	the	position()	function	when	provided	with	two	arguments
and	mimics	the	locate()	function	when	provided	with	three	arguments.	SQL	Server	also
doesn’t	include	a	position()	or	locate()	function,	but	it	does	include	the	charindx()
function,	which	also	accepts	either	two	or	three	arguments	similar	to	Oracle’s	instr()	function.

Another	function	that	takes	strings	as	arguments	and	returns	numbers	is
the	string	comparison	function	strcmp().	strcmp(),	which	is
implemented	only	by	MySQL	and	has	no	analog	in	Oracle	Database	or
SQL	Server,	takes	two	strings	as	arguments	and	returns	one	of	the
following:

−1	if	the	first	string	comes	before	the	second	string	in	sort	order

0	if	the	strings	are	identical

1	if	the	first	string	comes	after	the	second	string	in	sort	order

To	illustrate	how	the	function	works,	I	first	show	the	sort	order	of	five
strings	using	a	query	and	then	show	how	the	strings	compare	to	one
another	using	strcmp().	Here	are	the	five	strings	that	I	insert	into	the
string_tbl	table:

mysql> DELETE	FROM	string_tbl;

Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO string_tbl(vchar_fld)
    -> VALUES ('abcd'),
    ->        ('xyz'),
    ->        ('QRSTUV'),
    ->        ('qrstuv'),
    ->        ('12345');
Query OK, 5 rows affected (0.05 sec)
Records: 5  Duplicates: 0  Warnings: 0

Here	are	the	five	strings	in	their	sort	order:



mysql> SELECT vchar_fld
    -> FROM string_tbl
    -> ORDER BY vchar_fld;
+-----------+
| vchar_fld |
+-----------+
| 12345     |
| abcd      |
| QRSTUV    |
| qrstuv    |
| xyz       |
+-----------+
5 rows in set (0.00 sec)

The	next	query	makes	six	comparisons	among	the	five	different	strings:

mysql> SELECT STRCMP('12345','12345') 12345_12345,
    ->   STRCMP('abcd','xyz') abcd_xyz,
    ->   STRCMP('abcd','QRSTUV') abcd_QRSTUV,
    ->   STRCMP('qrstuv','QRSTUV') qrstuv_QRSTUV,
    ->   STRCMP('12345','xyz') 12345_xyz,
    ->   STRCMP('xyz','qrstuv') xyz_qrstuv;
+-------------+----------+-------------+---------------+-----------+------------+

| 12345_12345 | abcd_xyz | abcd_QRSTUV | qrstuv_QRSTUV | 12345_xyz | 
xyz_qrstuv |
+-------------+----------+-------------+---------------+-----------+------------+

|           0 |       −1 |          −1 |             0 |        −1 |          
1 |
+-------------+----------+-------------+---------------+-----------+------------+

1 row in set (0.00 sec)

The	first	comparison	yields	0,	which	is	to	be	expected	since	I	compared	a
string	to	itself.	The	fourth	comparison	also	yields	0,	which	is	a	bit
surprising,	since	the	strings	are	composed	of	the	same	letters,	with	one
string	all	uppercase	and	the	other	all	lowercase.	The	reason	for	this	result
is	that	MySQL’s	strcmp()	function	is	case-insensitive,	which	is
something	to	remember	when	using	the	function.	The	other	four
comparisons	yield	either	−1	or	1	depending	on	whether	the	first	string
comes	before	or	after	the	second	string	in	sort	order.	For	example,



strcmp('abcd','xyz')	yields	−1,	since	the	string	'abcd'	comes	before
the	string	'xyz'.

Along	with	the	strcmp()	function,	MySQL	also	allows	you	to	use	the
like	and	regexp	operators	to	compare	strings	in	the	select	clause.	Such
comparisons	will	yield	1	(for	true)	or	0	(for	false).	Therefore,	these
operators	allow	you	to	build	expressions	that	return	a	number,	much	like
the	functions	described	in	this	section.	Here’s	an	example	using	like:

mysql> SELECT name, name LIKE '%y' ends_in_y
    -> FROM category;
+-------------+-----------+
| name        | ends_in_y |
+-------------+-----------+
| Action      |         0 |
| Animation   |         0 |
| Children    |         0 |
| Classics    |         0 |
| Comedy      |         1 |
| Documentary |         1 |
| Drama       |         0 |
| Family      |         1 |
| Foreign     |         0 |
| Games       |         0 |
| Horror      |         0 |
| Music       |         0 |
| New         |         0 |
| Sci-Fi      |         0 |
| Sports      |         0 |
| Travel      |         0 |
+-------------+-----------+
16 rows in set (0.00 sec)

This	example	retrieves	all	the	category	names,	along	with	an	expression
that	returns	1	if	the	name	ends	in	“y”	or	0	otherwise.	If	you	want	to
perform	more	complex	pattern	matches,	you	can	use	the	regexp	operator,
as	demonstrated	by	the	following:

mysql> SELECT name, name REGEXP 'y$' ends_in_y
    -> FROM category;
+-------------+-----------+



| name        | ends_in_y |
+-------------+-----------+
| Action      |         0 |
| Animation   |         0 |
| Children    |         0 |
| Classics    |         0 |
| Comedy      |         1 |
| Documentary |         1 |
| Drama       |         0 |
| Family      |         1 |
| Foreign     |         0 |
| Games       |         0 |
| Horror      |         0 |
| Music       |         0 |
| New         |         0 |
| Sci-Fi      |         0 |
| Sports      |         0 |
| Travel      |         0 |
+-------------+-----------+
16 rows in set (0.00 sec)

The	second	column	of	this	query	returns	1	if	the	value	stored	in	the	name
column	matches	the	given	regular	expression.

NOTE
Microsoft	SQL	Server	and	Oracle	Database	users	can	achieve	similar	results	by	building	case
expressions,	which	I	describe	in	detail	in	Chapter	11.

STRING	FUNCTIONS	THAT	RETURN	STRINGS

In	some	cases,	you	will	need	to	modify	existing	strings,	either	by
extracting	part	of	the	string	or	by	adding	additional	text	to	the	string.
Every	database	server	includes	multiple	functions	to	help	with	these	tasks.
Before	I	begin,	I	once	again	reset	the	data	in	the	string_tbl	table:

mysql> DELETE FROM string_tbl;
Query OK, 5 rows affected (0.00 sec)

mysql> INSERT INTO string_tbl (text_fld)



    -> VALUES ('This string was 29 characters');
Query OK, 1 row affected (0.01 sec)

Earlier	in	the	chapter,	I	demonstrated	the	use	of	the	concat()	function	to
help	build	words	that	include	accented	characters.	The	concat()	function
is	useful	in	many	other	situations,	including	when	you	need	to	append
additional	characters	to	a	stored	string.	For	instance,	the	following
example	modifies	the	string	stored	in	the	text_fld	column	by	tacking	an
additional	phrase	on	the	end:

mysql> UPDATE string_tbl
    -> SET text_fld = CONCAT(text_fld, ', but now it is longer');
Query OK, 1 row affected (0.03 sec)
Rows matched: 1  Changed: 1  Warnings: 0

The	contents	of	the	text_fld	column	are	now	as	follows:

mysql> SELECT text_fld
    -> FROM string_tbl;
+-----------------------------------------------------+
| text_fld                                            |
+-----------------------------------------------------+
| This string was 29 characters, but now it is longer |
+-----------------------------------------------------+
1 row in set (0.00 sec)

Thus,	like	all	functions	that	return	a	string,	you	can	use	concat()	to
replace	the	data	stored	in	a	character	column.

Another	common	use	for	the	concat()	function	is	to	build	a	string	from
individual	pieces	of	data.	For	example,	the	following	query	generates	a
narrative	string	for	each	customer:

mysql> SELECT concat(first_name, ' ', last_name,
    ->   ' has been a customer since ', date(create_date)) cust_narrative
    -> FROM customer;
+---------------------------------------------------------+
| cust_narrative                                          |
+---------------------------------------------------------+



| MARY SMITH has been a customer since 2006-02-14         |
| PATRICIA JOHNSON has been a customer since 2006-02-14   |
| LINDA WILLIAMS has been a customer since 2006-02-14     |
| BARBARA JONES has been a customer since 2006-02-14      |
| ELIZABETH BROWN has been a customer since 2006-02-14    |
| JENNIFER DAVIS has been a customer since 2006-02-14     |
| MARIA MILLER has been a customer since 2006-02-14       |
| SUSAN WILSON has been a customer since 2006-02-14       |
| MARGARET MOORE has been a customer since 2006-02-14     |
| DOROTHY TAYLOR has been a customer since 2006-02-14     |
...
| RENE MCALISTER has been a customer since 2006-02-14     |
| EDUARDO HIATT has been a customer since 2006-02-14      |
| TERRENCE GUNDERSON has been a customer since 2006-02-14 |
| ENRIQUE FORSYTHE has been a customer since 2006-02-14   |
| FREDDIE DUGGAN has been a customer since 2006-02-14     |
| WADE DELVALLE has been a customer since 2006-02-14      |
| AUSTIN CINTRON has been a customer since 2006-02-14     |
+---------------------------------------------------------+
599 rows in set (0.00 sec)

The	concat()	function	can	handle	any	expression	that	returns	a	string	and
will	even	convert	numbers	and	dates	to	string	format,	as	evidenced	by	the
date	column	(create_date)	used	as	an	argument.	Although	Oracle
Database	includes	the	concat()	function,	it	will	accept	only	two	string
arguments,	so	the	previous	query	will	not	work	on	Oracle.	Instead,	you
would	need	to	use	the	concatenation	operator	(||)	rather	than	a	function
call,	as	in:

SELECT first_name || ' ' || last_name ||
  ' has been a customer since ' || date(create_date)) cust_narrative
FROM customer;

SQL	Server	does	not	include	a	concat()	function,	so	you	would	need	to
use	the	same	approach	as	the	previous	query,	except	that	you	would	use
SQL	Server’s	concatenation	operator	(+)	instead	of	||.

While	concat()	is	useful	for	adding	characters	to	the	beginning	or	end	of
a	string,	you	may	also	have	a	need	to	add	or	replace	characters	in	the



middle	of	a	string.	All	three	database	servers	provide	functions	for	this
purpose,	but	all	of	them	are	different,	so	I	demonstrate	the	MySQL
function	and	then	show	the	functions	from	the	other	two	servers.

MySQL	includes	the	insert()	function,	which	takes	four	arguments:	the
original	string,	the	position	at	which	to	start,	the	number	of	characters	to
replace,	and	the	replacement	string.	Depending	on	the	value	of	the	third
argument,	the	function	may	be	used	to	either	insert	or	replace	characters	in
a	string.	With	a	value	of	0	for	the	third	argument,	the	replacement	string	is
inserted,	and	any	trailing	characters	are	pushed	to	the	right,	as	in:

mysql> SELECT INSERT('goodbye world', 9, 0, 'cruel ') string;
+---------------------+
| string              |
+---------------------+
| goodbye cruel world |
+---------------------+
1 row in set (0.00 sec)

In	this	example,	all	characters	starting	from	position	9	are	pushed	to	the
right,	and	the	string	'cruel'	is	inserted.	If	the	third	argument	is	greater
than	zero,	then	that	number	of	characters	is	replaced	with	the	replacement
string,	as	in:

mysql> SELECT INSERT('goodbye world', 1, 7, 'hello') string;
+-------------+
| string      |
+-------------+
| hello world |
+-------------+
1 row in set (0.00 sec)

For	this	example,	the	first	seven	characters	are	replaced	with	the	string
'hello'.	Oracle	Database	does	not	provide	a	single	function	with	the
flexibility	of	MySQL’s	insert()	function,	but	Oracle	does	provide	the
replace()	function,	which	is	useful	for	replacing	one	substring	with



another.	Here’s	the	previous	example	reworked	to	use	replace():

SELECT REPLACE('goodbye world', 'goodbye', 'hello')
FROM dual;

All	instances	of	the	string	'goodbye'	will	be	replaced	with	the	string
'hello',	resulting	in	the	string	'hello world'.	The	replace()	function
will	replace	every	instance	of	the	search	string	with	the	replacement	string,
so	you	need	to	be	careful	that	you	don’t	end	up	with	more	replacements
than	you	anticipated.

SQL	Server	also	includes	a	replace()	function	with	the	same
functionality	as	Oracle’s,	but	SQL	Server	also	includes	a	function	called
stuff()	with	similar	functionality	to	MySQL’s	insert()	function.
Here’s	an	example:

SELECT STUFF('hello world', 1, 5, 'goodbye cruel')

When	executed,	five	characters	are	removed	starting	at	position	1,	and
then	the	string	'goodbye cruel'	is	inserted	at	the	starting	position,
resulting	in	the	string	'goodbye cruel world'.

Along	with	inserting	characters	into	a	string,	you	may	have	a	need	to
extract	a	substring	from	a	string.	For	this	purpose,	all	three	servers	include
the	substring()	function	(although	Oracle	Database’s	version	is	called
substr()),	which	extracts	a	specified	number	of	characters	starting	at	a
specified	position.	The	following	example	extracts	five	characters	from	a
string	starting	at	the	ninth	position:

mysql> SELECT SUBSTRING('goodbye cruel world', 9, 5);
+----------------------------------------+
| SUBSTRING('goodbye cruel world', 9, 5) |
+----------------------------------------+
| cruel                                  |



+----------------------------------------+
1 row in set (0.00 sec)

Along	with	the	functions	demonstrated	here,	all	three	servers	include
many	more	built-in	functions	for	manipulating	string	data.	While	many	of
them	are	designed	for	very	specific	purposes,	such	as	generating	the	string
equivalent	of	octal	or	hexadecimal	numbers,	there	are	many	other	general-
purpose	functions	as	well,	such	as	functions	that	remove	or	add	trailing
spaces.	For	more	information,	consult	your	server’s	SQL	reference	guide,
or	a	general-purpose	SQL	reference	guide	such	as	SQL	in	a	Nutshell
(O’Reilly).

Working	with	Numeric	Data
Unlike	string	data	(and	temporal	data,	as	you	will	see	shortly),	numeric
data	generation	is	quite	straightforward.	You	can	type	a	number,	retrieve	it
from	another	column,	or	generate	it	via	a	calculation.	All	the	usual
arithmetic	operators	(+,	-,	*,	/)	are	available	for	performing	calculations,
and	parentheses	may	be	used	to	dictate	precedence,	as	in:

mysql> SELECT (37 * 59) / (78 - (8 * 6));
+----------------------------+
| (37 * 59) / (78 - (8 * 6)) |
+----------------------------+
|                      72.77 |
+----------------------------+
1 row in set (0.00 sec)

As	I	mentioned	in	Chapter	2,	the	main	concern	when	storing	numeric	data
is	that	numbers	might	be	rounded	if	they	are	larger	than	the	specified	size
for	a	numeric	column.	For	example,	the	number	9.96	will	be	rounded	to
10.0	if	stored	in	a	column	defined	as	float(3,1).

Performing	Arithmetic	Functions

http://shop.oreilly.com/product/9780596518851.do


Most	of	the	built-in	numeric	functions	are	used	for	specific	arithmetic
purposes,	such	as	determining	the	square	root	of	a	number.	Table	7-1	lists
some	of	the	common	numeric	functions	that	take	a	single	numeric
argument	and	return	a	number.

Table	7-1.	Single-argument	numeric	functions

Function	name Description

	
	 	 	
acos(	x	)
	
	 	 	

	
	 	 	
Calculates	the	arc	cosine	of	x
	
	 	 	

	
	 	 	
asin(	x	)
	
	 	 	

	
	 	 	
Calculates	the	arc	sine	of	x
	
	 	 	

	
	 	 	
atan(	x	)
	
	 	 	

	
	 	 	
Calculates	the	arc	tangent	of	x
	
	 	 	

	
	 	 	
cos(	x	)
	
	 	 	

	
	 	 	
Calculates	the	cosine	of	x
	
	 	 	

	
	 	 	
cot(	x	)
	
	 	 	

	
	 	 	
Calculates	the	cotangent	of	x
	
	 	 	

	
	 	 	
exp(	x	)
	
	 	 	

	
	 	 	
Calculates	e
	
	 	 	

x



	
	 	 	
ln(	x	)
	
	 	 	

	
	 	 	
Calculates	the	natural	log	of	x
	
	 	 	

	
	 	 	
sin(	x	)
	
	 	 	

	
	 	 	
Calculates	the	sine	of	x
	
	 	 	

	
	 	 	
sqrt(	x	)
	
	 	 	

	
	 	 	
Calculates	the	square	root	of	x
	
	 	 	

	
	 	 	
tan(	x	)
	
	 	 	

	
	 	 	
Calculates	the	tangent	of	x
	
	 	 	

These	functions	perform	very	specific	tasks,	and	I	refrain	from	showing
examples	for	these	functions	(if	you	don’t	recognize	a	function	by	name	or
description,	then	you	probably	don’t	need	it).	Other	numeric	functions
used	for	calculations,	however,	are	a	bit	more	flexible	and	deserve	some
explanation.

For	example,	the	modulo	operator,	which	calculates	the	remainder	when
one	number	is	divided	into	another	number,	is	implemented	in	MySQL
and	Oracle	Database	via	the	mod()	function.	The	following	example
calculates	the	remainder	when	4	is	divided	into	10:

mysql> SELECT MOD(10,4);
+-----------+
| MOD(10,4) |
+-----------+
|         2 |



+-----------+
1 row in set (0.02 sec)

While	the	mod()	function	is	typically	used	with	integer	arguments,	with
MySQL	you	can	also	use	real	numbers,	as	in:

mysql> SELECT MOD(22.75, 5);
+---------------+
| MOD(22.75, 5) |
+---------------+
|          2.75 |
+---------------+
1 row in set (0.02 sec)

NOTE
SQL	Server	does	not	have	a	mod()	function.	Instead,	the	operator	%	is	used	for	finding
remainders.	The	expression	10 % 4	will	therefore	yield	the	value	2.

Another	numeric	function	that	takes	two	numeric	arguments	is	the	pow()
function	(or	power()	if	you	are	using	Oracle	Database	or	SQL	Server),
which	returns	one	number	raised	to	the	power	of	a	second	number,	as	in:

mysql> SELECT POW(2,8);
+----------+
| POW(2,8) |
+----------+
|      256 |
+----------+
1 row in set (0.03 sec)

Thus,	pow(2,8)	is	the	MySQL	equivalent	of	specifying	2 .	Since
computer	memory	is	allocated	in	chunks	of	2 	bytes,	the	pow()	function
can	be	a	handy	way	to	determine	the	exact	number	of	bytes	in	a	certain
amount	of	memory:

mysql> SELECT POW(2,10) kilobyte, POW(2,20) megabyte,

8

x



    ->   POW(2,30) gigabyte, POW(2,40) terabyte;
+----------+----------+------------+---------------+
| kilobyte | megabyte | gigabyte   | terabyte      |
+----------+----------+------------+---------------+
|     1024 |  1048576 | 1073741824 | 1099511627776 |
+----------+----------+------------+---------------+
1 row in set (0.00 sec)

I	don’t	know	about	you,	but	I	find	it	easier	to	remember	that	a	gigabyte	is
2 	bytes	than	to	remember	the	number	1,073,741,824.

Controlling	Number	Precision

When	working	with	floating-point	numbers,	you	may	not	always	want	to
interact	with	or	display	a	number	with	its	full	precision.	For	example,	you
may	store	monetary	transaction	data	with	a	precision	to	six	decimal	places,
but	you	might	want	to	round	to	the	nearest	hundredth	for	display	purposes.
Four	functions	are	useful	when	limiting	the	precision	of	floating-point
numbers:	ceil(),	floor(),	round(),	and	truncate().	All	three	servers
include	these	functions,	although	Oracle	Database	includes	trunc()
instead	of	truncate(),	and	SQL	Server	includes	ceiling()	instead	of
ceil().

The	ceil()	and	floor()	functions	are	used	to	round	either	up	or	down	to
the	closest	integer,	as	demonstrated	by	the	following:

mysql> SELECT CEIL(72.445), FLOOR(72.445);
+--------------+---------------+
| CEIL(72.445) | FLOOR(72.445) |
+--------------+---------------+
|           73 |            72 |
+--------------+---------------+
1 row in set (0.06 sec)

Thus,	any	number	between	72	and	73	will	be	evaluated	as	73	by	the
ceil()	function	and	72	by	the	floor()	function.	Remember	that	ceil()

30



will	round	up	even	if	the	decimal	portion	of	a	number	is	very	small,	and
floor()	will	round	down	even	if	the	decimal	portion	is	quite	significant,
as	in:

mysql> SELECT CEIL(72.000000001), FLOOR(72.999999999);
+--------------------+---------------------+
| CEIL(72.000000001) | FLOOR(72.999999999) |
+--------------------+---------------------+
|                 73 |                  72 |
+--------------------+---------------------+
1 row in set (0.00 sec)

If	this	is	a	bit	too	severe	for	your	application,	you	can	use	the	round()
function	to	round	up	or	down	from	the	midpoint	between	two	integers,	as
in:

mysql> SELECT ROUND(72.49999), ROUND(72.5), ROUND(72.50001);
+-----------------+-------------+-----------------+
| ROUND(72.49999) | ROUND(72.5) | ROUND(72.50001) |
+-----------------+-------------+-----------------+
|              72 |          73 |              73 |
+-----------------+-------------+-----------------+
1 row in set (0.00 sec)

Using	round(),	any	number	whose	decimal	portion	is	halfway	or	more
between	two	integers	will	be	rounded	up,	whereas	the	number	will	be
rounded	down	if	the	decimal	portion	is	anything	less	than	halfway
between	the	two	integers.

Most	of	the	time,	you	will	want	to	keep	at	least	some	part	of	the	decimal
portion	of	a	number	rather	than	rounding	to	the	nearest	integer;	the
round()	function	allows	an	optional	second	argument	to	specify	how
many	digits	to	the	right	of	the	decimal	place	to	round	to.	The	next	example
shows	how	you	can	use	the	second	argument	to	round	the	number	72.0909
to	one,	two,	and	three	decimal	places:

mysql> SELECT ROUND(72.0909, 1), ROUND(72.0909, 2), ROUND(72.0909, 3);



+-------------------+-------------------+-------------------+
| ROUND(72.0909, 1) | ROUND(72.0909, 2) | ROUND(72.0909, 3) |
+-------------------+-------------------+-------------------+
|              72.1 |             72.09 |            72.091 |
+-------------------+-------------------+-------------------+
1 row in set (0.00 sec)

Like	the	round()	function,	the	truncate()	function	allows	an	optional
second	argument	to	specify	the	number	of	digits	to	the	right	of	the
decimal,	but	truncate()	simply	discards	the	unwanted	digits	without
rounding.	The	next	example	shows	how	the	number	72.0909	would	be
truncated	to	one,	two,	and	three	decimal	places:

mysql> SELECT TRUNCATE(72.0909, 1), TRUNCATE(72.0909, 2),
    ->   TRUNCATE(72.0909, 3);
+----------------------+----------------------+----------------------+
| TRUNCATE(72.0909, 1) | TRUNCATE(72.0909, 2) | TRUNCATE(72.0909, 3) |
+----------------------+----------------------+----------------------+
|                 72.0 |                72.09 |               72.090 |
+----------------------+----------------------+----------------------+
1 row in set (0.00 sec)

NOTE
SQL	Server	does	not	include	a	truncate()	function.	Instead,	the	round()	function	allows	for
an	optional	third	argument	that,	if	present	and	nonzero,	calls	for	the	number	to	be	truncated
rather	than	rounded.

Both	truncate()	and	round()	also	allow	a	negative	value	for	the	second
argument,	meaning	that	numbers	to	the	left	of	the	decimal	place	are
truncated	or	rounded.	This	might	seem	like	a	strange	thing	to	do	at	first,
but	there	are	valid	applications.	For	example,	you	might	sell	a	product	that
can	be	purchased	only	in	units	of	10.	If	a	customer	were	to	order	17	units,
you	could	choose	from	one	of	the	following	methods	to	modify	the
customer’s	order	quantity:



mysql> SELECT ROUND(17, −1), TRUNCATE(17, −1);
+---------------+------------------+
| ROUND(17, −1) | TRUNCATE(17, −1) |
+---------------+------------------+
|            20 |               10 |
+---------------+------------------+
1 row in set (0.00 sec)

If	the	product	in	question	is	thumbtacks,	then	it	might	not	make	much
difference	to	your	bottom	line	whether	you	sold	the	customer	10	or	20
thumbtacks	when	only	17	were	requested;	if	you	are	selling	Rolex
watches,	however,	your	business	may	fare	better	by	rounding.

Handling	Signed	Data

If	you	are	working	with	numeric	columns	that	allow	negative	values	(in
Chapter	2,	I	showed	how	a	numeric	column	may	be	labeled	unsigned,
meaning	that	only	positive	numbers	are	allowed),	several	numeric
functions	might	be	of	use.	Let’s	say,	for	example,	that	you	are	asked	to
generate	a	report	showing	the	current	status	of	a	set	of	bank	accounts
using	the	following	data	from	the	account	table:

+------------+--------------+---------+
| account_id | acct_type    | balance |
+------------+--------------+---------+
|        123 | MONEY MARKET |  785.22 |
|        456 | SAVINGS      |    0.00 |
|        789 | CHECKING     | -324.22 |
+------------+--------------+---------+

The	following	query	returns	three	columns	useful	for	generating	the
report:

mysql> SELECT account_id, SIGN(balance), ABS(balance)
    -> FROM account;
+------------+---------------+--------------+
| account_id | SIGN(balance) | ABS(balance) |
+------------+---------------+--------------+
|        123 |             1 |       785.22 |



|        456 |             0 |         0.00 |
|        789 |            -1 |       324.22 |
+------------+---------------+--------------+
3 rows in set (0.00 sec)

The	second	column	uses	the	sign()	function	to	return	−1	if	the	account
balance	is	negative,	0	if	the	account	balance	is	zero,	and	1	if	the	account
balance	is	positive.	The	third	column	returns	the	absolute	value	of	the
account	balance	via	the	abs()	function.

Working	with	Temporal	Data
Of	the	three	types	of	data	discussed	in	this	chapter	(character,	numeric,
and	temporal),	temporal	data	is	the	most	involved	when	it	comes	to	data
generation	and	manipulation.	Some	of	the	complexity	of	temporal	data	is
caused	by	the	myriad	ways	in	which	a	single	date	and	time	can	be
described.	For	example,	the	date	on	which	I	wrote	this	paragraph	can	be
described	in	all	the	following	ways:

Wednesday,	June	5,	2019

6/05/2019	2:14:56	P.M.	EST

6/05/2019	19:14:56	GMT

1562019	(Julian	format)

Star	date	[−4]	97026.79	14:14:56	(Star	Trek	format)

While	some	of	these	differences	are	purely	a	matter	of	formatting,	most	of
the	complexity	has	to	do	with	your	frame	of	reference,	which	we	explore
in	the	next	section.

Dealing	with	Time	Zones

Because	people	around	the	world	prefer	that	noon	coincides	roughly	with



the	sun’s	peak	at	their	location,	there	has	never	been	a	serious	attempt	to
coerce	everyone	to	use	a	universal	clock.	Instead,	the	world	has	been
sliced	into	24	imaginary	sections,	called	time	zones;	within	a	particular
time	zone,	everyone	agrees	on	the	current	time,	whereas	people	in
different	time	zones	do	not.	While	this	seems	simple	enough,	some
geographic	regions	shift	their	time	by	one	hour	twice	a	year
(implementing	what	is	known	as	daylight	saving	time)	and	some	do	not,	so
the	time	difference	between	two	points	on	Earth	might	be	four	hours	for
one-half	of	the	year	and	five	hours	for	the	other	half	of	the	year.	Even
within	a	single	time	zone,	different	regions	may	or	may	not	adhere	to
daylight	saving	time,	causing	different	clocks	in	the	same	time	zone	to
agree	for	one-half	of	the	year	but	be	one	hour	different	for	the	rest	of	the
year.

While	the	computer	age	has	exacerbated	the	issue,	people	have	been
dealing	with	time	zone	differences	since	the	early	days	of	naval
exploration.	To	ensure	a	common	point	of	reference	for	timekeeping,
fifteenth-century	navigators	set	their	clocks	to	the	time	of	day	in
Greenwich,	England.	This	became	known	as	Greenwich	Mean	Time,	or
GMT.	All	other	time	zones	can	be	described	by	the	number	of	hours’
difference	from	GMT;	for	example,	the	time	zone	for	the	Eastern	United
States,	known	as	Eastern	Standard	Time,	can	be	described	as	GMT	−5:00,
or	five	hours	earlier	than	GMT.

Today,	we	use	a	variation	of	GMT	called	Coordinated	Universal	Time,	or
UTC,	which	is	based	on	an	atomic	clock	(or,	to	be	more	precise,	the
average	time	of	200	atomic	clocks	in	50	locations	worldwide,	which	is
referred	to	as	Universal	Time).	Both	SQL	Server	and	MySQL	provide
functions	that	will	return	the	current	UTC	timestamp	(getutcdate()	for
SQL	Server	and	utc_timestamp()	for	MySQL).



Most	database	servers	default	to	the	time	zone	setting	of	the	server	on
which	it	resides	and	provide	tools	for	modifying	the	time	zone	if	needed.
For	example,	a	database	used	to	store	stock	exchange	transactions	from
around	the	world	would	generally	be	configured	to	use	UTC	time,	whereas
a	database	used	to	store	transactions	at	a	particular	retail	establishment
might	use	the	server’s	time	zone.

MySQL	keeps	two	different	time	zone	settings:	a	global	time	zone	and	a
session	time	zone,	which	may	be	different	for	each	user	logged	in	to	a
database.	You	can	see	both	settings	via	the	following	query:

mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+
| SYSTEM             | SYSTEM              |
+--------------------+---------------------+
1 row in set (0.00 sec)

A	value	of	system	tells	you	that	the	server	is	using	the	time	zone	setting
from	the	server	on	which	the	database	resides.

If	you	are	sitting	at	a	computer	in	Zurich,	Switzerland,	and	you	open	a
session	across	the	network	to	a	MySQL	server	situated	in	New	York,	you
may	want	to	change	the	time	zone	setting	for	your	session,	which	you	can
do	via	the	following	command:

mysql> SET time_zone = 'Europe/Zurich';
Query OK, 0 rows affected (0.18 sec)

If	you	check	the	time	zone	settings	again,	you	will	see	the	following:

mysql> SELECT @@global.time_zone, @@session.time_zone;
+--------------------+---------------------+
| @@global.time_zone | @@session.time_zone |
+--------------------+---------------------+



| SYSTEM             | Europe/Zurich       |
+--------------------+---------------------+
1 row in set (0.00 sec)

All	dates	displayed	in	your	session	will	now	conform	to	Zurich	time.

NOTE
Oracle	Database	users	can	change	the	time	zone	setting	for	a	session	via	the	following
command:

ALTER SESSION TIMEZONE = 'Europe/Zurich'

Generating	Temporal	Data

You	can	generate	temporal	data	via	any	of	the	following	means:

Copying	data	from	an	existing	date,	datetime,	or	time	column

Executing	a	built-in	function	that	returns	a	date,	datetime,	or
time

Building	a	string	representation	of	the	temporal	data	to	be
evaluated	by	the	server

To	use	the	last	method,	you	will	need	to	understand	the	various
components	used	in	formatting	dates.

STRING	REPRESENTATIONS	OF	TEMPORAL	DATA

Table	2-4	in	Chapter	2	presented	the	more	popular	date	components;	to
refresh	your	memory,	Table	7-2	shows	these	same	components.

Table	7-2.	Date	format	components

Component Definition Range



	
	 	 	
YYYY
	
	 	 	

	
	 	 	
Year,	including	century
	
	 	 	

	
	 	 	
1000	to	9999
	
	 	 	

	
	 	 	
MM
	
	 	 	

	
	 	 	
Month
	
	 	 	

	
	 	 	
01	(January)	to	12	(December)
	
	 	 	

	
	 	 	
DD
	
	 	 	

	
	 	 	
Day
	
	 	 	

	
	 	 	
01	to	31
	
	 	 	

	
	 	 	
HH
	
	 	 	

	
	 	 	
Hour
	
	 	 	

	
	 	 	
00	to	23
	
	 	 	

	
	 	 	
HHH
	
	 	 	

	
	 	 	
Hours	(elapsed)
	
	 	 	

	
	 	 	
−838	to	838
	
	 	 	

	
	 	 	
MI
	
	 	 	

	
	 	 	
Minute
	
	 	 	

	
	 	 	
00	to	59
	
	 	 	

	
	 	 	
SS
	
	 	 	

	
	 	 	
Second
	
	 	 	

	
	 	 	
00	to	59
	
	 	 	

To	build	a	string	that	the	server	can	interpret	as	a	date,	datetime,	or
time,	you	need	to	put	the	various	components	together	in	the	order	shown
in	Table	7-3.



Table	7-3.	Required	date	components

Type Default	format

	
	 	 	
date
	
	 	 	

	
	 	 	
YYYY-MM-DD
	
	 	 	

	
	 	 	
datetime
	
	 	 	

	
	 	 	
YYYY-MM-DD	HH:MI:SS
	
	 	 	

	
	 	 	
timestamp
	
	 	 	

	
	 	 	
YYYY-MM-DD	HH:MI:SS
	
	 	 	

	
	 	 	
time
	
	 	 	

	
	 	 	
HHH:MI:SS
	
	 	 	

Thus,	to	populate	a	datetime	column	with	3:30	P.M.	on	September	17,
2019,	you	will	need	to	build	the	following	string:

'2019-09-17 15:30:00'

If	the	server	is	expecting	a	datetime	value,	such	as	when	updating	a
datetime	column	or	when	calling	a	built-in	function	that	takes	a
datetime	argument,	you	can	provide	a	properly	formatted	string	with	the
required	date	components,	and	the	server	will	do	the	conversion	for	you.
For	example,	here’s	a	statement	used	to	modify	the	return	date	of	a	film
rental:

UPDATE rental



UPDATE rental
SET return_date = '2019-09-17 15:30:00'
WHERE rental_id = 99999;

The	server	determines	that	the	string	provided	in	the	set	clause	must	be	a
datetime	value,	since	the	string	is	being	used	to	populate	a	datetime
column.	Therefore,	the	server	will	attempt	to	convert	the	string	for	you	by
parsing	the	string	into	the	six	components	(year,	month,	day,	hour,	minute,
second)	included	in	the	default	datetime	format.

STRING-TO-DATE	CONVERSIONS

If	the	server	is	not	expecting	a	datetime	value	or	if	you	would	like	to
represent	the	datetime	using	a	nondefault	format,	you	will	need	to	tell	the
server	to	convert	the	string	to	a	datetime.	For	example,	here	is	a	simple
query	that	returns	a	datetime	value	using	the	cast()	function:

mysql> SELECT CAST('2019-09-17 15:30:00' AS DATETIME);
+-----------------------------------------+
| CAST('2019-09-17 15:30:00' AS DATETIME) |
+-----------------------------------------+
| 2019-09-17 15:30:00                     |
+-----------------------------------------+
1 row in set (0.00 sec)

We	cover	the	cast()	function	at	the	end	of	this	chapter.	While	this
example	demonstrates	how	to	build	datetime	values,	the	same	logic
applies	to	the	date	and	time	types	as	well.	The	following	query	uses	the
cast()	function	to	generate	a	date	value	and	a	time	value:

mysql> SELECT CAST('2019-09-17' AS DATE) date_field,
    ->   CAST('108:17:57' AS TIME) time_field;
+------------+------------+
| date_field | time_field |
+------------+------------+
| 2019-09-17 | 108:17:57  |
+------------+------------+
1 row in set (0.00 sec)



You	might,	of	course,	explicitly	convert	your	strings	even	when	the	server
is	expecting	a	date,	datetime,	or	time	value,	rather	than	allowing	the
server	to	do	an	implicit	conversion.

When	strings	are	converted	to	temporal	values—whether	explicitly	or
implicitly—you	must	provide	all	the	date	components	in	the	required
order.	While	some	servers	are	quite	strict	regarding	the	date	format,	the
MySQL	server	is	quite	lenient	about	the	separators	used	between	the
components.	For	example,	MySQL	will	accept	all	of	the	following	strings
as	valid	representations	of	3:30	P.M.	on	September	17,	2019:

'2019-09-17 15:30:00'
'2019/09/17 15:30:00'
'2019,09,17,15,30,00'
'20190917153000'

Although	this	gives	you	a	bit	more	flexibility,	you	may	find	yourself
trying	to	generate	a	temporal	value	without	the	default	date	components;
the	next	section	demonstrates	a	built-in	function	that	is	far	more	flexible
than	the	cast()	function.

FUNCTIONS	FOR	GENERATING	DATES

If	you	need	to	generate	temporal	data	from	a	string	and	the	string	is	not	in
the	proper	form	to	use	the	cast()	function,	you	can	use	a	built-in	function
that	allows	you	to	provide	a	format	string	along	with	the	date	string.
MySQL	includes	the	str_to_date()	function	for	this	purpose.	Say,	for
example,	that	you	pull	the	string	'September 17, 2019'	from	a	file	and
need	to	use	it	to	update	a	date	column.	Since	the	string	is	not	in	the
required	YYYY-MM-DD	format,	you	can	use	str_to_date()	instead	of
reformatting	the	string	so	that	you	can	use	the	cast()	function,	as	in:

UPDATE rental



SET return_date = STR_TO_DATE('September	17,	2019',	'%M	%d,	%Y')

WHERE rental_id = 99999;

The	second	argument	in	the	call	to	str_to_date()	defines	the	format	of
the	date	string,	with,	in	this	case,	a	month	name	(%M),	a	numeric	day	(%d),
and	a	four-digit	numeric	year	(%Y).	While	there	are	more	than	30
recognized	format	components,	Table	7-4	defines	the	dozen	or	so	of	the
most	commonly	used	components.

Table	7-4.	Date	format	components

Format	component Description

	
	 	 	
%M
	
	 	 	

	
	 	 	
Month	name	(January	to	December)
	
	 	 	

	
	 	 	
%m
	
	 	 	

	
	 	 	
Month	numeric	(01	to	12)
	
	 	 	

	
	 	 	
%d
	
	 	 	

	
	 	 	
Day	numeric	(01	to	31)
	
	 	 	

	
	 	 	
%j
	
	 	 	

	
	 	 	
Day	of	year	(001	to	366)
	
	 	 	

	
	 	 	
%W
	
	 	 	

	
	 	 	
Weekday	name	(Sunday	to	Saturday)
	
	 	 	

	 	



	
	 	 	
%Y
	
	 	 	

	
	 	 	
Year,	four-digit	numeric
	
	 	 	

	
	 	 	
%y
	
	 	 	

	
	 	 	
Year,	two-digit	numeric
	
	 	 	

	
	 	 	
%H
	
	 	 	

	
	 	 	
Hour	(00	to	23)
	
	 	 	

	
	 	 	
%h
	
	 	 	

	
	 	 	
Hour	(01	to	12)
	
	 	 	

	
	 	 	
%i
	
	 	 	

	
	 	 	
Minutes	(00	to	59)
	
	 	 	

	
	 	 	
%s
	
	 	 	

	
	 	 	
Seconds	(00	to	59)
	
	 	 	

	
	 	 	
%f
	
	 	 	

	
	 	 	
Microseconds	(000000	to	999999)
	
	 	 	

	
	 	 	
%p
	
	 	 	

	
	 	 	
A.M.	or	P.M.
	
	 	 	



The	str_to_date()	function	returns	a	datetime,	date,	or	time	value
depending	on	the	contents	of	the	format	string.	For	example,	if	the	format
string	includes	only	%H,	%i,	and	%s,	then	a	time	value	will	be	returned.

NOTE
Oracle	Database	users	can	use	the	to_date()	function	in	the	same	manner	as	MySQL’s
str_to_date()	function.	SQL	Server	includes	a	convert()	function	that	is	not	quite	as	flexible
as	MySQL	and	Oracle	Database;	rather	than	supplying	a	custom	format	string,	your	date	string
must	conform	to	one	of	21	predefined	formats.

If	you	are	trying	to	generate	the	current	date/time,	then	you	won’t	need	to
build	a	string,	because	the	following	built-in	functions	will	access	the
system	clock	and	return	the	current	date	and/or	time	as	a	string	for	you:

mysql> SELECT CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP();
+----------------+----------------+---------------------+
| CURRENT_DATE() | CURRENT_TIME() | CURRENT_TIMESTAMP() |
+----------------+----------------+---------------------+
| 2019-06-05     | 16:54:36       | 2019-06-05 16:54:36 |
+----------------+----------------+---------------------+
1 row in set (0.12 sec)

The	values	returned	by	these	functions	are	in	the	default	format	for	the
temporal	type	being	returned.	Oracle	Database	will	include
current_date()	and	current_timestamp()	but	not	current_time(),
and	Microsoft	SQL	Server	includes	only	the	current_timestamp()
function.

Manipulating	Temporal	Data

This	section	explores	the	built-in	functions	that	take	date	arguments	and
return	dates,	strings,	or	numbers.

TEMPORAL	FUNCTIONS	THAT	RETURN	DATES



TEMPORAL	FUNCTIONS	THAT	RETURN	DATES

Many	of	the	built-in	temporal	functions	take	one	date	as	an	argument	and
return	another	date.	MySQL’s	date_add()	function,	for	example,	allows
you	to	add	any	kind	of	interval	(e.g.,	days,	months,	years)	to	a	specified
date	to	generate	another	date.	Here’s	an	example	that	demonstrates	how	to
add	five	days	to	the	current	date:

mysql> SELECT DATE_ADD(CURRENT_DATE(), INTERVAL 5 DAY);
+------------------------------------------+
| DATE_ADD(CURRENT_DATE(), INTERVAL 5 DAY) |
+------------------------------------------+
| 2019-06-10                               |
+------------------------------------------+
1 row in set (0.06 sec)

The	second	argument	is	composed	of	three	elements:	the	interval
keyword,	the	desired	quantity,	and	the	type	of	interval.	Table	7-5	shows
some	of	the	commonly	used	interval	types.

Table	7-5.	Common	interval	types

Interval	name Description

	
	 	 	
second
	
	 	 	

	
	 	 	
Number	of	seconds
	
	 	 	

	
	 	 	
minute
	
	 	 	

	
	 	 	
Number	of	minutes
	
	 	 	

	
	 	 	
hour
	
	 	 	

	
	 	 	
Number	of	hours
	
	 	 	



	
	 	 	
day
	
	 	 	

	
	 	 	
Number	of	days
	
	 	 	

	
	 	 	
month
	
	 	 	

	
	 	 	
Number	of	months
	
	 	 	

	
	 	 	
year
	
	 	 	

	
	 	 	
Number	of	years
	
	 	 	

	
	 	 	
minute_second
	
	 	 	

	
	 	 	
Number	of	minutes	and	seconds,	separated	by	“:”
	
	 	 	

	
	 	 	
hour_second
	
	 	 	

	
	 	 	
Number	of	hours,	minutes,	and	seconds,	separated	by	“:”
	
	 	 	

	
	 	 	
year_month
	
	 	 	

	
	 	 	
Number	of	years	and	months,	separated	by	“-”
	
	 	 	

While	the	first	six	types	listed	in	Table	7-5	are	pretty	straightforward,	the
last	three	types	require	a	bit	more	explanation	since	they	have	multiple
elements.	For	example,	if	you	are	told	that	a	film	was	actually	returned	3
hours,	27	minutes,	and	11	seconds	later	than	what	was	originally	specified,
you	can	fix	it	via	the	following:

UPDATE rental



SET return_date = DATE_ADD(return_date, INTERVAL	'3:27:11'	HOUR_SECOND)

WHERE rental_id = 99999;

In	this	example,	the	date_add()	function	takes	the	value	in	the
return_date	column	and	adds	3	hours,	27	minutes,	and	11	seconds	to	it.
Then	it	uses	the	value	that	results	to	modify	the	return_date	column.

Or,	if	you	work	in	HR	and	found	out	that	employee	ID	4789	claimed	to	be
older	than	he	actually	is,	you	could	add	9	years	and	11	months	to	his	birth
date,	as	in:

UPDATE employee
SET birth_date = DATE_ADD(birth_date, INTERVAL	'9-11'	YEAR_MONTH)

WHERE emp_id = 4789;

NOTE
SQL	Server	users	can	accomplish	the	previous	example	using	the	dateadd()	function:

UPDATE employee
SET birth_date =
  DATEADD(MONTH, 119, birth_date)
WHERE emp_id = 4789

SQL	Server	doesn’t	have	combined	intervals	(i.e.,	year_month),	so	I	converted	9	years	and	11
months	to	119	months.

Oracle	Database	users	can	use	the	add_months()	function	for	this	example,	as	in:

UPDATE employee
SET birth_date = ADD_MONTHS(birth_date, 119)
WHERE emp_id = 4789;

There	are	some	cases	where	you	want	to	add	an	interval	to	a	date,	and	you
know	where	you	want	to	arrive	but	not	how	many	days	it	takes	to	get
there.	For	example,	let’s	say	that	a	bank	customer	logs	on	to	the	online



banking	system	and	schedules	a	transfer	for	the	end	of	the	month.	Rather
than	writing	some	code	that	figures	out	the	current	month	and	then	looks
up	the	number	of	days	in	that	month,	you	can	call	the	last_day()
function,	which	does	the	work	for	you	(both	MySQL	and	Oracle	Database
include	the	last_day()	function;	SQL	Server	has	no	comparable
function).	If	the	customer	asks	for	the	transfer	on	September	17,	2019,	you
could	find	the	last	day	of	September	via	the	following:

mysql> SELECT LAST_DAY('2019-09-17');
+------------------------+
| LAST_DAY('2019-09-17') |
+------------------------+
| 2019-09-30             |
+------------------------+
1 row in set (0.10 sec)

Whether	you	provide	a	date	or	datetime	value,	the	last_day()	function
always	returns	a	date.	Although	this	function	may	not	seem	like	an
enormous	time-saver,	the	underlying	logic	can	be	tricky	if	you’re	trying	to
find	the	last	day	of	February	and	need	to	figure	out	whether	the	current
year	is	a	leap	year.

TEMPORAL	FUNCTIONS	THAT	RETURN	STRINGS

Most	of	the	temporal	functions	that	return	string	values	are	used	to	extract
a	portion	of	a	date	or	time.	For	example,	MySQL	includes	the	dayname()
function	to	determine	which	day	of	the	week	a	certain	date	falls	on,	as	in:

mysql> SELECT DAYNAME('2019-09-18');
+-----------------------+
| DAYNAME('2019-09-18') |
+-----------------------+
| Wednesday             |
+-----------------------+
1 row in set (0.00 sec)

Many	such	functions	are	included	with	MySQL	for	extracting	information



from	date	values,	but	I	recommend	that	you	use	the	extract()	function
instead,	since	it’s	easier	to	remember	a	few	variations	of	one	function	than
to	remember	a	dozen	different	functions.	Additionally,	the	extract()
function	is	part	of	the	SQL:2003	standard	and	has	been	implemented	by
Oracle	Database	as	well	as	MySQL.

The	extract()	function	uses	the	same	interval	types	as	the	date_add()
function	(see	Table	7-5)	to	define	which	element	of	the	date	interests	you.
For	example,	if	you	want	to	extract	just	the	year	portion	of	a	datetime
value,	you	can	do	the	following:

mysql> SELECT EXTRACT(YEAR FROM '2019-09-18 22:19:05');
+------------------------------------------+
| EXTRACT(YEAR FROM '2019-09-18 22:19:05') |
+------------------------------------------+
|                                     2019 |
+------------------------------------------+
1 row in set (0.00 sec)

NOTE
SQL	Server	doesn’t	include	an	implementation	of	extract(),	but	it	does	include	the
datepart()	function.	Here’s	how	you	would	extract	the	year	from	a	datetime	value	using
datepart():

SELECT DATEPART(YEAR, GETDATE())

TEMPORAL	FUNCTIONS	THAT	RETURN	NUMBERS

Earlier	in	this	chapter,	I	showed	you	a	function	used	to	add	a	given
interval	to	a	date	value,	thus	generating	another	date	value.	Another
common	activity	when	working	with	dates	is	to	take	two	date	values	and
determine	the	number	of	intervals	(days,	weeks,	years)	between	the	two
dates.	For	this	purpose,	MySQL	includes	the	function	datediff(),	which



returns	the	number	of	full	days	between	two	dates.	For	example,	if	I	want
to	know	the	number	of	days	that	my	kids	will	be	out	of	school	this
summer,	I	can	do	the	following:

mysql> SELECT DATEDIFF('2019-09-03', '2019-06-21');
+--------------------------------------+
| DATEDIFF('2019-09-03', '2019-06-21') |
+--------------------------------------+
|                                   74 |
+--------------------------------------+
1 row in set (0.00 sec)

Thus,	I	will	have	to	endure	74	days	of	poison	ivy,	mosquito	bites,	and
scraped	knees	before	the	kids	are	safely	back	at	school.	The	datediff()
function	ignores	the	time	of	day	in	its	arguments.	Even	if	I	include	a	time
of	day,	setting	it	to	one	second	until	midnight	for	the	first	date	and	to	one
second	after	midnight	for	the	second	date,	those	times	will	have	no	effect
on	the	calculation:

mysql> SELECT DATEDIFF('2019-09-03 23:59:59', '2019-06-21 00:00:01');
+--------------------------------------------------------+
| DATEDIFF('2019-09-03 23:59:59', '2019-06-21 00:00:01') |
+--------------------------------------------------------+
|                                                     74 |
+--------------------------------------------------------+
1 row in set (0.00 sec)

If	I	switch	the	arguments	and	have	the	earlier	date	first,	datediff()	will
return	a	negative	number,	as	in:

mysql> SELECT DATEDIFF('2019-06-21', '2019-09-03');
+--------------------------------------+
| DATEDIFF('2019-06-21', '2019-09-03') |
+--------------------------------------+
|                                  -74 |
+--------------------------------------+
1 row in set (0.00 sec)

NOTE



SQL	Server	also	includes	the	datediff()	function,	but	it	is	more	flexible	than	the	MySQL
implementation	in	that	you	can	specify	the	interval	type	(i.e.,	year,	month,	day,	hour)	instead	of
counting	only	the	number	of	days	between	two	dates.	Here’s	how	SQL	Server	would	accomplish
the	previous	example:

SELECT DATEDIFF(DAY, '2019-06-21', '2019-09-03')

Oracle	Database	allows	you	to	determine	the	number	of	days	between	two	dates	simply	by
subtracting	one	date	from	another.

Conversion	Functions
Earlier	in	this	chapter,	I	showed	you	how	to	use	the	cast()	function	to
convert	a	string	to	a	datetime	value.	While	every	database	server	includes
a	number	of	proprietary	functions	used	to	convert	data	from	one	type	to
another,	I	recommend	using	the	cast()	function,	which	is	included	in	the
SQL:2003	standard	and	has	been	implemented	by	MySQL,	Oracle
Database,	and	Microsoft	SQL	Server.

To	use	cast(),	you	provide	a	value	or	expression,	the	as	keyword,	and
the	type	to	which	you	want	the	value	converted.	Here’s	an	example	that
converts	a	string	to	an	integer:

mysql> SELECT CAST('1456328' AS SIGNED INTEGER);
+-----------------------------------+
| CAST('1456328' AS SIGNED INTEGER) |
+-----------------------------------+
|                           1456328 |
+-----------------------------------+
1 row in set (0.01 sec)

When	converting	a	string	to	a	number,	the	cast()	function	will	attempt	to
convert	the	entire	string	from	left	to	right;	if	any	nonnumeric	characters
are	found	in	the	string,	the	conversion	halts	without	an	error.	Consider	the



following	example:

mysql> SELECT CAST('999ABC111' AS UNSIGNED INTEGER);
+---------------------------------------+
| CAST('999ABC111' AS UNSIGNED INTEGER) |
+---------------------------------------+
|                                   999 |
+---------------------------------------+
1 row in set, 1	warning (0.08 sec)

mysql> show warnings;
+---------+------+------------------------------------------------+
| Level   | Code | Message                                        |
+---------+------+------------------------------------------------+
| Warning | 1292 | Truncated incorrect INTEGER value: '999ABC111' |
+---------+------+------------------------------------------------+
1 row in set (0.07 sec)

In	this	case,	the	first	three	digits	of	the	string	are	converted,	whereas	the
rest	of	the	string	is	discarded,	resulting	in	a	value	of	999.	The	server	did,
however,	issue	a	warning	to	let	you	know	that	not	all	the	string	was
converted.

If	you	are	converting	a	string	to	a	date,	time,	or	datetime	value,	then
you	will	need	to	stick	with	the	default	formats	for	each	type,	since	you
can’t	provide	the	cast()	function	with	a	format	string.	If	your	date	string
is	not	in	the	default	format	(i.e.,	YYYY-MM-DD HH:MI:SS	for	datetime
types),	then	you	will	need	to	resort	to	using	another	function,	such	as
MySQL’s	str_to_date()	function	described	earlier	in	the	chapter.

Test	Your	Knowledge
These	exercises	are	designed	to	test	your	understanding	of	some	of	the
built-in	functions	shown	in	this	chapter.	See	Appendix	B	for	the	answers.

Exercise	7-1



Write	a	query	that	returns	the	17th	through	25th	characters	of	the	string
'Please find the substring in this string'.

Exercise	7-2

Write	a	query	that	returns	the	absolute	value	and	sign	(−1,	0,	or	1)	of	the
number	−25.76823.	Also	return	the	number	rounded	to	the	nearest
hundredth.

Exercise	7-3

Write	a	query	to	return	just	the	month	portion	of	the	current	date.



Chapter	8.	Grouping	and
Aggregates

Data	is	generally	stored	at	the	lowest	level	of	granularity	needed	by	any	of
a	database’s	users;	if	Chuck	in	accounting	needs	to	look	at	individual
customer	transactions,	then	there	needs	to	be	a	table	in	the	database	that
stores	individual	transactions.	That	doesn’t	mean,	however,	that	all	users
must	deal	with	the	data	as	it	is	stored	in	the	database.	The	focus	of	this
chapter	is	on	how	data	can	be	grouped	and	aggregated	to	allow	users	to
interact	with	it	at	some	higher	level	of	granularity	than	what	is	stored	in
the	database.

Grouping	Concepts
Sometimes	you	will	want	to	find	trends	in	your	data	that	will	require	the
database	server	to	cook	the	data	a	bit	before	you	can	generate	the	results
you	are	looking	for.	For	example,	let’s	say	that	you	are	in	charge	of
sending	coupons	for	free	rentals	to	your	best	customers.	You	could	issue	a
simple	query	to	look	at	the	raw	data:

mysql> SELECT customer_id FROM rental;
+-------------+
| customer_id |
+-------------+
|           1 |
|           1 |
|           1 |
|           1 |
|           1 |
|           1 |
|           1 |



...
|         599 |
|         599 |
|         599 |
|         599 |
|         599 |
|         599 |
+-------------+
16044 rows in set (0.01 sec)

With	599	customers	spanning	more	than	16,000	rental	records,	it	isn’t
feasible	to	determine	which	customers	have	rented	the	most	films	by
looking	at	the	raw	data.	Instead,	you	can	ask	the	database	server	to	group
the	data	for	you	by	using	the	group by	clause.	Here’s	the	same	query	but
employing	a	group by	clause	to	group	the	rental	data	by	customer	ID:

mysql> SELECT customer_id
    -> FROM rental
    -> GROUP BY customer_id;
+-------------+
| customer_id |
+-------------+
|           1 |
|           2 |
|           3 |
|           4 |
|           5 |
|           6 |
...
|         594 |
|         595 |
|         596 |
|         597 |
|         598 |
|         599 |
+-------------+
599 rows in set (0.00 sec)

The	result	set	contains	one	row	for	each	distinct	value	in	the	customer_id
column,	resulting	in	599	rows	instead	of	the	full	16,044	rows.	The	reason
for	the	smaller	result	set	is	that	some	of	the	customers	rented	more	than
one	film.	To	see	how	many	films	each	customer	rented,	you	can	use	an



aggregate	function	in	the	select	clause	to	count	the	number	of	rows	in
each	group:

mysql> SELECT customer_id, count(*)

    -> FROM rental
    -> GROUP BY customer_id;
+-------------+----------+
| customer_id | count(*) |
+-------------+----------+
|           1 |       32 |
|           2 |       27 |
|           3 |       26 |
|           4 |       22 |
|           5 |       38 |
|           6 |       28 |
...
|         594 |       27 |
|         595 |       30 |
|         596 |       28 |
|         597 |       25 |
|         598 |       22 |
|         599 |       19 |
+-------------+----------+
599 rows in set (0.01 sec)

The	aggregate	function	count()	counts	the	number	of	rows	in	each	group,
and	the	asterisk	tells	the	server	to	count	everything	in	the	group.	Using	the
combination	of	a	group by	clause	and	the	count()	aggregate	function,
you	are	able	to	generate	exactly	the	data	needed	to	answer	the	business
question	without	having	to	look	at	the	raw	data.

Looking	at	the	results,	you	can	see	that	32	films	were	rented	by	customer
ID	1,	and	25	films	were	rented	by	the	customer	ID	597.	In	order	to
determine	which	customers	have	rented	the	most	films,	simply	add	an
order by	clause:

mysql> SELECT customer_id, count(*)
    -> FROM rental
    -> GROUP BY customer_id
    -> ORDER	BY	2	DESC;

+-------------+----------+



| customer_id | count(*) |
+-------------+----------+
|         148 |       46 |
|         526 |       45 |
|         236 |       42 |
|         144 |       42 |
|          75 |       41 |
...
|         248 |       15 |
|         110 |       14 |
|         281 |       14 |
|          61 |       14 |
|         318 |       12 |
+-------------+----------+
599 rows in set (0.01 sec)

Now	that	the	results	are	sorted,	you	can	easily	see	that	customer	ID	148
has	rented	the	most	films	(46),	while	customer	ID	318	has	rented	the
fewest	films	(12).

When	grouping	data,	you	may	need	to	filter	out	undesired	data	from	your
result	set	based	on	groups	of	data	rather	than	based	on	the	raw	data.	Since
the	group by	clause	runs	after	the	where	clause	has	been	evaluated,	you
cannot	add	filter	conditions	to	your	where	clause	for	this	purpose.	For
example,	here’s	an	attempt	to	filter	out	any	customers	who	have	rented
fewer	than	40	films:

mysql> SELECT customer_id, count(*)
    -> FROM rental
    -> WHERE	count(*)	>=	40

    -> GROUP BY customer_id;
ERROR 1111 (HY000): Invalid use of group function

You	cannot	refer	to	the	aggregate	function	count(*)	in	your	where
clause,	because	the	groups	have	not	yet	been	generated	at	the	time	the
where	clause	is	evaluated.	Instead,	you	must	put	your	group	filter
conditions	in	the	having	clause.	Here’s	what	the	query	would	look	like
using	having:



mysql> SELECT customer_id, count(*)
    -> FROM rental
    -> GROUP BY customer_id
    -> HAVING	count(*)	>=	40;

+-------------+----------+
| customer_id | count(*) |
+-------------+----------+
|          75 |       41 |
|         144 |       42 |
|         148 |       46 |
|         197 |       40 |
|         236 |       42 |
|         469 |       40 |
|         526 |       45 |
+-------------+----------+
7 rows in set (0.01 sec)

Because	those	groups	containing	fewer	than	40	members	have	been
filtered	out	via	the	having	clause,	the	result	set	now	contains	only	those
customers	who	have	rented	40	or	more	films.

Aggregate	Functions
Aggregate	functions	perform	a	specific	operation	over	all	rows	in	a	group.
Although	every	database	server	has	its	own	set	of	specialty	aggregate
functions,	the	common	aggregate	functions	implemented	by	all	major
servers	include:

max()

Returns	the	maximum	value	within	a	set

min()

Returns	the	minimum	value	within	a	set

avg()

Returns	the	average	value	across	a	set

sum()



Returns	the	sum	of	the	values	across	a	set

count()

Returns	the	number	of	values	in	a	set

Here’s	a	query	that	uses	all	of	the	common	aggregate	functions	to	analyze
the	data	on	film	rental	payments:

mysql> SELECT MAX(amount) max_amt,
    ->   MIN(amount) min_amt,
    ->   AVG(amount) avg_amt,
    ->   SUM(amount) tot_amt,
    ->   COUNT(*) num_payments
    -> FROM payment;
+---------+---------+----------+----------+--------------+
| max_amt | min_amt | avg_amt  | tot_amt  | num_payments |
+---------+---------+----------+----------+--------------+
|   11.99 |    0.00 | 4.200667 | 67416.51 |        16049 |
+---------+---------+----------+----------+--------------+
1 row in set (0.09 sec)

The	results	from	this	query	tell	you	that,	across	the	16,049	rows	in	the
payment	table,	the	maximum	amount	paid	to	rent	a	film	was	$11.99,	the
minimum	amount	was	$0,	the	average	payment	was	$4.20,	and	the	total	of
all	rental	payments	was	$67,416.51.	Hopefully,	this	gives	you	an
appreciation	for	the	role	of	these	aggregate	functions;	the	next	subsections
further	clarify	how	you	can	utilize	these	functions.

Implicit	Versus	Explicit	Groups

In	the	previous	example,	every	value	returned	by	the	query	is	generated	by
an	aggregate	function.	Since	there	is	no	group by	clause,	there	is	a	single,
implicit	group	(all	rows	in	the	payment	table).

In	most	cases,	however,	you	will	want	to	retrieve	additional	columns
along	with	columns	generated	by	aggregate	functions.	What	if,	for
example,	you	wanted	to	extend	the	previous	query	to	execute	the	same



five	aggregate	functions	for	each	customer,	instead	of	across	all
customers?	For	this	query,	you	would	want	to	retrieve	the	customer_id
column	along	with	the	five	aggregate	functions,	as	in:

SELECT customer_id,

  MAX(amount) max_amt,
  MIN(amount) min_amt,
  AVG(amount) avg_amt,
  SUM(amount) tot_amt,
  COUNT(*) num_payments
FROM payment;

However,	if	you	try	to	execute	the	query,	you	will	receive	the	following
error:

ERROR 1140 (42000): In aggregated query without GROUP BY, 
  expression #1 of SELECT list contains nonaggregated column

While	it	may	be	obvious	to	you	that	you	want	the	aggregate	functions
applied	to	each	customer	found	in	the	payment	table,	this	query	fails
because	you	have	not	explicitly	specified	how	the	data	should	be	grouped.
Therefore,	you	will	need	to	add	a	group by	clause	to	specify	over	which
group	of	rows	the	aggregate	functions	should	be	applied:

mysql> SELECT customer_id,
    ->   MAX(amount) max_amt,
    ->   MIN(amount) min_amt,
    ->   AVG(amount) avg_amt,
    ->   SUM(amount) tot_amt,
    ->   COUNT(*) num_payments
    -> FROM payment
    -> GROUP	BY	customer_id;

+-------------+---------+---------+----------+---------+--------------+
| customer_id | max_amt | min_amt | avg_amt  | tot_amt | num_payments |
+-------------+---------+---------+----------+---------+--------------+
|           1 |    9.99 |    0.99 | 3.708750 |  118.68 |           32 |
|           2 |   10.99 |    0.99 | 4.767778 |  128.73 |           27 |
|           3 |   10.99 |    0.99 | 5.220769 |  135.74 |           26 |
|           4 |    8.99 |    0.99 | 3.717273 |   81.78 |           22 |
|           5 |    9.99 |    0.99 | 3.805789 |  144.62 |           38 |
|           6 |    7.99 |    0.99 | 3.347143 |   93.72 |           28 |



...
|         594 |    8.99 |    0.99 | 4.841852 |  130.73 |           27 |
|         595 |   10.99 |    0.99 | 3.923333 |  117.70 |           30 |
|         596 |    6.99 |    0.99 | 3.454286 |   96.72 |           28 |
|         597 |    8.99 |    0.99 | 3.990000 |   99.75 |           25 |
|         598 |    7.99 |    0.99 | 3.808182 |   83.78 |           22 |
|         599 |    9.99 |    0.99 | 4.411053 |   83.81 |           19 |
+-------------+---------+---------+----------+---------+--------------+
599 rows in set (0.04 sec)

With	the	inclusion	of	the	group by	clause,	the	server	knows	to	group
together	rows	having	the	same	value	in	the	customer_id	column	first	and
then	to	apply	the	five	aggregate	functions	to	each	of	the	599	groups.

Counting	Distinct	Values

When	using	the	count()	function	to	determine	the	number	of	members	in
each	group,	you	have	your	choice	of	counting	all	members	in	the	group	or
counting	only	the	distinct	values	for	a	column	across	all	members	of	the
group.

For	example,	consider	the	following	query,	which	uses	the	count()
function	with	the	customer_id	column	in	two	different	ways:

mysql> SELECT COUNT(customer_id) num_rows,
    ->   COUNT(DISTINCT	customer_id) num_customers

    -> FROM payment;
+----------+---------------+
| num_rows | num_customers |
+----------+---------------+
|    16049 |           599 |
+----------+---------------+
1 row in set (0.01 sec)

The	first	column	in	the	query	simply	counts	the	number	of	rows	in	the
payment	table,	whereas	the	second	column	examines	the	values	in	the
customer_id	column	and	counts	only	the	number	of	unique	values.	By
specifying	distinct,	therefore,	the	count()	function	examines	the	values



of	a	column	for	each	member	of	the	group	in	order	to	find	and	remove
duplicates,	rather	than	simply	counting	the	number	of	values	in	the	group.

Using	Expressions

Along	with	using	columns	as	arguments	to	aggregate	functions,	you	can
use	expressions	as	well.	For	example,	you	may	want	to	find	the	maximum
number	of	days	between	when	a	film	was	rented	and	subsequently
returned.	You	can	achieve	this	via	the	following	query:

mysql> SELECT MAX(datediff(return_date,rental_date))
    -> FROM rental;
+----------------------------------------+
| MAX(datediff(return_date,rental_date)) |
+----------------------------------------+
|                                     33 |
+----------------------------------------+
1 row in set (0.01 sec)

The	datediff	function	is	used	to	compute	the	number	of	days	between
the	return	date	and	the	rental	date	for	every	rental,	and	the	max	function
returns	the	highest	value,	which	in	this	case	is	33	days.

While	this	example	uses	a	fairly	simple	expression,	expressions	used	as
arguments	to	aggregate	functions	can	be	as	complex	as	needed,	as	long	as
they	return	a	number,	string,	or	date.	In	Chapter	11,	I	show	you	how	you
can	use	case	expressions	with	aggregate	functions	to	determine	whether	a
particular	row	should	or	should	not	be	included	in	an	aggregation.

How	Nulls	Are	Handled

When	performing	aggregations,	or,	indeed,	any	type	of	numeric
calculation,	you	should	always	consider	how	null	values	might	affect	the
outcome	of	your	calculation.	To	illustrate,	I	will	build	a	simple	table	to



hold	numeric	data	and	populate	it	with	the	set	{1,	3,	5}:

mysql> CREATE TABLE number_tbl
    ->  (val SMALLINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO number_tbl VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO number_tbl VALUES (3);
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO number_tbl VALUES (5);
Query OK, 1 row affected (0.00 sec)

Consider	the	following	query,	which	performs	five	aggregate	functions	on
the	set	of	numbers:

mysql> SELECT COUNT(*) num_rows,
    ->   COUNT(val) num_vals,
    ->   SUM(val) total,
    ->   MAX(val) max_val,
    ->   AVG(val) avg_val
    -> FROM number_tbl;
+----------+----------+-------+---------+---------+
| num_rows | num_vals | total | max_val | avg_val |
+----------+----------+-------+---------+---------+
|        3 |        3 |     9 |       5 |  3.0000 |
+----------+----------+-------+---------+---------+
1 row in set (0.08 sec)

The	results	are	as	you	would	expect:	both	count(*)	and	count(val)
return	the	value	3,	sum(val)	returns	the	value	9,	max(val)	returns	5,	and
avg(val)	returns	3.	Next,	I	will	add	a	null	value	to	the	number_tbl	table
and	run	the	query	again:

mysql> INSERT INTO number_tbl VALUES (NULL);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT COUNT(*) num_rows,
    ->   COUNT(val) num_vals,
    ->   SUM(val) total,
    ->   MAX(val) max_val,



    ->   AVG(val) avg_val
    -> FROM number_tbl;
+----------+----------+-------+---------+---------+
| num_rows | num_vals | total | max_val | avg_val |
+----------+----------+-------+---------+---------+
|        4 |        3 |     9 |       5 |  3.0000 |
+----------+----------+-------+---------+---------+
1 row in set (0.00 sec)

Even	with	the	addition	of	the	null	value	to	the	table,	the	sum(),	max(),
and	avg()	functions	all	return	the	same	values,	indicating	that	they	ignore
any	null	values	encountered.	The	count(*)	function	now	returns	the
value	4,	which	is	valid	since	the	number_tbl	table	contains	four	rows,
while	the	count(val)	function	still	returns	the	value	3.	The	difference	is
that	count(*)	counts	the	number	of	rows,	whereas	count(val)	counts
the	number	of	values	contained	in	the	val	column	and	ignores	any	null
values	encountered.

Generating	Groups
People	are	rarely	interested	in	looking	at	raw	data;	instead,	people
engaging	in	data	analysis	will	want	to	manipulate	the	raw	data	to	better
suit	their	needs.	Examples	of	common	data	manipulations	include:

Generating	totals	for	a	geographic	region,	such	as	total	European
sales

Finding	outliers,	such	as	the	top	salesperson	for	2020

Determining	frequencies,	such	as	the	number	of	films	rented	in
each	month

To	answer	these	types	of	queries,	you	will	need	to	ask	the	database	server
to	group	rows	together	by	one	or	more	columns	or	expressions.	As	you
have	seen	already	in	several	examples,	the	group by	clause	is	the
mechanism	for	grouping	data	within	a	query.	In	this	section,	you	will	see



how	to	group	data	by	one	or	more	columns,	how	to	group	data	using
expressions,	and	how	to	generate	rollups	within	groups.

Single-Column	Grouping

Single-column	groups	are	the	simplest	and	most-often-used	type	of
grouping.	If	you	want	to	find	the	number	of	films	associated	with	each
actor,	for	example,	you	need	only	group	on	the	film_actor.actor_id
column,	as	in:

mysql> SELECT actor_id, count(*)
    -> FROM film_actor
    -> GROUP BY actor_id;
+----------+----------+
| actor_id | count(*) |
+----------+----------+
|        1 |       19 |
|        2 |       25 |
|        3 |       22 |
|        4 |       22 |
...
|      197 |       33 |
|      198 |       40 |
|      199 |       15 |
|      200 |       20 |
+----------+----------+
200 rows in set (0.11 sec)

This	query	generates	200	groups,	one	for	each	actor,	and	then	sums	the
number	of	films	for	each	member	of	the	group.

Multicolumn	Grouping

In	some	cases,	you	may	want	to	generate	groups	that	span	more	than	one
column.	Expanding	on	the	previous	example,	imagine	that	you	want	to
find	the	total	number	of	films	for	each	film	rating	(G,	PG,	...)	for	each
actor.	The	following	example	shows	how	you	can	accomplish	this:



mysql> SELECT fa.actor_id, f.rating, count(*)
    -> FROM film_actor fa
    ->   INNER JOIN film f
    ->   ON fa.film_id = f.film_id
    -> GROUP BY fa.actor_id, f.rating
    -> ORDER BY 1,2;
+----------+--------+----------+
| actor_id | rating | count(*) |
+----------+--------+----------+
|        1 | G      |        4 |
|        1 | PG     |        6 |
|        1 | PG-13  |        1 |
|        1 | R      |        3 |
|        1 | NC-17  |        5 |
|        2 | G      |        7 |
|        2 | PG     |        6 |
|        2 | PG-13  |        2 |
|        2 | R      |        2 |
|        2 | NC-17  |        8 |
...
|      199 | G      |        3 |
|      199 | PG     |        4 |
|      199 | PG-13  |        4 |
|      199 | R      |        2 |
|      199 | NC-17  |        2 |
|      200 | G      |        5 |
|      200 | PG     |        3 |
|      200 | PG-13  |        2 |
|      200 | R      |        6 |
|      200 | NC-17  |        4 |
+----------+--------+----------+
996 rows in set (0.01 sec)

This	version	of	the	query	generates	996	groups,	one	for	each	combination
of	actor	and	film	rating	found	by	joining	the	film_actor	table	with	the
film	table.	Along	with	adding	the	rating	column	to	the	select	clause,	I
also	added	it	to	the	group by	clause,	since	rating	is	retrieved	from	a
table	and	is	not	generated	via	an	aggregate	function	such	as	max	or	count.

Grouping	via	Expressions

Along	with	using	columns	to	group	data,	you	can	build	groups	based	on
the	values	generated	by	expressions.	Consider	the	following	query,	which



groups	rentals	by	year:

mysql> SELECT extract(YEAR FROM rental_date) year,
    ->   COUNT(*) how_many
    -> FROM rental
    -> GROUP BY extract(YEAR FROM rental_date);
+------+----------+
| year | how_many |
+------+----------+
| 2005 |    15862 |
| 2006 |      182 |
+------+----------+
2 rows in set (0.01 sec)

This	query	employs	a	fairly	simple	expression	that	uses	the	extract()
function	to	return	only	the	year	portion	of	a	date	to	group	the	rows	in	the
rental	table.

Generating	Rollups

In	“Multicolumn	Grouping”,	I	showed	an	example	that	counts	the	number
of	films	for	each	actor	and	film	rating.	Let’s	say,	however,	that	along	with
the	total	count	for	each	actor/rating	combination,	you	also	want	total
counts	for	each	distinct	actor.	You	could	run	an	additional	query	and
merge	the	results,	you	could	load	the	results	of	the	query	into	a
spreadsheet,	or	you	could	build	a	Python	script,	Java	program,	or	some
other	mechanism	to	take	that	data	and	perform	the	additional	calculations.
Better	yet,	you	could	use	the	with rollup	option	to	have	the	database
server	do	the	work	for	you.	Here’s	the	revised	query	using	with rollup
in	the	group by	clause:

mysql> SELECT fa.actor_id, f.rating, count(*)
    -> FROM film_actor fa
    ->   INNER JOIN film f
    ->   ON fa.film_id = f.film_id
    -> GROUP BY fa.actor_id, f.rating WITH	ROLLUP

    -> ORDER BY 1,2;
+----------+--------+----------+



| actor_id | rating | count(*) |
+----------+--------+----------+
|     NULL	| NULL			|     5462 |

|        1 | NULL			|       19 |

|        1 | G      |        4 |
|        1 | PG     |        6 |
|        1 | PG-13  |        1 |
|        1 | R      |        3 |
|        1 | NC-17  |        5 |
|        2 | NULL			|       25 |

|        2 | G      |        7 |
|        2 | PG     |        6 |
|        2 | PG-13  |        2 |
|        2 | R      |        2 |
|        2 | NC-17  |        8 |
...
|      199 | NULL			|       15 |

|      199 | G      |        3 |
|      199 | PG     |        4 |
|      199 | PG-13  |        4 |
|      199 | R      |        2 |
|      199 | NC-17  |        2 |
|      200 | NULL			|       20 |

|      200 | G      |        5 |
|      200 | PG     |        3 |
|      200 | PG-13  |        2 |
|      200 | R      |        6 |
|      200 | NC-17  |        4 |
+----------+--------+----------+
1197 rows in set (0.07 sec)

There	are	now	201	additional	rows	in	the	result	set,	one	for	each	of	the
200	distinct	actors	and	one	for	the	grand	total	(all	actors	combined).	For
the	200	actor	rollups,	a	null	value	is	provided	for	the	rating	column,
since	the	rollup	is	being	performed	across	all	ratings.	Looking	at	the	first
line	for	actor_id 200,	for	example,	you	will	see	that	a	total	of	20	films
are	associated	with	the	actor;	this	equals	the	sum	of	the	counts	for	each
rating	(4	NC-17	+	6	R	+	2	PG-13	+	3	PG	+	5	G).	For	the	grand	total	row	in
the	first	line	of	the	output,	a	null	value	is	provided	for	both	the	actor_id
and	rating	columns;	the	total	for	the	first	line	of	output	equals	5,462,
which	is	equal	to	the	number	of	rows	in	the	film_actor	table.



NOTE
If	you	are	using	Oracle	Database,	you	need	to	use	a	slightly	different	syntax	to	indicate	that	you
want	a	rollup	performed.	The	group by	clause	for	the	previous	query	would	look	as	follows
when	using	Oracle:

GROUP BY ROLLUP(fa.actor_id, f.rating)

The	advantage	of	this	syntax	is	that	it	allows	you	to	perform	rollups	on	a	subset	of	the	columns
in	the	group_by	clause.	If	you	are	grouping	by	columns	a,	b,	and	c,	for	example,	you	could
indicate	that	the	server	should	perform	rollups	on	only	columns	b	and	c	via	the	following:

GROUP BY a, ROLLUP(b, c)

If	in	addition	to	totals	by	actor	you	also	want	to	calculate	totals	per	rating,
then	you	can	use	the	with cube	option,	which	will	generate	summary
rows	for	all	possible	combinations	of	the	grouping	columns.
Unfortunately,	with cube	is	not	available	in	version	8.0	of	MySQL,	but	it
is	available	with	SQL	Server	and	Oracle	Database.

Group	Filter	Conditions
In	Chapter	4,	I	introduced	you	to	various	types	of	filter	conditions	and
showed	how	you	can	use	them	in	the	where	clause.	When	grouping	data,
you	also	can	apply	filter	conditions	to	the	data	after	the	groups	have	been
generated.	The	having	clause	is	where	you	should	place	these	types	of
filter	conditions.	Consider	the	following	example:

mysql> SELECT fa.actor_id, f.rating, count(*)
    -> FROM film_actor fa
    ->   INNER JOIN film f
    ->   ON fa.film_id = f.film_id
    -> WHERE f.rating IN ('G','PG')
    -> GROUP BY fa.actor_id, f.rating
    -> HAVING count(*) > 9;



+----------+--------+----------+
| actor_id | rating | count(*) |
+----------+--------+----------+
|      137 | PG     |       10 |
|       37 | PG     |       12 |
|      180 | PG     |       12 |
|        7 | G      |       10 |
|       83 | G      |       14 |
|      129 | G      |       12 |
|      111 | PG     |       15 |
|       44 | PG     |       12 |
|       26 | PG     |       11 |
|       92 | PG     |       12 |
|       17 | G      |       12 |
|      158 | PG     |       10 |
|      147 | PG     |       10 |
|       14 | G      |       10 |
|      102 | PG     |       11 |
|      133 | PG     |       10 |
+----------+--------+----------+
16 rows in set (0.01 sec)

This	query	has	two	filter	conditions:	one	in	the	where	clause,	which	filters
out	any	films	rated	something	other	than	G	or	PG,	and	another	in	the
having	clause,	which	filters	out	any	actors	who	appeared	in	less	than	10
films.	Thus,	one	of	the	filters	acts	on	data	before	it	is	grouped,	and	the
other	filter	acts	on	data	after	the	groups	have	been	created.	If	you
mistakenly	put	both	filters	in	the	where	clause,	you	will	see	the	following
error:

mysql> SELECT fa.actor_id, f.rating, count(*)
    -> FROM film_actor fa
    ->   INNER JOIN film f
    ->   ON fa.film_id = f.film_id
    -> WHERE f.rating IN ('G','PG')
    ->   AND	count(*)	>	9

    -> GROUP BY fa.actor_id, f.rating;
ERROR 1111 (HY000): Invalid use of group function

This	query	fails	because	you	cannot	include	an	aggregate	function	in	a
query’s	where	clause.	This	is	because	the	filters	in	the	where	clause	are
evaluated	before	the	grouping	occurs,	so	the	server	can’t	yet	perform	any



functions	on	groups.

WARNING
When	adding	filters	to	a	query	that	includes	a	group by	clause,	think	carefully	about	whether
the	filter	acts	on	raw	data,	in	which	case	it	belongs	in	the	where	clause,	or	on	grouped	data,	in
which	case	it	belongs	in	the	having	clause.

Test	Your	Knowledge
Work	through	the	following	exercises	to	test	your	grasp	of	SQL’s
grouping	and	aggregating	features.	Check	your	work	with	the	answers	in
Appendix	B.

Exercise	8-1

Construct	a	query	that	counts	the	number	of	rows	in	the	payment	table.

Exercise	8-2

Modify	your	query	from	Exercise	8-1	to	count	the	number	of	payments
made	by	each	customer.	Show	the	customer	ID	and	the	total	amount	paid
for	each	customer.

Exercise	8-3

Modify	your	query	from	Exercise	8-2	to	include	only	those	customers	who
have	made	at	least	40	payments.



Chapter	9.	Subqueries

Subqueries	are	a	powerful	tool	that	you	can	use	in	all	four	SQL	data
statements.	In	this	chapter,	I’ll	show	you	how	subqueries	can	be	used	to
filter	data,	generate	values,	and	construct	temporary	data	sets.	After	a	little
experimentation,	I	think	you’ll	agree	that	subqueries	are	one	of	the	most
powerful	features	of	the	SQL	language.

What	Is	a	Subquery?
A	subquery	is	a	query	contained	within	another	SQL	statement	(which	I
refer	to	as	the	containing	statement	for	the	rest	of	this	discussion).	A
subquery	is	always	enclosed	within	parentheses,	and	it	is	usually	executed
prior	to	the	containing	statement.	Like	any	query,	a	subquery	returns	a
result	set	that	may	consist	of:

A	single	row	with	a	single	column

Multiple	rows	with	a	single	column

Multiple	rows	having	multiple	columns

The	type	of	result	set	returned	by	the	subquery	determines	how	it	may	be
used	and	which	operators	the	containing	statement	may	use	to	interact
with	the	data	the	subquery	returns.	When	the	containing	statement	has
finished	executing,	the	data	returned	by	any	subqueries	is	discarded,
making	a	subquery	act	like	a	temporary	table	with	statement	scope
(meaning	that	the	server	frees	up	any	memory	allocated	to	the	subquery
results	after	the	SQL	statement	has	finished	execution).



You	already	saw	several	examples	of	subqueries	in	earlier	chapters,	but
here’s	a	simple	example	to	get	started:

mysql> SELECT customer_id, first_name, last_name
    -> FROM customer
    -> WHERE customer_id = (SELECT	MAX(customer_id)	FROM	customer);

+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
|         599 | AUSTIN     | CINTRON   |
+-------------+------------+-----------+
1 row in set (0.27 sec)

In	this	example,	the	subquery	returns	the	maximum	value	found	in	the
customer_id	column	in	the	customer	table,	and	the	containing	statement
then	returns	data	about	that	customer.	If	you	are	ever	confused	about	what
a	subquery	is	doing,	you	can	run	the	subquery	by	itself	(without	the
parentheses)	to	see	what	it	returns.	Here’s	the	subquery	from	the	previous
example:

mysql> SELECT MAX(customer_id) FROM customer;
+------------------+
| MAX(customer_id) |
+------------------+
|              599 |
+------------------+
1 row in set (0.00 sec)

The	subquery	returns	a	single	row	with	a	single	column,	which	allows	it	to
be	used	as	one	of	the	expressions	in	an	equality	condition	(if	the	subquery
returned	two	or	more	rows,	it	could	be	compared	to	something	but	could
not	be	equal	to	anything,	but	more	on	this	later).	In	this	case,	you	can	take
the	value	the	subquery	returned	and	substitute	it	into	the	righthand
expression	of	the	filter	condition	in	the	containing	query,	as	in	the
following:

mysql> SELECT customer_id, first_name, last_name
    -> FROM customer



    -> WHERE customer_id = 599;
+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
|         599 | AUSTIN     | CINTRON   |
+-------------+------------+-----------+
1 row in set (0.00 sec)

The	subquery	is	useful	in	this	case	because	it	allows	you	to	retrieve
information	about	the	customer	with	the	highest	ID	in	a	single	query,
rather	than	retrieving	the	maximum	customer_id	using	one	query	and
then	writing	a	second	query	to	retrieve	the	desired	data	from	the	customer
table.	As	you	will	see,	subqueries	are	useful	in	many	other	situations	as
well	and	may	become	one	of	the	most	powerful	tools	in	your	SQL	toolkit.

Subquery	Types
Along	with	the	differences	noted	previously	regarding	the	type	of	result
set	returned	by	a	subquery	(single	row/column,	single	row/multicolumn,
or	multiple	columns),	you	can	use	another	feature	to	differentiate
subqueries;	some	subqueries	are	completely	self-contained	(called
noncorrelated	subqueries),	while	others	reference	columns	from	the
containing	statement	(called	correlated	subqueries).	The	next	several
sections	explore	these	two	subquery	types	and	show	the	different	operators
that	you	can	employ	to	interact	with	them.

Noncorrelated	Subqueries
The	example	from	earlier	in	the	chapter	is	a	noncorrelated	subquery;	it
may	be	executed	alone	and	does	not	reference	anything	from	the
containing	statement.	Most	subqueries	that	you	encounter	will	be	of	this
type	unless	you	are	writing	update	or	delete	statements,	which
frequently	make	use	of	correlated	subqueries	(more	on	this	later).	Along



with	being	noncorrelated,	the	example	from	earlier	in	the	chapter	also
returns	a	result	set	containing	a	single	row	and	column.	This	type	of
subquery	is	known	as	a	scalar	subquery	and	can	appear	on	either	side	of	a
condition	using	the	usual	operators	(=,	<>,	<,	>,	<=,	>=).	The	next	example
shows	how	you	can	use	a	scalar	subquery	in	an	inequality	condition:

mysql> SELECT city_id, city
    -> FROM city
    -> WHERE country_id <> 
    ->  (SELECT	country_id	FROM	country	WHERE	country	=	'India');

+---------+----------------------------+
| city_id | city                       |
+---------+----------------------------+
|       1 | A Corua (La Corua)         |
|       2 | Abha                       |
|       3 | Abu Dhabi                  |
|       4 | Acua                       |
|       5 | Adana                      |
|       6 | Addis Abeba                |
...
|     595 | Zapopan                    |
|     596 | Zaria                      |
|     597 | Zeleznogorsk               |
|     598 | Zhezqazghan                |
|     599 | Zhoushan                   |
|     600 | Ziguinchor                 |
+---------+----------------------------+
540 rows in set (0.02 sec)

This	query	returns	all	cities	that	are	not	in	India.	The	subquery,	which	is
found	on	the	last	line	of	the	statement,	returns	the	country	ID	for	India,
and	the	containing	query	returns	all	cities	that	do	not	have	that	country	ID.
While	the	subquery	in	this	example	is	quite	simple,	subqueries	may	be	as
complex	as	you	need	them	to	be,	and	they	may	utilize	any	and	all	the
available	query	clauses	(select,	from,	where,	group by,	having,	and
order by).

If	you	use	a	subquery	in	an	equality	condition	but	the	subquery	returns
more	than	one	row,	you	will	receive	an	error.	For	example,	if	you	modify



the	previous	query	such	that	the	subquery	returns	all	countries	except	for
India,	you	will	receive	the	following	error:

mysql> SELECT city_id, city
    -> FROM city
    -> WHERE country_id <> 
    ->  (SELECT country_id FROM country WHERE country <> 'India');

ERROR 1242 (21000): Subquery	returns	more	than	1	row

If	you	run	the	subquery	by	itself,	you	will	see	the	following	results:

mysql> SELECT country_id FROM country WHERE country <> 'India';
+------------+
| country_id |
+------------+
|          1 |
|          2 |
|          3 |
|          4 |
...
|        106 |
|        107 |
|        108 |
|        109 |
+------------+
108 rows in set (0.00 sec)

The	containing	query	fails	because	an	expression	(country_id)	cannot	be
equated	to	a	set	of	expressions	(country_ids	1,	2,	3,	...,	109).	In	other
words,	a	single	thing	cannot	be	equated	to	a	set	of	things.	In	the	next
section,	you	will	see	how	to	fix	the	problem	by	using	a	different	operator.

Multiple-Row,	Single-Column	Subqueries

If	your	subquery	returns	more	than	one	row,	you	will	not	be	able	to	use	it
on	one	side	of	an	equality	condition,	as	the	previous	example
demonstrated.	However,	there	are	four	additional	operators	that	you	can
use	to	build	conditions	with	these	types	of	subqueries.

THE	IN	AND	NOT	IN	OPERATORS



THE	IN	AND	NOT	IN	OPERATORS

While	you	can’t	equate	a	single	value	to	a	set	of	values,	you	can	check	to
see	whether	a	single	value	can	be	found	within	a	set	of	values.	The	next
example,	while	it	doesn’t	use	a	subquery,	demonstrates	how	to	build	a
condition	that	uses	the	in	operator	to	search	for	a	value	within	a	set	of
values:

mysql> SELECT country_id
    -> FROM country
    -> WHERE country IN ('Canada','Mexico');
+------------+
| country_id |
+------------+
|         20 |
|         60 |
+------------+
2 rows in set (0.00 sec)

The	expression	on	the	lefthand	side	of	the	condition	is	the	country
column,	while	the	righthand	side	of	the	condition	is	a	set	of	strings.	The	in
operator	checks	to	see	whether	either	of	the	strings	can	be	found	in	the
country	column;	if	so,	the	condition	is	met,	and	the	row	is	added	to	the
result	set.	You	could	achieve	the	same	results	using	two	equality
conditions,	as	in:

mysql> SELECT country_id
    -> FROM country
    -> WHERE country = 'Canada' OR country = 'Mexico';
+------------+
| country_id |
+------------+
|         20 |
|         60 |
+------------+
2 rows in set (0.00 sec)

While	this	approach	seems	reasonable	when	the	set	contains	only	two
expressions,	it	is	easy	to	see	why	a	single	condition	using	the	in	operator



would	be	preferable	if	the	set	contained	dozens	(or	hundreds,	thousands,
etc.)	of	values.

Although	you	will	occasionally	create	a	set	of	strings,	dates,	or	numbers	to
use	on	one	side	of	a	condition,	you	are	more	likely	to	generate	the	set
using	a	subquery	that	returns	one	or	more	rows.	The	following	query	uses
the	in	operator	with	a	subquery	on	the	righthand	side	of	the	filter
condition	to	return	all	cities	that	are	in	Canada	or	Mexico:

mysql> SELECT city_id, city
    -> FROM city
    -> WHERE country_id IN
    ->  (SELECT country_id
    ->   FROM country
    ->   WHERE country IN ('Canada','Mexico'));
+---------+----------------------------+
| city_id | city                       |
+---------+----------------------------+
|     179 | Gatineau                   |
|     196 | Halifax                    |
|     300 | Lethbridge                 |
|     313 | London                     |
|     383 | Oshawa                     |
|     430 | Richmond Hill              |
|     565 | Vancouver                  |
...
|     452 | San Juan Bautista Tuxtepec |
|     541 | Torren                     |
|     556 | Uruapan                    |
|     563 | Valle de Santiago          |
|     595 | Zapopan                    |
+---------+----------------------------+
37 rows in set (0.00 sec)

Along	with	seeing	whether	a	value	exists	within	a	set	of	values,	you	can
check	the	converse	using	the	not in	operator.	Here’s	another	version	of
the	previous	query	using	not in	instead	of	in:

mysql> SELECT city_id, city
    -> FROM city
    -> WHERE country_id NOT	IN



    ->  (SELECT country_id
    ->   FROM country
    ->   WHERE country IN ('Canada','Mexico'));
+---------+----------------------------+
| city_id | city                       |
+---------+----------------------------+
|       1 | A Corua (La Corua)         |
|       2 | Abha                       |
|       3 | Abu Dhabi                  |
|       5 | Adana                      |
|       6 | Addis Abeba                |
...
|     596 | Zaria                      |
|     597 | Zeleznogorsk               |
|     598 | Zhezqazghan                |
|     599 | Zhoushan                   |
|     600 | Ziguinchor                 |
+---------+----------------------------+
563 rows in set (0.00 sec)

This	query	finds	all	cities	that	are	not	in	Canada	or	Mexico.

THE	ALL	OPERATOR

While	the	in	operator	is	used	to	see	whether	an	expression	can	be	found
within	a	set	of	expressions,	the	all	operator	allows	you	to	make
comparisons	between	a	single	value	and	every	value	in	a	set.	To	build
such	a	condition,	you	will	need	to	use	one	of	the	comparison	operators	(=,
<>,	<,	>,	etc.)	in	conjunction	with	the	all	operator.	For	example,	the	next
query	finds	all	customers	who	have	never	gotten	a	free	film	rental:

mysql> SELECT first_name, last_name
    -> FROM customer
    -> WHERE customer_id <>	ALL

    ->  (SELECT customer_id
    ->   FROM payment
    ->   WHERE amount = 0);
+-------------+--------------+
| first_name  | last_name    |
+-------------+--------------+
| MARY        | SMITH        |
| PATRICIA    | JOHNSON      |
| LINDA       | WILLIAMS     |



| BARBARA     | JONES        |
...
| EDUARDO     | HIATT        |
| TERRENCE    | GUNDERSON    |
| ENRIQUE     | FORSYTHE     |
| FREDDIE     | DUGGAN       |
| WADE        | DELVALLE     |
| AUSTIN      | CINTRON      |
+-------------+--------------+
576 rows in set (0.01 sec)

The	subquery	returns	the	set	of	IDs	for	customers	who	have	paid	$0	for	a
film	rental,	and	the	containing	query	returns	the	names	of	all	customers
whose	ID	is	not	in	the	set	returned	by	the	subquery.	If	this	approach	seems
a	bit	clumsy	to	you,	you	are	in	good	company;	most	people	would	prefer
to	phrase	the	query	differently	and	avoid	using	the	all	operator.	To
illustrate,	the	previous	query	generates	the	same	results	as	the	next
example,	which	uses	the	not in	operator:

SELECT first_name, last_name
FROM customer
WHERE customer_id NOT	IN

 (SELECT customer_id
  FROM payment
  WHERE amount = 0)

It’s	a	matter	of	preference,	but	I	think	that	most	people	would	find	the
version	that	uses	not in	to	be	easier	to	understand.

NOTE
When	using	not in	or	<> all	to	compare	a	value	to	a	set	of	values,	you	must	be	careful	to
ensure	that	the	set	of	values	does	not	contain	a	null	value,	because	the	server	equates	the	value
on	the	lefthand	side	of	the	expression	to	each	member	of	the	set,	and	any	attempt	to	equate	a
value	to	null	yields	unknown.	Thus,	the	following	query	returns	an	empty	set:

mysql> SELECT first_name, last_name
    -> FROM customer
    -> WHERE customer_id NOT IN (122, 452, NULL);
Empty set (0.00 sec)



Here’s	another	example	using	the	all	operator,	but	this	time	the	subquery
is	in	the		having	clause:

mysql> SELECT customer_id, count(*)
    -> FROM rental
    -> GROUP BY customer_id
    -> HAVING	count(*)	>	ALL

    ->  (SELECT count(*)
    ->   FROM rental r
    ->     INNER JOIN customer c
    ->     ON r.customer_id = c.customer_id
    ->     INNER JOIN address a
    ->     ON c.address_id = a.address_id
    ->     INNER JOIN city ct
    ->     ON a.city_id = ct.city_id
    ->     INNER JOIN country co
    ->     ON ct.country_id = co.country_id
    ->   WHERE co.country IN ('United States','Mexico','Canada')
    ->   GROUP BY r.customer_id
    ->   );
+-------------+----------+
| customer_id | count(*) |
+-------------+----------+
|         148 |       46 |
+-------------+----------+
1 row in set (0.01 sec)

The	subquery	in	this	example	returns	the	total	number	of	film	rentals	for
all	customers	in	North	America,	and	the	containing	query	returns	all
customers	whose	total	number	of	film	rentals	exceeds	any	of	the	North
American	customers.

THE	ANY	OPERATOR

Like	the	all	operator,	the	any	operator	allows	a	value	to	be	compared	to
the	members	of	a	set	of	values;	unlike	all,	however,	a	condition	using	the
any	operator	evaluates	to	true	as	soon	as	a	single	comparison	is
favorable.	This	example	will	find	all	customers	whose	total	film	rental



payments	exceed	the	total	payments	for	all	customers	in	Bolivia,
Paraguay,	or	Chile:

mysql> SELECT customer_id, sum(amount)
    -> FROM payment
    -> GROUP BY customer_id
    -> HAVING sum(amount) >	ANY

    ->  (SELECT sum(p.amount)
    ->   FROM payment p
    ->     INNER JOIN customer c
    ->     ON p.customer_id = c.customer_id
    ->     INNER JOIN address a
    ->     ON c.address_id = a.address_id
    ->     INNER JOIN city ct
    ->     ON a.city_id = ct.city_id
    ->     INNER JOIN country co
    ->     ON ct.country_id = co.country_id
    ->   WHERE co.country IN ('Bolivia','Paraguay','Chile')
    ->   GROUP BY co.country
    ->  );
+-------------+-------------+
| customer_id | sum(amount) |
+-------------+-------------+
|         137 |      194.61 |
|         144 |      195.58 |
|         148 |      216.54 |
|         178 |      194.61 |
|         459 |      186.62 |
|         526 |      221.55 |
+-------------+-------------+
6 rows in set (0.03 sec)

The	subquery	returns	the	total	film	rental	fees	for	all	customers	in	Bolivia,
Paraguay,	and	Chile,	and	the	containing	query	returns	all	customers	who
outspent	at	least	one	of	these	three	countries	(if	you	find	yourself
outspending	an	entire	country,	perhaps	you	need	to	cancel	your	Netflix
subscription	and	book	a	trip	to	Bolivia,	Paraguay,	or	Chile...).

NOTE
Although	most	people	prefer	to	use	in,	using	= any	is	equivalent	to	using	the	in	operator.



Multicolumn	Subqueries

So	far,	the	subquery	examples	in	this	chapter	have	returned	a	single
column	and	one	or	more	rows.	In	certain	situations,	however,	you	can	use
subqueries	that	return	two	or	more	columns.	To	show	the	utility	of
multicolumn	subqueries,	it	might	help	to	look	first	at	an	example	that	uses
multiple,	single-column	subqueries:

mysql> SELECT fa.actor_id, fa.film_id
    -> FROM film_actor fa
    -> WHERE fa.actor_id IN
    ->  (SELECT actor_id FROM actor WHERE last_name = 'MONROE')
    ->   AND fa.film_id IN
    ->  (SELECT film_id FROM film WHERE rating = 'PG');
+----------+---------+
| actor_id | film_id |
+----------+---------+
|      120 |      63 |
|      120 |     144 |
|      120 |     414 |
|      120 |     590 |
|      120 |     715 |
|      120 |     894 |
|      178 |     164 |
|      178 |     194 |
|      178 |     273 |
|      178 |     311 |
|      178 |     983 |
+----------+---------+
11 rows in set (0.00 sec)

This	query	uses	two	subqueries	to	identify	all	actors	with	the	last	name
Monroe	and	all	films	rated	PG,	and	the	containing	query	then	uses	this
information	to	retrieve	all	cases	where	an	actor	named	Monroe	appeared
in	a	PG	film.	However,	you	could	merge	the	two	single-column
subqueries	into	one	multicolumn	subquery	and	compare	the	results	to	two
columns	in	the	film_actor	table.	To	do	so,	your	filter	condition	must
name	both	columns	from	the	film_actor	table	surrounded	by	parentheses



and	in	the	same	order	as	returned	by	the	subquery,	as	in:

mysql> SELECT actor_id, film_id
    -> FROM film_actor
    -> WHERE (actor_id,	film_id)	IN

    ->  (SELECT	a.actor_id,	f.film_id

    ->   FROM actor a
    ->      CROSS JOIN film f
    ->   WHERE a.last_name = 'MONROE'
    ->   AND f.rating = 'PG');
+----------+---------+
| actor_id | film_id |
+----------+---------+
|      120 |      63 |
|      120 |     144 |
|      120 |     414 |
|      120 |     590 |
|      120 |     715 |
|      120 |     894 |
|      178 |     164 |
|      178 |     194 |
|      178 |     273 |
|      178 |     311 |
|      178 |     983 |
+----------+---------+
11 rows in set (0.00 sec)

This	version	of	the	query	performs	the	same	function	as	the	previous
example,	but	with	a	single	subquery	that	returns	two	columns	instead	of
two	subqueries	that	each	return	a	single	column.	The	subquery	in	this
version	uses	a	type	of	join	called	a	cross	join,	which	will	be	explored	in
the	next	chapter.	The	basic	idea	is	to	return	all	combinations	of	actors
named	Monroe	(2)	and	all	films	rated	PG	(194)	for	a	total	of	388	rows,	11
of	which	can	be	found	in	the	film_actor	table.

Correlated	Subqueries
All	of	the	subqueries	shown	thus	far	have	been	independent	of	their
containing	statements,	meaning	that	you	can	execute	them	by	themselves



and	inspect	the	results.	A	correlated	subquery,	on	the	other	hand,	is
dependent	on	its	containing	statement	from	which	it	references	one	or
more	columns.	Unlike	a	noncorrelated	subquery,	a	correlated	subquery	is
not	executed	once	prior	to	execution	of	the	containing	statement;	instead,
the	correlated	subquery	is	executed	once	for	each	candidate	row	(rows	that
might	be	included	in	the	final	results).	For	example,	the	following	query
uses	a	correlated	subquery	to	count	the	number	of	film	rentals	for	each
customer,	and	the	containing	query	then	retrieves	those	customers	who
have	rented	exactly	20	films:

mysql> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE 20 =
    ->  (SELECT count(*) FROM rental r
    ->   WHERE r.customer_id = c.customer_id);

+------------+-------------+
| first_name | last_name   |
+------------+-------------+
| LAUREN     | HUDSON      |
| JEANETTE   | GREENE      |
| TARA       | RYAN        |
| WILMA      | RICHARDS    |
| JO         | FOWLER      |
| KAY        | CALDWELL    |
| DANIEL     | CABRAL      |
| ANTHONY    | SCHWAB      |
| TERRY      | GRISSOM     |
| LUIS       | YANEZ       |
| HERBERT    | KRUGER      |
| OSCAR      | AQUINO      |
| RAUL       | FORTIER     |
| NELSON     | CHRISTENSON |
| ALFREDO    | MCADAMS     |
+------------+-------------+
15 rows in set (0.01 sec)

The	reference	to	c.customer_id	at	the	very	end	of	the	subquery	is	what
makes	the	subquery	correlated;	the	containing	query	must	supply	values
for	c.customer_id	for	the	subquery	to	execute.	In	this	case,	the
containing	query	retrieves	all	599	rows	from	the	customer	table	and



executes	the	subquery	once	for	each	customer,	passing	in	the	appropriate
customer	ID	for	each	execution.	If	the	subquery	returns	the	value	20,	then
the	filter	condition	is	met,	and	the	row	is	added	to	the	result	set.

NOTE
One	word	of	caution:	since	the	correlated	subquery	will	be	executed	once	for	each	row	of	the
containing	query,	the	use	of	correlated	subqueries	can	cause	performance	issues	if	the	containing
query	returns	a	large	number	of	rows.

Along	with	equality	conditions,	you	can	use	correlated	subqueries	in	other
types	of	conditions,	such	as	the	range	condition	illustrated	here:

mysql> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE
    ->  (SELECT sum(p.amount) FROM payment p
    ->   WHERE p.customer_id = c.customer_id)
    ->   BETWEEN 180 AND 240;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| RHONDA     | KENNEDY   |
| CLARA      | SHAW      |
| ELEANOR    | HUNT      |
| MARION     | SNYDER    |
| TOMMY      | COLLAZO   |
| KARL       | SEAL      |
+------------+-----------+
6 rows in set (0.03 sec)

This	variation	on	the	previous	query	finds	all	customers	whose	total
payments	for	all	film	rentals	are	between	$180	and	$240.	Once	again,	the
correlated	subquery	is	executed	599	times	(once	for	each	customer	row),
and	each	execution	of	the	subquery	returns	the	total	account	balance	for
the	given	customer.



NOTE
Another	subtle	difference	in	the	previous	query	is	that	the	subquery	is	on	the	lefthand	side	of	the
condition,	which	may	look	a	bit	odd	but	is	perfectly	valid.

The	exists	Operator

While	you	will	often	see	correlated	subqueries	used	in	equality	and	range
conditions,	the	most	common	operator	used	to	build	conditions	that	utilize
correlated	subqueries	is	the	exists	operator.	You	use	the	exists	operator
when	you	want	to	identify	that	a	relationship	exists	without	regard	for	the
quantity;	for	example,	the	following	query	finds	all	the	customers	who
rented	at	least	one	film	prior	to	May	25,	2005,	without	regard	for	how
many	films	were	rented:

mysql> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE EXISTS

    ->  (SELECT 1 FROM rental r
    ->   WHERE r.customer_id = c.customer_id
    ->     AND date(r.rental_date) < '2005-05-25');
+------------+-------------+
| first_name | last_name   |
+------------+-------------+
| CHARLOTTE  | HUNTER      |
| DELORES    | HANSEN      |
| MINNIE     | ROMERO      |
| CASSANDRA  | WALTERS     |
| ANDREW     | PURDY       |
| MANUEL     | MURRELL     |
| TOMMY      | COLLAZO     |
| NELSON     | CHRISTENSON |
+------------+-------------+
8 rows in set (0.03 sec)

Using	the	exists	operator,	your	subquery	can	return	zero,	one,	or	many
rows,	and	the	condition	simply	checks	whether	the	subquery	returned	one
or	more	rows.	If	you	look	at	the	select	clause	of	the	subquery,	you	will



see	that	it	consists	of	a	single	literal	(1);	since	the	condition	in	the
containing	query	only	needs	to	know	how	many	rows	have	been	returned,
the	actual	data	the	subquery	returned	is	irrelevant.	Your	subquery	can
return	whatever	strikes	your	fancy,	as	demonstrated	next:

mysql> SELECT c.first_name, c.last_name
    -> FROM customer c
    -> WHERE EXISTS
    ->  (SELECT r.rental_date,	r.customer_id,	'ABCD'	str,	2	*	3	/	7	

nmbr

    ->   FROM rental r
    ->   WHERE r.customer_id = c.customer_id
    ->     AND date(r.rental_date) < '2005-05-25');
+------------+-------------+
| first_name | last_name   |
+------------+-------------+
| CHARLOTTE  | HUNTER      |
| DELORES    | HANSEN      |
| MINNIE     | ROMERO      |
| CASSANDRA  | WALTERS     |
| ANDREW     | PURDY       |
| MANUEL     | MURRELL     |
| TOMMY      | COLLAZO     |
| NELSON     | CHRISTENSON |
+------------+-------------+
8 rows in set (0.03 sec)

However,	the	convention	is	to	specify	either	select 1	or	select *	when
using	exists.

You	may	also	use	not exists	to	check	for	subqueries	that	return	no
rows,	as	demonstrated	by	the	following:

mysql> SELECT a.first_name, a.last_name
    -> FROM actor a
    -> WHERE NOT	EXISTS

    ->  (SELECT 1
    ->   FROM film_actor fa
    ->     INNER JOIN film f ON f.film_id = fa.film_id
    ->   WHERE fa.actor_id = a.actor_id

    ->     AND f.rating = 'R');
+------------+-----------+



| first_name | last_name |
+------------+-----------+
| JANE       | JACKMAN   |
+------------+-----------+
1 row in set (0.00 sec)

This	query	finds	all	actors	who	have	never	appeared	in	an	R-rated	film.

Data	Manipulation	Using	Correlated	Subqueries

All	of	the	examples	thus	far	in	the	chapter	have	been	select	statements,
but	don’t	think	that	means	that	subqueries	aren’t	useful	in	other	SQL
statements.	Subqueries	are	used	heavily	in	update,	delete,	and	insert
statements	as	well,	with	correlated	subqueries	appearing	frequently	in
update	and	delete	statements.	Here’s	an	example	of	a	correlated
subquery	used	to	modify	the	last_update	column	in	the	customer	table:

UPDATE customer c
SET c.last_update =
 (SELECT max(r.rental_date) FROM rental r
  WHERE r.customer_id = c.customer_id);

This	statement	modifies	every	row	in	the	customer	table	(since	there	is	no
where	clause)	by	finding	the	latest	rental	date	for	each	customer	in	the
rental	table.	While	it	seems	reasonable	to	expect	that	every	customer	will
have	at	least	one	film	rental,	it	would	be	best	to	check	before	attempting	to
update	the	last_update	column;	otherwise,	the	column	will	be	set	to
null,	since	the	subquery	would	return	no	rows.	Here’s	another	version	of
the	update	statement,	this	time	employing	a	where	clause	with	a	second
correlated	subquery:

UPDATE customer c
SET c.last_update =
 (SELECT max(r.rental_date) FROM rental r
  WHERE r.customer_id = c.customer_id)
WHERE EXISTS
 (SELECT 1 FROM rental r



  WHERE r.customer_id = c.customer_id);

The	two	correlated	subqueries	are	identical	except	for	the	select	clauses.
The	subquery	in	the	set	clause,	however,	executes	only	if	the	condition	in
the	update	statement’s	where	clause	evaluates	to	true	(meaning	that	at
least	one	rental	was	found	for	the	customer),	thus	protecting	the	data	in	the
last_update	column	from	being	overwritten	with	a	null.

Correlated	subqueries	are	also	common	in	delete	statements.	For
example,	you	may	run	a	data	maintenance	script	at	the	end	of	each	month
that	removes	unnecessary	data.	The	script	might	include	the	following
statement,	which	removes	rows	from	the	customer	table	where	there	have
been	no	film	rentals	in	the	past	year:

DELETE FROM customer
WHERE 365 < ALL
 (SELECT datediff(now(), r.rental_date) days_since_last_rental
  FROM rental r
  WHERE r.customer_id = customer.customer_id);

When	using	correlated	subqueries	with	delete	statements	in	MySQL,
keep	in	mind	that,	for	whatever	reason,	table	aliases	are	not	allowed	when
using	delete,	which	is	why	I	had	to	use	the	entire	table	name	in	the
subquery.	With	most	other	database	servers,	you	could	provide	an	alias	for
the	customer	table,	such	as:

DELETE FROM customer c

WHERE 365 < ALL
 (SELECT datediff(now(), r.rental_date) days_since_last_rental
  FROM rental r
  WHERE r.customer_id = c.customer_id);

When	to	Use	Subqueries
Now	that	you	have	learned	about	the	different	types	of	subqueries	and	the



different	operators	that	you	can	employ	to	interact	with	the	data	returned
by	subqueries,	it’s	time	to	explore	the	many	ways	in	which	you	can	use
subqueries	to	build	powerful	SQL	statements.	The	next	three	sections
demonstrate	how	you	may	use	subqueries	to	construct	custom	tables,	to
build	conditions,	and	to	generate	column	values	in	result	sets.

Subqueries	as	Data	Sources

Back	in	Chapter	3,	I	stated	that	the	from	clause	of	a	select	statement
contains	the	tables	to	be	used	by	the	query.	Since	a	subquery	generates	a
result	set	containing	rows	and	columns	of	data,	it	is	perfectly	valid	to
include	subqueries	in	your	from	clause	along	with	tables.	Although	it
might,	at	first	glance,	seem	like	an	interesting	feature	without	much
practical	merit,	using	subqueries	alongside	tables	is	one	of	the	most
powerful	tools	available	when	writing	queries.	Here’s	a	simple	example:

mysql> SELECT c.first_name, c.last_name, 
    ->   pymnt.num_rentals, pymnt.tot_payments
    -> FROM customer c
    ->   INNER JOIN
    ->    (SELECT customer_id, 

    ->       count(*) num_rentals, sum(amount) tot_payments
    ->     FROM payment
    ->     GROUP BY customer_id
    ->    )	pymnt

    ->   ON c.customer_id = pymnt.customer_id;
+-------------+--------------+-------------+--------------+
| first_name  | last_name    | num_rentals | tot_payments |
+-------------+--------------+-------------+--------------+
| MARY        | SMITH        |          32 |       118.68 |
| PATRICIA    | JOHNSON      |          27 |       128.73 |
| LINDA       | WILLIAMS     |          26 |       135.74 |
| BARBARA     | JONES        |          22 |        81.78 |
| ELIZABETH   | BROWN        |          38 |       144.62 |
...
| TERRENCE    | GUNDERSON    |          30 |       117.70 |
| ENRIQUE     | FORSYTHE     |          28 |        96.72 |
| FREDDIE     | DUGGAN       |          25 |        99.75 |
| WADE        | DELVALLE     |          22 |        83.78 |
| AUSTIN      | CINTRON      |          19 |        83.81 |



+-------------+--------------+-------------+--------------+
599 rows in set (0.03 sec)

In	this	example,	a	subquery	generates	a	list	of	customer	IDs	along	with	the
number	of	film	rentals	and	the	total	payments.	Here’s	the	result	set
generated	by	the	subquery:

mysql> SELECT customer_id, count(*) num_rentals, sum(amount) tot_payments
    -> FROM payment
    -> GROUP BY customer_id;
+-------------+-------------+--------------+
| customer_id | num_rentals | tot_payments |
+-------------+-------------+--------------+
|           1 |          32 |       118.68 |
|           2 |          27 |       128.73 |
|           3 |          26 |       135.74 |
|           4 |          22 |        81.78 |
...
|         596 |          28 |        96.72 |
|         597 |          25 |        99.75 |
|         598 |          22 |        83.78 |
|         599 |          19 |        83.81 |
+-------------+-------------+--------------+
599 rows in set (0.03 sec)

The	subquery	is	given	the	name	pymnt	and	is	joined	to	the	customer	table
via	the	customer_id	column.	The	containing	query	then	retrieves	the
customer’s	name	from	the	customer	table,	along	with	the	summary
columns	from	the	pymnt	subquery.

Subqueries	used	in	the	from	clause	must	be	noncorrelated; 	they	are
executed	first,	and	the	data	is	held	in	memory	until	the	containing	query
finishes	execution.	Subqueries	offer	immense	flexibility	when	writing
queries,	because	you	can	go	far	beyond	the	set	of	available	tables	to	create
virtually	any	view	of	the	data	that	you	desire	and	then	join	the	results	to
other	tables	or	subqueries.	If	you	are	writing	reports	or	generating	data
feeds	to	external	systems,	you	may	be	able	to	do	things	with	a	single	query
that	used	to	demand	multiple	queries	or	a	procedural	language	to

1



accomplish.

DATA	FABRICATION

Along	with	using	subqueries	to	summarize	existing	data,	you	can	use
subqueries	to	generate	data	that	doesn’t	exist	in	any	form	within	your
database.	For	example,	you	may	wish	to	group	your	customers	by	the
amount	of	money	spent	on	film	rentals,	but	you	want	to	use	group
definitions	that	are	not	stored	in	your	database.	For	example,	let’s	say	you
want	to	sort	your	customers	into	the	groups	shown	in	Table	9-1.

Table	9-1.	Customer	payment	groups

Group	name Lower	limit Upper	limit

	
	 	 	
Small	Fry
	
	 	 	

	
	 	 	
0
	
	 	 	

	
	 	 	
$74.99
	
	 	 	

	
	 	 	
Average	Joes
	
	 	 	

	
	 	 	
$75
	
	 	 	

	
	 	 	
$149.99
	
	 	 	

	
	 	 	
Heavy	Hitters
	
	 	 	

	
	 	 	
$150
	
	 	 	

	
	 	 	
$9,999,999.99
	
	 	 	

To	generate	these	groups	within	a	single	query,	you	will	need	a	way	to
define	these	three	groups.	The	first	step	is	to	define	a	query	that	generates
the	group	definitions:

mysql> SELECT 'Small Fry' name, 0 low_limit, 74.99 high_limit
    -> UNION ALL



    -> SELECT 'Average Joes' name, 75 low_limit, 149.99 high_limit
    -> UNION ALL
    -> SELECT 'Heavy Hitters' name, 150 low_limit, 9999999.99 high_limit;
+---------------+-----------+------------+
| name          | low_limit | high_limit |
+---------------+-----------+------------+
| Small Fry     |         0 |      74.99 |
| Average Joes  |        75 |     149.99 |
| Heavy Hitters |       150 | 9999999.99 |
+---------------+-----------+------------+
3 rows in set (0.00 sec)

I	have	used	the	set	operator	union all	to	merge	the	results	from	three
separate	queries	into	a	single	result	set.	Each	query	retrieves	three	literals,
and	the	results	from	the	three	queries	are	put	together	to	generate	a	result
set	with	three	rows	and	three	columns.	You	now	have	a	query	to	generate
the	desired	groups,	and	you	can	place	it	into	the	from	clause	of	another
query	to	generate	your	customer	groups:

mysql> SELECT pymnt_grps.name, count(*) num_customers
    -> FROM
    ->  (SELECT customer_id,
    ->     count(*) num_rentals, sum(amount) tot_payments
    ->   FROM payment
    ->   GROUP BY customer_id
    ->  ) pymnt
    ->   INNER JOIN
    ->  (SELECT 'Small Fry' name, 0 low_limit, 74.99 high_limit
    ->   UNION ALL
    ->   SELECT 'Average Joes' name, 75 low_limit, 149.99 high_limit
    ->   UNION ALL
    ->   SELECT 'Heavy Hitters' name, 150 low_limit, 9999999.99 high_limit
    ->  ) pymnt_grps
    ->   ON pymnt.tot_payments
    ->     BETWEEN pymnt_grps.low_limit AND pymnt_grps.high_limit
    -> GROUP BY pymnt_grps.name;
+---------------+---------------+
| name          | num_customers |
+---------------+---------------+
| Average Joes  |           515 |
| Heavy Hitters |            46 |
| Small Fry     |            38 |
+---------------+---------------+
3 rows in set (0.03 sec)



The	from	clause	contains	two	subqueries;	the	first	subquery,	named
pymnt,	returns	the	total	number	of	film	rentals	and	total	payments	for	each
customer,	while	the	second	subquery,	named	pymnt_grps,	generates	the
three	customer	groupings.	The	two	subqueries	are	joined	by	finding	which
of	the	three	groups	each	customer	belongs	to,	and	the	rows	are	then
grouped	by	the	group	name	in	order	to	count	the	number	of	customers	in
each	group.

Of	course,	you	could	simply	decide	to	build	a	permanent	(or	temporary)
table	to	hold	the	group	definitions	instead	of	using	a	subquery.	Using	that
approach,	you	would	find	your	database	to	be	littered	with	small	special-
purpose	tables	after	a	while,	and	you	wouldn’t	remember	the	reason	for
which	most	of	them	were	created.	Using	subqueries,	however,	you	will	be
able	to	adhere	to	a	policy	where	tables	are	added	to	a	database	only	when
there	is	a	clear	business	need	to	store	new	data.

TASK-ORIENTED	SUBQUERIES

Let’s	say	that	you	want	to	generate	a	report	showing	each	customer’s
name,	along	with	their	city,	the	total	number	of	rentals,	and	the	total
payment	amount.	You	could	accomplish	this	by	joining	the	payment,
customer,	address,	and	city	tables,	and	then	grouping	on	the	customer’s
first	and	last	names:

mysql> SELECT c.first_name, c.last_name, ct.city,
    ->   sum(p.amount) tot_payments, count(*) tot_rentals
    -> FROM payment p
    ->   INNER JOIN customer c
    ->   ON p.customer_id = c.customer_id
    ->   INNER JOIN address a
    ->   ON c.address_id = a.address_id
    ->   INNER JOIN city ct
    ->   ON a.city_id = ct.city_id
    -> GROUP BY c.first_name, c.last_name, ct.city;
+-------------+------------+-----------------+--------------+-------------+
| first_name  | last_name  | city            | tot_payments | tot_rentals |



+-------------+------------+-----------------+--------------+-------------+
| MARY        | SMITH      | Sasebo          |       118.68 |          32 |
| PATRICIA    | JOHNSON    | San Bernardino  |       128.73 |          27 |
| LINDA       | WILLIAMS   | Athenai         |       135.74 |          26 |
| BARBARA     | JONES      | Myingyan        |        81.78 |          22 |
...
| TERRENCE    | GUNDERSON  | Jinzhou         |       117.70 |          30 |
| ENRIQUE     | FORSYTHE   | Patras          |        96.72 |          28 |
| FREDDIE     | DUGGAN     | Sullana         |        99.75 |          25 |
| WADE        | DELVALLE   | Lausanne        |        83.78 |          22 |
| AUSTIN      | CINTRON    | Tieli           |        83.81 |          19 |
+-------------+------------+-----------------+--------------+-------------+
599 rows in set (0.06 sec)

This	query	returns	the	desired	data,	but	if	you	look	at	the	query	closely,
you	will	see	that	the	customer,	address,	and	city	tables	are	needed	only
for	display	purposes	and	that	the	payment	table	has	everything	needed	to
generate	the	groupings	(customer_id	and	amount).	Therefore,	you	could
separate	out	the	task	of	generating	the	groups	into	a	subquery	and	then
join	the	other	three	tables	to	the	table	generated	by	the	subquery	to	achieve
the	desired	end	result.	Here’s	the	grouping	subquery:

mysql> SELECT customer_id,
    ->   count(*) tot_rentals, sum(amount) tot_payments
    -> FROM payment
    -> GROUP BY customer_id;
+-------------+-------------+--------------+
| customer_id | tot_rentals | tot_payments |
+-------------+-------------+--------------+
|           1 |          32 |       118.68 |
|           2 |          27 |       128.73 |
|           3 |          26 |       135.74 |
|           4 |          22 |        81.78 |
...
|         595 |          30 |       117.70 |
|         596 |          28 |        96.72 |
|         597 |          25 |        99.75 |
|         598 |          22 |        83.78 |
|         599 |          19 |        83.81 |
+-------------+-------------+--------------+
599 rows in set (0.03 sec)

This	is	the	heart	of	the	query;	the	other	tables	are	needed	only	to	provide



meaningful	strings	in	place	of	the	customer_id	value.	The	next	query
joins	the	previous	data	set	to	the	other	three	tables:

mysql> SELECT c.first_name, c.last_name,
    ->   ct.city,
    ->   pymnt.tot_payments, pymnt.tot_rentals
    -> FROM
    ->  (SELECT customer_id,
    ->     count(*) tot_rentals, sum(amount) tot_payments
    ->   FROM payment
    ->   GROUP BY customer_id
    ->  ) pymnt
    ->   INNER JOIN customer c
    ->   ON pymnt.customer_id = c.customer_id
    ->   INNER JOIN address a
    ->   ON c.address_id = a.address_id
    ->   INNER JOIN city ct
    ->   ON a.city_id = ct.city_id;
+-------------+------------+-----------------+--------------+-------------+
| first_name  | last_name  | city            | tot_payments | tot_rentals |
+-------------+------------+-----------------+--------------+-------------+
| MARY        | SMITH      | Sasebo          |       118.68 |          32 |
| PATRICIA    | JOHNSON    | San Bernardino  |       128.73 |          27 |
| LINDA       | WILLIAMS   | Athenai         |       135.74 |          26 |
| BARBARA     | JONES      | Myingyan        |        81.78 |          22 |
...
| TERRENCE    | GUNDERSON  | Jinzhou         |       117.70 |          30 |
| ENRIQUE     | FORSYTHE   | Patras          |        96.72 |          28 |
| FREDDIE     | DUGGAN     | Sullana         |        99.75 |          25 |
| WADE        | DELVALLE   | Lausanne        |        83.78 |          22 |
| AUSTIN      | CINTRON    | Tieli           |        83.81 |          19 |
+-------------+------------+-----------------+--------------+-------------+
599 rows in set (0.06 sec)

I	realize	that	beauty	is	in	the	eye	of	the	beholder,	but	I	find	this	version	of
the	query	to	be	far	more	satisfying	than	the	big,	flat	version.	This	version
may	execute	faster	as	well,	because	the	grouping	is	being	done	on	a	single
numeric	column	(customer_id)	instead	of	multiple	lengthy	string
columns	(customer.first_name,	customer.last_name,	city.city).

COMMON	TABLE	EXPRESSIONS

Common	table	expressions	(a.k.a.	CTEs),	which	are	new	to	MySQL	in



version	8.0,	have	been	available	in	other	database	servers	for	quite	some
time.	A	CTE	is	a	named	subquery	that	appears	at	the	top	of	a	query	in	a
with clause,	which	can	contain	multiple	CTEs	separated	by	commas.
Along	with	making	queries	more	understandable,	this	feature	also	allows
each	CTE	to	refer	to	any	other	CTE	defined	above	it	in	the	same	with
clause.	The	following	example	includes	three	CTEs,	where	the	second
refers	to	the	first,	and	the	third	refers	to	the	second:

mysql> WITH	actors_s AS

    ->  (SELECT actor_id, first_name, last_name
    ->   FROM actor
    ->   WHERE last_name LIKE 'S%'
    ->  ),
    ->  actors_s_pg AS

    ->  (SELECT s.actor_id, s.first_name, s.last_name,
    ->     f.film_id, f.title
    ->   FROM actors_s s

    ->     INNER JOIN film_actor fa
    ->     ON s.actor_id = fa.actor_id
    ->     INNER JOIN film f
    ->     ON f.film_id = fa.film_id
    ->   WHERE f.rating = 'PG'
    ->  ),
    ->  actors_s_pg_revenue AS

    ->  (SELECT spg.first_name, spg.last_name, p.amount
    ->   FROM actors_s_pg spg

    ->     INNER JOIN inventory i
    ->     ON i.film_id = spg.film_id
    ->     INNER JOIN rental r
    ->     ON i.inventory_id = r.inventory_id
    ->     INNER JOIN payment p
    ->     ON r.rental_id = p.rental_id
    ->  ) -- end of With clause
    -> SELECT spg_rev.first_name, spg_rev.last_name,
    ->   sum(spg_rev.amount) tot_revenue
    -> FROM actors_s_pg_revenue spg_rev

    -> GROUP BY spg_rev.first_name, spg_rev.last_name
    -> ORDER BY 3 desc;
+------------+-------------+-------------+
| first_name | last_name   | tot_revenue |
+------------+-------------+-------------+
| NICK       | STALLONE    |      692.21 |
| JEFF       | SILVERSTONE |      652.35 |
| DAN        | STREEP      |      509.02 |



| GROUCHO    | SINATRA     |      457.97 |
| SISSY      | SOBIESKI    |      379.03 |
| JAYNE      | SILVERSTONE |      372.18 |
| CAMERON    | STREEP      |      361.00 |
| JOHN       | SUVARI      |      296.36 |
| JOE        | SWANK       |      177.52 |
+------------+-------------+-------------+
9 rows in set (0.18 sec)

This	query	calculates	the	total	revenues	generated	from	PG-rated	film
rentals	where	the	cast	includes	an	actor	whose	last	name	starts	with	S.	The
first	subquery	(actors_s)	finds	all	actors	whose	last	name	starts	with	S,
the	second	subquery	(actors_s_pg)	joins	that	data	set	to	the	film	table
and	filters	on	films	having	a	PG	rating,	and	the	third	subquery
(actors_s_pg_revenue)	joins	that	data	set	to	the	payment	table	to
retrieve	the	amounts	paid	to	rent	any	of	these	films.	The	final	query	simply
groups	the	data	from	actors_s_pg_revenue	by	first/last	names	and	sums
the	revenues.

NOTE
Those	who	tend	to	utilize	temporary	tables	to	store	query	results	for	use	in	subsequent	queries
may	find	CTEs	an	attractive	alternative.

Subqueries	as	Expression	Generators

For	this	last	section	of	the	chapter,	I	finish	where	I	began:	with	single-
column,	single-row	scalar	subqueries.	Along	with	being	used	in	filter
conditions,	scalar	subqueries	may	be	used	wherever	an	expression	can
appear,	including	the	select	and	order by	clauses	of	a	query	and	the
values	clause	of	an	insert	statement.

In	“Task-oriented	subqueries”,	I	showed	you	how	to	use	a	subquery	to



separate	out	the	grouping	mechanism	from	the	rest	of	the	query.	Here’s
another	version	of	the	same	query	that	uses	subqueries	for	the	same
purpose,	but	in	a	different	way:

mysql> SELECT
    ->  (SELECT c.first_name FROM customer c

    ->   WHERE c.customer_id = p.customer_id
    ->  )	first_name,

    ->  (SELECT c.last_name FROM customer c

    ->   WHERE c.customer_id = p.customer_id
    ->  )	last_name,

    ->  (SELECT ct.city

    ->   FROM customer c
    ->   INNER JOIN address a
    ->     ON c.address_id = a.address_id
    ->   INNER JOIN city ct
    ->     ON a.city_id = ct.city_id
    ->   WHERE c.customer_id = p.customer_id
    ->  )	city,

    ->   sum(p.amount) tot_payments,
    ->   count(*) tot_rentals
    -> FROM payment p
    -> GROUP BY p.customer_id;
+-------------+------------+-----------------+--------------+-------------+
| first_name  | last_name  | city            | tot_payments | tot_rentals |
+-------------+------------+-----------------+--------------+-------------+
| MARY        | SMITH      | Sasebo          |       118.68 |          32 |
| PATRICIA    | JOHNSON    | San Bernardino  |       128.73 |          27 |
| LINDA       | WILLIAMS   | Athenai         |       135.74 |          26 |
| BARBARA     | JONES      | Myingyan        |        81.78 |          22 |
...
| TERRENCE    | GUNDERSON  | Jinzhou         |       117.70 |          30 |
| ENRIQUE     | FORSYTHE   | Patras          |        96.72 |          28 |
| FREDDIE     | DUGGAN     | Sullana         |        99.75 |          25 |
| WADE        | DELVALLE   | Lausanne        |        83.78 |          22 |
| AUSTIN      | CINTRON    | Tieli           |        83.81 |          19 |
+-------------+------------+-----------------+--------------+-------------+
599 rows in set (0.06 sec)

There	are	two	main	differences	between	this	query	and	the	earlier	version
using	a	subquery	in	the	from	clause:

Instead	of	joining	the	customer,	address,	and	city	tables	to	the
payment	data,	correlated	scalar	subqueries	are	used	in	the	select



clause	to	look	up	the	customer’s	first/last	names	and	city.

The	customer	table	is	accessed	three	times	(once	in	each	of	the
three	subqueries)	rather	than	just	once.

The	customer	table	is	accessed	three	times	because	scalar	subqueries	can
return	only	a	single	column	and	row,	so	if	we	need	three	columns	related
to	the	customer,	it	is	necessary	to	use	three	different	subqueries.

As	previously	noted,	scalar	subqueries	can	also	appear	in	the	order by
clause.	The	following	query	retrieves	an	actor’s	first	and	last	names	and
sorts	by	the	number	of	films	in	which	the	actor	appeared:

mysql> SELECT a.actor_id, a.first_name, a.last_name
    -> FROM actor a
    -> ORDER BY
    ->  (SELECT count(*) FROM film_actor fa
    ->   WHERE fa.actor_id = a.actor_id) DESC;
+----------+-------------+--------------+
| actor_id | first_name  | last_name    |
+----------+-------------+--------------+
|      107 | GINA        | DEGENERES    |
|      102 | WALTER      | TORN         |
|      198 | MARY        | KEITEL       |
|      181 | MATTHEW     | CARREY       |
...
|       71 | ADAM        | GRANT        |
|      186 | JULIA       | ZELLWEGER    |
|       35 | JUDY        | DEAN         |
|      199 | JULIA       | FAWCETT      |
|      148 | EMILY       | DEE          |
+----------+-------------+--------------+
200 rows in set (0.01 sec)

The	query	uses	a	correlated	scalar	subquery	in	the	order by	clause	to
return	just	the	number	of	film	appearances,	and	this	value	is	used	solely
for	sorting	purposes.

Along	with	using	correlated	scalar	subqueries	in	select	statements,	you
can	use	noncorrelated	scalar	subqueries	to	generate	values	for	an	insert



statement.	For	example,	let’s	say	you	are	going	to	generate	a	new	row	in
the	film_actor	table,	and	you’ve	been	given	the	following	data:

The	first	and	last	name	of	the	actor

The	name	of	the	film

You	have	two	choices	for	how	to	go	about	it:	execute	two	queries	to
retrieve	the	primary	key	values	from	film	and	actor	and	place	those
values	into	an	insert	statement	or	use	subqueries	to	retrieve	the	two	key
values	from	within	an	insert	statement.	Here’s	an	example	of	the	latter
approach:

INSERT INTO film_actor (actor_id, film_id, last_update)
VALUES (
 (SELECT actor_id FROM actor
  WHERE first_name = 'JENNIFER' AND last_name = 'DAVIS'),
 (SELECT film_id FROM film
  WHERE title = 'ACE GOLDFINGER'),
 now()
 );

Using	a	single	SQL	statement,	you	can	create	a	row	in	the	film_actor
table	and	look	up	two	foreign	key	column	values	at	the	same	time.

Subquery	Wrap-Up
I	covered	a	lot	of	ground	in	this	chapter,	so	it	might	be	a	good	idea	to
review	it.	The	examples	in	this	chapter	demonstrate	subqueries	that:

Return	a	single	column	and	row,	a	single	column	with	multiple
rows,	and	multiple	columns	and	rows

Are	independent	of	the	containing	statement	(noncorrelated
subqueries)

Reference	one	or	more	columns	from	the	containing	statement



(correlated	subqueries)

Are	used	in	conditions	that	utilize	comparison	operators	as	well
as	the	special-purpose	operators	in,	not in,	exists,	and	not
exists

Can	be	found	in	select,	update,	delete,	and	insert	statements

Generate	result	sets	that	can	be	joined	to	other	tables	(or
subqueries)	in	a	query

Can	be	used	to	generate	values	to	populate	a	table	or	to	populate
columns	in	a	query’s	result	set

Are	used	in	the	select,	from,	where,	having,	and	order by
clauses	of	queries

Obviously,	subqueries	are	a	very	versatile	tool,	so	don’t	feel	bad	if	all
these	concepts	haven’t	sunk	in	after	reading	this	chapter	for	the	first	time.
Keep	experimenting	with	the	various	uses	for	subqueries,	and	you	will
soon	find	yourself	thinking	about	how	you	might	utilize	a	subquery	every
time	you	write	a	nontrivial	SQL	statement.

Test	Your	Knowledge
These	exercises	are	designed	to	test	your	understanding	of	subqueries.
Please	see	Appendix	B	for	the	solutions.

Exercise	9-1

Construct	a	query	against	the	film	table	that	uses	a	filter	condition	with	a
noncorrelated	subquery	against	the	category	table	to	find	all	action	films
(category.name = 'Action').

Exercise	9-2



Rework	the	query	from	Exercise	9-1	using	a	correlated	subquery	against
the	category	and	film_category	tables	to	achieve	the	same	results.

Exercise	9-3

Join	the	following	query	to	a	subquery	against	the	film_actor	table	to
show	the	level	of	each	actor:

SELECT 'Hollywood Star' level, 30 min_roles, 99999 max_roles
UNION ALL
SELECT 'Prolific Actor' level, 20 min_roles, 29 max_roles
UNION ALL
SELECT 'Newcomer' level, 1 min_roles, 19 max_roles

The	subquery	against	the	film_actor	table	should	count	the	number	of
rows	for	each	actor	using	group by actor_id,	and	the	count	should	be
compared	to	the	min_roles/max_roles	columns	to	determine	which	level
each	actor	belongs	to.

1 	Actually,	depending	on	which	database	server	you	are	using,	you	might	be	able	to	include
correlated	subqueries	in	your	from	clause	by	using	cross apply	or	outer apply,	but	these
features	are	beyond	the	scope	of	this	book.



Chapter	10.	Joins	Revisited

By	now,	you	should	be	comfortable	with	the	concept	of	the	inner	join,
which	I	introduced	in	Chapter	5.	This	chapter	focuses	on	other	ways	in
which	you	can	join	tables,	including	the	outer	join	and	the	cross	join.

Outer	Joins
In	all	the	examples	thus	far	that	have	included	multiple	tables,	we	haven’t
been	concerned	that	the	join	conditions	might	fail	to	find	matches	for	all
the	rows	in	the	tables.	For	example,	the	inventory	table	contains	a	row
for	every	film	available	for	rental,	but	of	the	1,000	rows	in	the	film	table,
only	958	have	one	or	more	rows	in	the	inventory	table.	The	other	42
films	are	not	available	for	rental	(perhaps	they	are	new	releases	due	to
arrive	in	a	few	days),	so	these	film	IDs	cannot	be	found	in	the	inventory
table.	The	following	query	counts	the	number	of	available	copies	of	each
film	by	joining	these	two	tables:

mysql> SELECT f.film_id, f.title, count(*) num_copies
    -> FROM film f
    ->   INNER JOIN inventory i
    ->   ON f.film_id = i.film_id
    -> GROUP BY f.film_id, f.title;
+---------+-----------------------------+------------+
| film_id | title                       | num_copies |
+---------+-----------------------------+------------+
|       1 | ACADEMY DINOSAUR            |          8 |
|       2 | ACE GOLDFINGER              |          3 |
|       3 | ADAPTATION HOLES            |          4 |
|       4 | AFFAIR PREJUDICE            |          7 |
...
|      13 | ALI FOREVER                 |          4 |
|      15 | ALIEN CENTER                |          6 |
...



|     997 | YOUTH KICK                  |          2 |
|     998 | ZHIVAGO CORE                |          2 |
|     999 | ZOOLANDER FICTION           |          5 |
|    1000 | ZORRO ARK                   |          8 |
+---------+-----------------------------+------------+
958 rows in set (0.02 sec)

While	you	may	have	expected	1,000	rows	to	be	returned	(one	for	each
film),	the	query	returns	only	958	rows.	This	is	because	the	query	uses	an
inner	join,	which	only	returns	rows	that	satisfy	the	join	condition.	The	film
Alice	Fantasia	(film_id 14)	doesn’t	appear	in	the	results,	for	example,
because	it	doesn’t	have	any	rows	in	the	inventory	table.

If	you	want	the	query	to	return	all	1,000	films,	regardless	of	whether	or
not	there	are	rows	in	the	inventory	table,	you	can	use	an	outer	join,
which	essentially	makes	the	join	condition	optional:

mysql> SELECT f.film_id, f.title, count(i.inventory_id) num_copies

    -> FROM film f
    ->   LEFT	OUTER	JOIN inventory i

    ->   ON f.film_id = i.film_id
    -> GROUP BY f.film_id, f.title;
+---------+-----------------------------+------------+
| film_id | title                       | num_copies |
+---------+-----------------------------+------------+
|       1 | ACADEMY DINOSAUR            |          8 |
|       2 | ACE GOLDFINGER              |          3 |
|       3 | ADAPTATION HOLES            |          4 |
|       4 | AFFAIR PREJUDICE            |          7 |
...
|      13 | ALI FOREVER                 |          4 |
|						14	|	ALICE	FANTASIA														|										0	|

|      15 | ALIEN CENTER                |          6 |
...
|     997 | YOUTH KICK                  |          2 |
|     998 | ZHIVAGO CORE                |          2 |
|     999 | ZOOLANDER FICTION           |          5 |
|    1000 | ZORRO ARK                   |          8 |
+---------+-----------------------------+------------+
1000	rows in set (0.01 sec)

As	you	can	see,	the	query	now	returns	all	1,000	rows	from	the	film	table,



and	42	of	the	rows	(including	Alice	Fantasia)	have	a	value	of	0	in	the
num_copies	column,	which	indicates	that	there	are	no	copies	in	inventory.

Here’s	a	description	of	the	changes	from	the	prior	version	of	the	query:

The	join	definition	was	changed	from	inner	to	left outer,
which	instructs	the	server	to	include	all	rows	from	the	table	on	the
left	side	of	the	join	(film,	in	this	case)	and	then	include	columns
from	the	table	on	the	right	side	of	the	join	(inventory)	if	the	join
is	successful.

The	num_copies	column	definition	was	changed	from	count(*)
to	count(i.inventory_id),	which	will	count	the	number	of
non-null	values	of	the	inventory.inventory_id	column.

Next,	let’s	remove	the	group by	clause	and	filter	out	most	of	the	rows	in
order	to	clearly	see	the	differences	between	inner	and	outer	joins.	Here’s
a	query	using	an	inner	join	and	a	filter	condition	to	return	rows	for	just	a
few	films:

mysql> SELECT f.film_id, f.title, i.inventory_id
    -> FROM film f
    ->   INNER JOIN inventory i
    ->   ON f.film_id = i.film_id
    -> WHERE f.film_id BETWEEN 13 AND 15;
+---------+--------------+--------------+
| film_id | title        | inventory_id |
+---------+--------------+--------------+
|      13 | ALI FOREVER  |           67 |
|      13 | ALI FOREVER  |           68 |
|      13 | ALI FOREVER  |           69 |
|      13 | ALI FOREVER  |           70 |
|      15 | ALIEN CENTER |           71 |
|      15 | ALIEN CENTER |           72 |
|      15 | ALIEN CENTER |           73 |
|      15 | ALIEN CENTER |           74 |
|      15 | ALIEN CENTER |           75 |
|      15 | ALIEN CENTER |           76 |
+---------+--------------+--------------+
10 rows in set (0.00 sec)



The	results	show	that	there	are	four	copies	of	Ali	Forever	and	six	copies	of
Alien	Center	in	inventory.	Here’s	the	same	query,	but	using	an	outer	join:

mysql> SELECT f.film_id, f.title, i.inventory_id
    -> FROM film f
    ->   LEFT	OUTER JOIN inventory i

    ->   ON f.film_id = i.film_id
    -> WHERE f.film_id BETWEEN 13 AND 15;
+---------+----------------+--------------+
| film_id | title          | inventory_id |
+---------+----------------+--------------+
|      13 | ALI FOREVER    |           67 |
|      13 | ALI FOREVER    |           68 |
|      13 | ALI FOREVER    |           69 |
|      13 | ALI FOREVER    |           70 |
|						14	|	ALICE	FANTASIA	|									NULL	|

|      15 | ALIEN CENTER   |           71 |
|      15 | ALIEN CENTER   |           72 |
|      15 | ALIEN CENTER   |           73 |
|      15 | ALIEN CENTER   |           74 |
|      15 | ALIEN CENTER   |           75 |
|      15 | ALIEN CENTER   |           76 |
+---------+----------------+--------------+
11 rows in set (0.00 sec)

The	results	are	the	same	for	Ali	Forever	and	Alien	Center,	but	there’s	one
new	row	for	Alice	Fantasia,	with	a	null	value	for	the
inventory.inventory_id	column.	This	example	illustrates	how	an
outer	join	will	add	column	values	without	restricting	the	number	of	rows
returned	by	the	query.	If	the	join	condition	fails	(as	in	the	case	of	Alice
Fantasia),	any	columns	retrieved	from	the	outer-joined	table	will	be	null.

Left	Versus	Right	Outer	Joins

In	each	of	the	outer	join	examples	in	the	previous	section,	I	specified	left
outer join.	The	keyword	left	indicates	that	the	table	on	the	left	side	of
the	join	is	responsible	for	determining	the	number	of	rows	in	the	result	set,
whereas	the	table	on	the	right	side	is	used	to	provide	column	values
whenever	a	match	is	found.	However,	you	may	also	specify	a	right



outer join,	in	which	case	the	table	on	the	right	side	of	the	join	is
responsible	for	determining	the	number	of	rows	in	the	result	set,	whereas
the	table	on	the	left	side	is	used	to	provide	column	values.

Here’s	the	last	query	from	the	previous	section	rearranged	to	use	a	right
outer join	instead	of	a	left outer join:

mysql> SELECT f.film_id, f.title, i.inventory_id
    -> FROM inventory i
    ->   RIGHT	OUTER	JOIN film f

    ->   ON f.film_id = i.film_id
    -> WHERE f.film_id BETWEEN 13 AND 15;
+---------+----------------+--------------+
| film_id | title          | inventory_id |
+---------+----------------+--------------+
|      13 | ALI FOREVER    |           67 |
|      13 | ALI FOREVER    |           68 |
|      13 | ALI FOREVER    |           69 |
|      13 | ALI FOREVER    |           70 |
|      14 | ALICE FANTASIA |         NULL |
|      15 | ALIEN CENTER   |           71 |
|      15 | ALIEN CENTER   |           72 |
|      15 | ALIEN CENTER   |           73 |
|      15 | ALIEN CENTER   |           74 |
|      15 | ALIEN CENTER   |           75 |
|      15 | ALIEN CENTER   |           76 |
+---------+----------------+--------------+
11 rows in set (0.00 sec)

Keep	in	mind	that	both	versions	of	the	query	are	performing	outer	joins;
the	keywords	left	and	right	are	there	just	to	tell	the	server	which	table	is
allowed	to	have	gaps	in	the	data.	If	you	want	to	outer-join	tables	A	and	B
and	you	want	all	rows	from	A	with	additional	columns	from	B	whenever
there	is	matching	data,	you	can	specify	either	A left outer join B	or	B
right outer join A.

NOTE
Since	you	will	rarely	(if	ever)	encounter	right	outer	joins,	and	since	not	all	database	servers



support	them,	I	recommend	that	you	always	use	left	outer	joins.	The	outer	keyword	is	optional,
so	you	may	opt	for	A left join B	instead,	but	I	recommend	including	outer	for	the	sake	of
clarity.

Three-Way	Outer	Joins

In	some	cases,	you	may	want	to	outer-join	one	table	with	two	other	tables.
For	example,	the	query	from	a	prior	section	can	be	expanded	to	include
data	from	the	rental	table:

mysql> SELECT f.film_id, f.title, i.inventory_id, r.rental_date

    -> FROM film f
    ->   LEFT OUTER JOIN inventory i
    ->   ON f.film_id = i.film_id
    ->   LEFT	OUTER	JOIN	rental	r

    ->   ON	i.inventory_id	=	r.inventory_id

    -> WHERE f.film_id BETWEEN 13 AND 15;
+---------+----------------+--------------+---------------------+
| film_id | title          | inventory_id | rental_date         |
+---------+----------------+--------------+---------------------+
|      13 | ALI FOREVER    |           67 | 2005-07-31 18:11:17 |
|      13 | ALI FOREVER    |           67 | 2005-08-22 21:59:29 |
|      13 | ALI FOREVER    |           68 | 2005-07-28 15:26:20 |
|      13 | ALI FOREVER    |           68 | 2005-08-23 05:02:31 |
|      13 | ALI FOREVER    |           69 | 2005-08-01 23:36:10 |
|      13 | ALI FOREVER    |           69 | 2005-08-22 02:12:44 |
|      13 | ALI FOREVER    |           70 | 2005-07-12 10:51:09 |
|      13 | ALI FOREVER    |           70 | 2005-07-29 01:29:51 |
|      13 | ALI FOREVER    |           70 | 2006-02-14 15:16:03 |
|						14	|	ALICE	FANTASIA	|									NULL	|	NULL																

|

|      15 | ALIEN CENTER   |           71 | 2005-05-28 02:06:37 |
|      15 | ALIEN CENTER   |           71 | 2005-06-17 16:40:03 |
|      15 | ALIEN CENTER   |           71 | 2005-07-11 05:47:08 |
|      15 | ALIEN CENTER   |           71 | 2005-08-02 13:58:55 |
|      15 | ALIEN CENTER   |           71 | 2005-08-23 05:13:09 |
|      15 | ALIEN CENTER   |           72 | 2005-05-27 22:49:27 |
|      15 | ALIEN CENTER   |           72 | 2005-06-19 13:29:28 |
|      15 | ALIEN CENTER   |           72 | 2005-07-07 23:05:53 |
|      15 | ALIEN CENTER   |           72 | 2005-08-01 05:55:13 |
|      15 | ALIEN CENTER   |           72 | 2005-08-20 15:11:48 |
|      15 | ALIEN CENTER   |           73 | 2005-07-06 15:51:58 |
|      15 | ALIEN CENTER   |           73 | 2005-07-30 14:48:24 |



|      15 | ALIEN CENTER   |           73 | 2005-08-20 22:32:11 |
|      15 | ALIEN CENTER   |           74 | 2005-07-27 00:15:18 |
|      15 | ALIEN CENTER   |           74 | 2005-08-23 19:21:22 |
|      15 | ALIEN CENTER   |           75 | 2005-07-09 02:58:41 |
|      15 | ALIEN CENTER   |           75 | 2005-07-29 23:52:01 |
|      15 | ALIEN CENTER   |           75 | 2005-08-18 21:55:01 |
|      15 | ALIEN CENTER   |           76 | 2005-06-15 08:01:29 |
|      15 | ALIEN CENTER   |           76 | 2005-07-07 18:31:50 |
|      15 | ALIEN CENTER   |           76 | 2005-08-01 01:49:36 |
|      15 | ALIEN CENTER   |           76 | 2005-08-17 07:26:47 |
+---------+----------------+--------------+---------------------+
32 rows in set (0.01 sec)

The	results	include	all	rentals	of	all	films	in	inventory,	but	the	film	Alice
Fantasia	has	null	values	for	the	columns	from	both	outer-joined	tables.

Cross	Joins
Back	in	Chapter	5,	I	introduced	the	concept	of	a	Cartesian	product,	which
is	essentially	the	result	of	joining	multiple	tables	without	specifying	any
join	conditions.	Cartesian	products	are	used	fairly	frequently	by	accident
(e.g.,	forgetting	to	add	the	join	condition	to	the	from	clause)	but	are	not	so
common	otherwise.	If,	however,	you	do	intend	to	generate	the	Cartesian
product	of	two	tables,	you	should	specify	a	cross	join,	as	in:

mysql> SELECT c.name category_name, l.name language_name
    -> FROM category c
    ->   CROSS JOIN language l;
+---------------+---------------+
| category_name | language_name |
+---------------+---------------+
| Action        | English       |
| Action        | Italian       |
| Action        | Japanese      |
| Action        | Mandarin      |
| Action        | French        |
| Action        | German        |
| Animation     | English       |
| Animation     | Italian       |
| Animation     | Japanese      |
| Animation     | Mandarin      |
| Animation     | French        |



| Animation     | German        |
...
| Sports        | English       |
| Sports        | Italian       |
| Sports        | Japanese      |
| Sports        | Mandarin      |
| Sports        | French        |
| Sports        | German        |
| Travel        | English       |
| Travel        | Italian       |
| Travel        | Japanese      |
| Travel        | Mandarin      |
| Travel        | French        |
| Travel        | German        |
+---------------+---------------+
96 rows in set (0.00 sec)

This	query	generates	the	Cartesian	product	of	the	category	and	language
tables,	resulting	in	96	rows	(16	category	rows	×	6	language	rows).	But
now	that	you	know	what	a	cross	join	is	and	how	to	specify	it,	what	is	it
used	for?	Most	SQL	books	will	describe	what	a	cross	join	is	and	then	tell
you	that	it	is	seldom	useful,	but	I	would	like	to	share	with	you	a	situation
in	which	I	find	the	cross	join	to	be	quite	helpful.

In	Chapter	9,	I	discussed	how	to	use	subqueries	to	fabricate	tables.	The
example	I	used	showed	how	to	build	a	three-row	table	that	could	be	joined
to	other	tables.	Here’s	the	fabricated	table	from	the	example:

mysql> SELECT 'Small Fry' name, 0 low_limit, 74.99 high_limit
    -> UNION ALL
    -> SELECT 'Average Joes' name, 75 low_limit, 149.99 high_limit
    -> UNION ALL
    -> SELECT 'Heavy Hitters' name, 150 low_limit, 9999999.99 high_limit;
+---------------+-----------+------------+
| name          | low_limit | high_limit |
+---------------+-----------+------------+
| Small Fry     |         0 |      74.99 |
| Average Joes  |        75 |     149.99 |
| Heavy Hitters |       150 | 9999999.99 |
+---------------+-----------+------------+
3 rows in set (0.00 sec)



While	this	table	was	exactly	what	was	needed	for	placing	customers	into
three	groups	based	on	their	total	film	payments,	this	strategy	of	merging
single-row	tables	using	the	set	operator	union all	doesn’t	work	very	well
if	you	need	to	fabricate	a	large	table.

Say,	for	example,	that	you	want	to	create	a	query	that	generates	a	row	for
every	day	in	the	year	2020	but	you	don’t	have	a	table	in	your	database	that
contains	a	row	for	every	day.	Using	the	strategy	from	the	example	in
Chapter	9,	you	could	do	something	like	the	following:

SELECT '2020-01-01' dt
UNION ALL
SELECT '2020-01-02' dt
UNION ALL
SELECT '2020-01-03' dt
UNION ALL
...
...
...
SELECT '2020-12-29' dt
UNION ALL
SELECT '2020-12-30' dt
UNION ALL
SELECT '2020-12-31' dt

Building	a	query	that	merges	together	the	results	of	366	queries	is	a	bit
tedious,	so	maybe	a	different	strategy	is	needed.	What	if	you	generate	a
table	with	366	rows	(2020	is	a	leap	year)	with	a	single	column	containing
a	number	between	0	and	366	and	then	add	that	number	of	days	to	January
1,	2020?	Here’s	one	possible	method	to	generate	such	a	table:

mysql> SELECT ones.num + tens.num + hundreds.num
    -> FROM
    -> (SELECT 0 num UNION ALL
    -> SELECT 1 num UNION ALL
    -> SELECT 2 num UNION ALL
    -> SELECT 3 num UNION ALL
    -> SELECT 4 num UNION ALL
    -> SELECT 5 num UNION ALL
    -> SELECT 6 num UNION ALL



    -> SELECT 6 num UNION ALL
    -> SELECT 7 num UNION ALL
    -> SELECT 8 num UNION ALL
    -> SELECT 9 num) ones
    -> CROSS JOIN
    -> (SELECT 0 num UNION ALL
    -> SELECT 10 num UNION ALL
    -> SELECT 20 num UNION ALL
    -> SELECT 30 num UNION ALL
    -> SELECT 40 num UNION ALL
    -> SELECT 50 num UNION ALL
    -> SELECT 60 num UNION ALL
    -> SELECT 70 num UNION ALL
    -> SELECT 80 num UNION ALL
    -> SELECT 90 num) tens
    -> CROSS JOIN
    -> (SELECT 0 num UNION ALL
    -> SELECT 100 num UNION ALL
    -> SELECT 200 num UNION ALL
    -> SELECT 300 num) hundreds;
+------------------------------------+
| ones.num + tens.num + hundreds.num |
+------------------------------------+
|                                  0 |
|                                  1 |
|                                  2 |
|                                  3 |
|                                  4 |
|                                  5 |
|                                  6 |
|                                  7 |
|                                  8 |
|                                  9 |
|                                 10 |
|                                 11 |
|                                 12 |
...
...
...
|                                391 |
|                                392 |
|                                393 |
|                                394 |
|                                395 |
|                                396 |
|                                397 |
|                                398 |
|                                399 |
+------------------------------------+
400 rows in set (0.00 sec)



If	you	take	the	Cartesian	product	of	the	three	sets	{0,	1,	2,	3,	4,	5,	6,	7,	8,
9},	{0,	10,	20,	30,	40,	50,	60,	70,	80,	90},	and	{0,	100,	200,	300}	and	add
the	values	in	the	three	columns,	you	get	a	400-row	result	set	containing	all
numbers	between	0	and	399.	While	this	is	more	than	the	366	rows	needed
to	generate	the	set	of	days	in	2020,	it’s	easy	enough	to	get	rid	of	the	excess
rows,	and	I’ll	show	you	how	shortly.

The	next	step	is	to	convert	the	set	of	numbers	to	a	set	of	dates.	To	do	this,
I	will	use	the	date_add()	function	to	add	each	number	in	the	result	set	to
January	1,	2020.	Then	I’ll	add	a	filter	condition	to	throw	away	any	dates
that	venture	into	2021:

mysql> SELECT DATE_ADD('2020-01-01',
    ->   INTERVAL (ones.num + tens.num + hundreds.num) DAY) dt
    -> FROM
    ->  (SELECT 0 num UNION ALL
    ->   SELECT 1 num UNION ALL
    ->   SELECT 2 num UNION ALL
    ->   SELECT 3 num UNION ALL
    ->   SELECT 4 num UNION ALL
    ->   SELECT 5 num UNION ALL
    ->   SELECT 6 num UNION ALL
    ->   SELECT 7 num UNION ALL
    ->   SELECT 8 num UNION ALL
    ->   SELECT 9 num) ones
    ->   CROSS JOIN
    ->  (SELECT 0 num UNION ALL
    ->   SELECT 10 num UNION ALL
    ->   SELECT 20 num UNION ALL
    ->   SELECT 30 num UNION ALL
    ->   SELECT 40 num UNION ALL
    ->   SELECT 50 num UNION ALL
    ->   SELECT 60 num UNION ALL
    ->   SELECT 70 num UNION ALL
    ->   SELECT 80 num UNION ALL
    ->   SELECT 90 num) tens
    ->   CROSS JOIN
    ->  (SELECT 0 num UNION ALL
    ->   SELECT 100 num UNION ALL
    ->   SELECT 200 num UNION ALL
    ->   SELECT 300 num) hundreds
    -> WHERE DATE_ADD('2020-01-01',



    ->   INTERVAL (ones.num + tens.num + hundreds.num) DAY) < '2021-01-01'
    -> ORDER BY 1;
+------------+
| dt         |
+------------+
| 2020-01-01 |
| 2020-01-02 |
| 2020-01-03 |
| 2020-01-04 |
| 2020-01-05 |
| 2020-01-06 |
| 2020-01-07 |
| 2020-01-08 |
...
...
...
| 2020-02-26 |
| 2020-02-27 |
| 2020-02-28 |
|	2020-02-29	|

| 2020-03-01 |
| 2020-03-02 |
| 2020-03-03 |
...
...
...
| 2020-12-24 |
| 2020-12-25 |
| 2020-12-26 |
| 2020-12-27 |
| 2020-12-28 |
| 2020-12-29 |
| 2020-12-30 |
| 2020-12-31 |
+------------+
366 rows in set (0.03 sec)

The	nice	thing	about	this	approach	is	that	the	result	set	automatically
includes	the	extra	leap	day	(February	29)	without	your	intervention,	since
the	database	server	figures	it	out	when	it	adds	59	days	to	January	1,	2020.

Now	that	you	have	a	mechanism	for	fabricating	all	the	days	in	2020,	what
should	you	do	with	it?	Well,	you	might	be	asked	to	generate	a	report	that
shows	every	day	in	2020	along	with	the	number	of	film	rentals	on	that



day.	The	report	needs	to	include	every	day	of	the	year,	including	days
when	no	films	are	rented.	Here’s	what	the	query	might	look	like	(using	the
year	2005	to	match	the	data	in	the	rental	table):

mysql> SELECT days.dt, COUNT(r.rental_id) num_rentals
    -> FROM rental r
    ->   RIGHT OUTER JOIN
    ->  (SELECT DATE_ADD('2005-01-01',
    ->     INTERVAL (ones.num + tens.num + hundreds.num) DAY) dt
    ->   FROM
    ->    (SELECT 0 num UNION ALL
    ->     SELECT 1 num UNION ALL
    ->     SELECT 2 num UNION ALL
    ->     SELECT 3 num UNION ALL
    ->     SELECT 4 num UNION ALL
    ->     SELECT 5 num UNION ALL
    ->     SELECT 6 num UNION ALL
    ->     SELECT 7 num UNION ALL
    ->     SELECT 8 num UNION ALL
    ->     SELECT 9 num) ones
    ->     CROSS JOIN
    ->    (SELECT 0 num UNION ALL
    ->     SELECT 10 num UNION ALL
    ->     SELECT 20 num UNION ALL
    ->     SELECT 30 num UNION ALL
    ->     SELECT 40 num UNION ALL
    ->     SELECT 50 num UNION ALL
    ->     SELECT 60 num UNION ALL
    ->     SELECT 70 num UNION ALL
    ->     SELECT 80 num UNION ALL
    ->     SELECT 90 num) tens
    ->     CROSS JOIN
    ->    (SELECT 0 num UNION ALL
    ->     SELECT 100 num UNION ALL
    ->     SELECT 200 num UNION ALL
    ->     SELECT 300 num) hundreds
    ->   WHERE DATE_ADD('2005-01-01',
    ->     INTERVAL (ones.num + tens.num + hundreds.num) DAY) 
    ->       < '2006-01-01'
    ->  ) days
    ->   ON days.dt = date(r.rental_date)
    -> GROUP BY days.dt
    -> ORDER BY 1;
+------------+-------------+
| dt         | num_rentals |
+------------+-------------+
| 2005-01-01 |           0 |



| 2005-01-02 |           0 |
| 2005-01-03 |           0 |
| 2005-01-04 |           0 |
...
| 2005-05-23 |           0 |
| 2005-05-24 |           8 |
| 2005-05-25 |         137 |
| 2005-05-26 |         174 |
| 2005-05-27 |         166 |
| 2005-05-28 |         196 |
| 2005-05-29 |         154 |
| 2005-05-30 |         158 |
| 2005-05-31 |         163 |
| 2005-06-01 |           0 |
...
| 2005-06-13 |           0 |
| 2005-06-14 |          16 |
| 2005-06-15 |         348 |
| 2005-06-16 |         324 |
| 2005-06-17 |         325 |
| 2005-06-18 |         344 |
| 2005-06-19 |         348 |
| 2005-06-20 |         331 |
| 2005-06-21 |         275 |
| 2005-06-22 |           0 |
...
| 2005-12-27 |           0 |
| 2005-12-28 |           0 |
| 2005-12-29 |           0 |
| 2005-12-30 |           0 |
| 2005-12-31 |           0 |
+------------+-------------+
365 rows in set (8.99 sec)

This	is	one	of	the	more	interesting	queries	thus	far	in	the	book,	in	that	it
includes	cross	joins,	outer	joins,	a	date	function,	grouping,	set	operations
(union all),	and	an	aggregate	function	(count()).	It	is	also	not	the	most
elegant	solution	to	the	given	problem,	but	it	should	serve	as	an	example	of
how,	with	a	little	creativity	and	a	firm	grasp	on	the	language,	you	can
make	even	a	seldom-used	feature	like	cross	joins	a	potent	tool	in	your
SQL	toolkit.

Natural	Joins



Natural	Joins
If	you	are	lazy	(and	aren’t	we	all),	you	can	choose	a	join	type	that	allows
you	to	name	the	tables	to	be	joined	but	lets	the	database	server	determine
what	the	join	conditions	need	to	be.	Known	as	the	natural	join,	this	join
type	relies	on	identical	column	names	across	multiple	tables	to	infer	the
proper	join	conditions.	For	example,	the	rental	table	includes	a	column
named	customer_id,	which	is	the	foreign	key	to	the	customer	table,
whose	primary	key	is	also	named	customer_id.	Thus,	you	could	try	to
write	a	query	that	uses	natural join	to	join	the	two	tables:

mysql> SELECT c.first_name, c.last_name, date(r.rental_date)
    -> FROM customer c
    ->   NATURAL JOIN rental r;
Empty set (0.04 sec)

Because	you	specified	a	natural	join,	the	server	inspected	the	table
definitions	and	added	the	join	condition	r.customer_id =
c.customer_id	to	join	the	two	tables.	This	would	have	worked	fine,	but
in	the	Sakila	schema	all	of	the	tables	include	the	column	last_update	to
show	when	each	row	was	last	modified,	so	the	server	is	also	adding	the
join	condition	r.last_update = c.last_update,	which	causes	the
query	to	return	no	data.

The	only	way	around	this	issue	is	to	use	a	subquery	to	restrict	the	columns
for	at	least	one	of	the	tables:

mysql> SELECT cust.first_name, cust.last_name, date(r.rental_date)
    -> FROM
    ->  (SELECT customer_id, first_name, last_name
    ->   FROM customer
    ->  ) cust
    ->   NATURAL	JOIN rental r;

+------------+-----------+---------------------+
| first_name | last_name | date(r.rental_date) |
+------------+-----------+---------------------+
| MARY       | SMITH     | 2005-05-25          |
| MARY       | SMITH     | 2005-05-28          |



| MARY       | SMITH     | 2005-06-15          |
| MARY       | SMITH     | 2005-06-15          |
| MARY       | SMITH     | 2005-06-15          |
| MARY       | SMITH     | 2005-06-16          |
| MARY       | SMITH     | 2005-06-18          |
| MARY       | SMITH     | 2005-06-18          |
...
| AUSTIN     | CINTRON   | 2005-08-21          |
| AUSTIN     | CINTRON   | 2005-08-21          |
| AUSTIN     | CINTRON   | 2005-08-21          |
| AUSTIN     | CINTRON   | 2005-08-23          |
| AUSTIN     | CINTRON   | 2005-08-23          |
| AUSTIN     | CINTRON   | 2005-08-23          |
+------------+-----------+---------------------+
16044 rows in set (0.03 sec)

So,	is	the	reduced	wear	and	tear	on	the	old	fingers	from	not	having	to	type
the	join	condition	worth	the	trouble?	Absolutely	not;	you	should	avoid	this
join	type	and	use	inner	joins	with	explicit	join	conditions.

Test	Your	Knowledge
The	following	exercises	test	your	understanding	of	outer	and	cross	joins.
Please	see	Appendix	B	for	solutions.

Exercise	10-1

Using	the	following	table	definitions	and	data,	write	a	query	that	returns
each	customer	name	along	with	their	total	payments:

   Customer:
Customer_id   Name
-----------   ---------------
1  John Smith
2  Kathy Jones
3  Greg Oliver
 
   Payment:
Payment_id Customer_id Amount
---------- ----------- --------
101  1  8.99
102  3  4.99



102  3  4.99
103  1  7.99

Include	all	customers,	even	if	no	payment	records	exist	for	that	customer.

Exercise	10-2

Reformulate	your	query	from	Exercise	10-1	to	use	the	other	outer	join
type	(e.g.,	if	you	used	a	left	outer	join	in	Exercise	10-1,	use	a	right	outer
join	this	time)	such	that	the	results	are	identical	to	Exercise	10-1.

Exercise	10-3	(Extra	Credit)

Devise	a	query	that	will	generate	the	set	{1,	2,	3,	...,	99,	100}.	(Hint:	use	a
cross	join	with	at	least	two	from	clause	subqueries.)



Chapter	11.	Conditional	Logic

In	certain	situations,	you	may	want	your	SQL	logic	to	branch	in	one
direction	or	another	depending	on	the	values	of	certain	columns	or
expressions.	This	chapter	focuses	on	how	to	write	statements	that	can
behave	differently	depending	on	the	data	encountered	during	statement
execution.	The	mechanism	used	for	conditional	logic	in	SQL	statements	is
the	case	expression,	which	can	be	utilized	in	select,	insert,	update,
and	delete	statements.

What	Is	Conditional	Logic?
Conditional	logic	is	simply	the	ability	to	take	one	of	several	paths	during
program	execution.	For	example,	when	querying	customer	information,
you	might	want	to	include	the	customer.active	column,	which	stores	1
to	indicate	active	and	0	to	indicate	inactive.	If	the	query	results	are	being
used	to	generate	a	report,	you	may	want	to	translate	the	value	to	improve
readability.	While	every	database	includes	built-in	functions	for	these
types	of	situations,	there	are	no	standards,	so	you	would	need	to	remember
which	functions	are	used	by	which	database.	Fortunately,	every	database’s
SQL	implementation	includes	the	case	expression,	which	is	useful	in
many	situations,	including	simple	translations:

mysql> SELECT first_name, last_name,
    ->   CASE

    ->     WHEN	active	=	1	THEN	'ACTIVE'

    ->     ELSE	'INACTIVE'

    ->   END	activity_type

    -> FROM customer;
+-------------+--------------+---------------+



| first_name  | last_name    | activity_type |
+-------------+--------------+---------------+
| MARY        | SMITH        | ACTIVE        |
| PATRICIA    | JOHNSON      | ACTIVE        |
| LINDA       | WILLIAMS     | ACTIVE        |
| BARBARA     | JONES        | ACTIVE        |
| ELIZABETH   | BROWN        | ACTIVE        |
| JENNIFER    | DAVIS        | ACTIVE        |
...
| KENT        | ARSENAULT    | ACTIVE        |
| TERRANCE    | ROUSH        | INACTIVE      |
| RENE        | MCALISTER    | ACTIVE        |
| EDUARDO     | HIATT        | ACTIVE        |
| TERRENCE    | GUNDERSON    | ACTIVE        |
| ENRIQUE     | FORSYTHE     | ACTIVE        |
| FREDDIE     | DUGGAN       | ACTIVE        |
| WADE        | DELVALLE     | ACTIVE        |
| AUSTIN      | CINTRON      | ACTIVE        |
+-------------+--------------+---------------+
599 rows in set (0.00 sec)

This	query	includes	a	case	expression	to	generate	a	value	for	the
activity_type	column,	which	returns	the	string	“ACTIVE”	or
“INACTIVE”	depending	on	the	value	of	the	customer.active	column.

The	case	Expression
All	of	the	major	database	servers	include	built-in	functions	designed	to
mimic	the	if-then-else	statement	found	in	most	programming	languages
(examples	include	Oracle’s	decode()	function,	MySQL’s	if()	function,
and	SQL	Server’s	coalesce()	function).	case	expressions	are	also
designed	to	facilitate	if-then-else	logic	but	enjoy	two	advantages	over
built-in	functions:

The	case	expression	is	part	of	the	SQL	standard	(SQL92	release)
and	has	been	implemented	by	Oracle	Database,	SQL	Server,
MySQL,	PostgreSQL,	IBM	UDB,	and	others.

case	expressions	are	built	into	the	SQL	grammar	and	can	be



included	in	select,	insert,	update,	and	delete	statements.

The	next	two	subsections	introduce	the	two	different	types	of	case
expressions.	This	is	followed	by	some	examples	of	case	expressions	in
action.

Searched	case	Expressions

The	case	expression	demonstrated	earlier	in	the	chapter	is	an	example	of	a
searched	case	expression,	which	has	the	following	syntax:

CASE
  WHEN C1 THEN E1
  WHEN C2 THEN E2
  ...
  WHEN CN THEN EN
  [ELSE ED]
END

In	the	previous	definition,	the	symbols	C1,	C2,	...,	CN	represent	conditions,
and	the	symbols	E1,	E2,	...,	EN	represent	expressions	to	be	returned	by	the
case	expression.	If	the	condition	in	a	when	clause	evaluates	to	true,	then
the	case	expression	returns	the	corresponding	expression.	Additionally,
the	ED	symbol	represents	the	default	expression,	which	the	case
expression	returns	if	none	of	the	conditions	C1,	C2,	...,	CN	evaluate	to	true
(the	else	clause	is	optional,	which	is	why	it	is	enclosed	in	square
brackets).	All	the	expressions	returned	by	the	various	when	clauses	must
evaluate	to	the	same	type	(e.g.,	date,	number,	varchar).

Here’s	an	example	of	a	searched	case	expression:

CASE
  WHEN category.name IN ('Children','Family','Sports','Animation')
    THEN 'All Ages'
  WHEN category.name = 'Horror'
    THEN 'Adult'
  WHEN category.name IN ('Music','Games')



    THEN 'Teens'
  ELSE 'Other'
END

This	case	expression	returns	a	string	that	can	be	used	to	classify	films
depending	on	their	category.	When	the	case	expression	is	evaluated,	the
when	clauses	are	evaluated	in	order	from	top	to	bottom;	as	soon	as	one	of
the	conditions	in	a	when	clause	evaluates	to	true,	the	corresponding
expression	is	returned,	and	any	remaining	when	clauses	are	ignored.	If
none	of	the	when	clause	conditions	evaluates	to	true,	then	the	expression
in	the	else	clause	is	returned.

Although	the	previous	example	returns	string	expressions,	keep	in	mind
that	case	expressions	may	return	any	type	of	expression,	including
subqueries.	Here’s	another	version	of	the	query	from	earlier	in	the	chapter
that	uses	a	subquery	to	return	the	number	of	rentals,	but	only	for	active
customers:

mysql> SELECT c.first_name, c.last_name,
    ->   CASE
    ->     WHEN active = 0 THEN 0
    ->     ELSE

    ->      (SELECT	count(*)	FROM	rental	r

    ->       WHERE	r.customer_id	=	c.customer_id)

    ->   END num_rentals
    -> FROM customer c;
+-------------+--------------+-------------+
| first_name  | last_name    | num_rentals |
+-------------+--------------+-------------+
| MARY        | SMITH        |          32 |
| PATRICIA    | JOHNSON      |          27 |
| LINDA       | WILLIAMS     |          26 |
| BARBARA     | JONES        |          22 |
| ELIZABETH   | BROWN        |          38 |
| JENNIFER    | DAVIS        |          28 |
...
| TERRANCE    | ROUSH        |           0 |
| RENE        | MCALISTER    |          26 |
| EDUARDO     | HIATT        |          27 |
| TERRENCE    | GUNDERSON    |          30 |



| ENRIQUE     | FORSYTHE     |          28 |
| FREDDIE     | DUGGAN       |          25 |
| WADE        | DELVALLE     |          22 |
| AUSTIN      | CINTRON      |          19 |
+-------------+--------------+-------------+
599 rows in set (0.01 sec)

This	version	of	the	query	uses	a	correlated	subquery	to	retrieve	the	number
of	rentals	for	each	active	customer.	Depending	on	the	percentage	of	active
customers,	using	this	approach	may	be	more	efficient	than	joining	the
customer	and	rental	tables	and	grouping	on	the	customer_id	column.

Simple	case	Expressions

The	simple	case	expression	is	quite	similar	to	the	searched	case
expression	but	is	a	bit	less	flexible.	Here’s	the	syntax:

CASE V0
  WHEN V1 THEN E1
  WHEN V2 THEN E2
  ...
  WHEN VN THEN EN
  [ELSE ED]
END

In	the	preceding	definition,	V0	represents	a	value,	and	the	symbols	V1,	V2,
...,	VN	represent	values	that	are	to	be	compared	to	V0.	The	symbols	E1,	E2,
...,	EN	represent	expressions	to	be	returned	by	the	case	expression,	and	ED
represents	the	expression	to	be	returned	if	none	of	the	values	in	the	set	V1,
V2,	...,	VN	matches	the	V0	value.

Here’s	an	example	of	a	simple	case	expression:

CASE category.name
  WHEN 'Children' THEN 'All Ages'
  WHEN 'Family' THEN 'All Ages'
  WHEN 'Sports' THEN 'All Ages'
  WHEN 'Animation' THEN 'All Ages'
  WHEN 'Horror' THEN 'Adult'



  WHEN 'Music' THEN 'Teens'
  WHEN 'Games' THEN 'Teens'
  ELSE 'Other'
END

Simple	case	expressions	are	less	flexible	than	searched	case	expressions
because	you	can’t	specify	your	own	conditions,	whereas	searched	case
expressions	may	include	range	conditions,	inequality	conditions,	and
multipart	conditions	using	and/or/not,	so	I	would	recommend	using
searched	case	expressions	for	all	but	the	simplest	logic.

Examples	of	case	Expressions
The	following	sections	present	a	variety	of	examples	illustrating	the	utility
of	conditional	logic	in	SQL	statements.

Result	Set	Transformations

You	may	have	run	into	a	situation	where	you	are	performing	aggregations
over	a	finite	set	of	values,	such	as	days	of	the	week,	but	you	want	the
result	set	to	contain	a	single	row	with	one	column	per	value	instead	of	one
row	per	value.	As	an	example,	let’s	say	you	have	been	asked	to	write	a
query	that	shows	the	number	of	film	rentals	for	May,	June,	and	July	of
2005:

mysql> SELECT monthname(rental_date) rental_month,
    ->   count(*) num_rentals
    -> FROM rental
    -> WHERE rental_date BETWEEN '2005-05-01' AND '2005-08-01'
    -> GROUP BY monthname(rental_date);
+--------------+-------------+
| rental_month | num_rentals |
+--------------+-------------+
| May          |        1156 |
| June         |        2311 |
| July         |        6709 |
+--------------+-------------+



3 rows in set (0.01 sec)

However,	you	have	also	been	instructed	to	return	a	single	row	of	data	with
three	columns	(one	for	each	of	the	three	months).	To	transform	this	result
set	into	a	single	row,	you	will	need	to	create	three	columns	and,	within
each	column,	sum	only	those	rows	pertaining	to	the	month	in	question:

mysql> SELECT
    ->   SUM(CASE WHEN monthname(rental_date) = 'May' THEN 1

    ->         ELSE 0 END) May_rentals,
    ->   SUM(CASE WHEN monthname(rental_date) = 'June' THEN 1

    ->         ELSE 0 END) June_rentals,
    ->   SUM(CASE WHEN monthname(rental_date) = 'July' THEN 1

    ->         ELSE 0 END) July_rentals
    -> FROM rental
    -> WHERE rental_date BETWEEN '2005-05-01' AND '2005-08-01';
+-------------+--------------+--------------+
| May_rentals | June_rentals | July_rentals |
+-------------+--------------+--------------+
|        1156 |         2311 |         6709 |
+-------------+--------------+--------------+
1 row in set (0.01 sec)

Each	of	the	three	columns	in	the	previous	query	are	identical,	except	for
the	month	value.	When	the	monthname()	function	returns	the	desired
value	for	that	column,	the	case	expression	returns	the	value	1;	otherwise,
it	returns	a	0.	When	summed	over	all	rows,	each	column	returns	the
number	of	accounts	opened	for	that	month.	Obviously,	such
transformations	are	practical	for	only	a	small	number	of	values;	generating
one	column	for	each	year	since	1905	would	quickly	become	tedious.

NOTE
Although	it	is	a	bit	advanced	for	this	book,	it	is	worth	pointing	out	that	both	SQL	Server	and
Oracle	Database	include	pivot	clauses	specifically	for	these	types	of	queries.

Checking	for	Existence



Checking	for	Existence

Sometimes	you	will	want	to	determine	whether	a	relationship	exists
between	two	entities	without	regard	for	the	quantity.	For	example,	you
might	want	to	know	whether	an	actor	has	appeared	in	at	least	one	G-rated
film,	without	regard	for	the	actual	number	of	films.	Here’s	a	query	that
uses	multiple	case	expressions	to	generate	three	output	columns,	one	to
show	whether	the	actor	has	appeared	in	G-rated	films,	another	for	PG-
rated	films,	and	a	third	for	NC-17-rated	films:

mysql> SELECT a.first_name, a.last_name,
    ->   CASE
    ->     WHEN EXISTS (SELECT 1 FROM film_actor fa
    ->                    INNER JOIN film f ON fa.film_id = f.film_id
    ->                  WHERE fa.actor_id = a.actor_id
    ->                    AND f.rating = 'G') THEN 'Y'
    ->     ELSE 'N'
    ->   END g_actor,
    ->   CASE
    ->     WHEN EXISTS (SELECT 1 FROM film_actor fa
    ->                    INNER JOIN film f ON fa.film_id = f.film_id
    ->                  WHERE fa.actor_id = a.actor_id
    ->                    AND f.rating = 'PG') THEN 'Y'
    ->     ELSE 'N'
    ->   END pg_actor,
    ->   CASE
    ->     WHEN EXISTS (SELECT 1 FROM film_actor fa
    ->                    INNER JOIN film f ON fa.film_id = f.film_id
    ->                  WHERE fa.actor_id = a.actor_id
    ->                    AND f.rating = 'NC-17') THEN 'Y'
    ->     ELSE 'N'
    ->   END nc17_actor
    -> FROM actor a
    -> WHERE a.last_name LIKE 'S%' OR a.first_name LIKE 'S%';
+------------+-------------+---------+----------+------------+
| first_name | last_name   | g_actor | pg_actor | nc17_actor |
+------------+-------------+---------+----------+------------+
| JOE        | SWANK       | Y       | Y        | Y          |
| SANDRA     | KILMER      | Y       | Y        | Y          |
| CAMERON    | STREEP      | Y       | Y        | Y          |
| SANDRA     | PECK        | Y       | Y        | Y          |
| SISSY      | SOBIESKI    | Y       | Y        | N          |

| NICK       | STALLONE    | Y       | Y        | Y          |
| SEAN       | WILLIAMS    | Y       | Y        | Y          |
| GROUCHO    | SINATRA     | Y       | Y        | Y          |



| SCARLETT   | DAMON       | Y       | Y        | Y          |
| SPENCER    | PECK        | Y       | Y        | Y          |
| SEAN       | GUINESS     | Y       | Y        | Y          |
| SPENCER    | DEPP        | Y       | Y        | Y          |
| SUSAN      | DAVIS       | Y       | Y        | Y          |
| SIDNEY     | CROWE       | Y       | Y        | Y          |
| SYLVESTER  | DERN        | Y       | Y        | Y          |
| SUSAN      | DAVIS       | Y       | Y        | Y          |
| DAN        | STREEP      | Y       | Y        | Y          |
| SALMA      | NOLTE       | Y       | N        | Y          |

| SCARLETT   | BENING      | Y       | Y        | Y          |
| JEFF       | SILVERSTONE | Y       | Y        | Y          |
| JOHN       | SUVARI      | Y       | Y        | Y          |
| JAYNE      | SILVERSTONE | Y       | Y        | Y          |
+------------+-------------+---------+----------+------------+
22 rows in set (0.00 sec)

Each	case	expression	includes	a	correlated	subquery	against	the
film_actor	and	film	tables;	one	looks	for	films	with	a	G	rating,	the
second	for	films	with	a	PG	rating,	and	the	third	for	films	with	a	NC-17
rating.	Since	each	when	clause	uses	the	exists	operator,	the	conditions
evaluate	to	true	as	long	as	the	actor	has	appeared	in	at	least	one	film	with
the	proper	rating.

In	other	cases,	you	may	care	how	many	rows	are	encountered,	but	only	up
to	a	point.	For	example,	the	next	query	uses	a	simple	case	expression	to
count	the	number	of	copies	in	inventory	for	each	film	and	then	returns
either	'Out Of Stock',	'Scarce',	'Available',	or	'Common':

mysql> SELECT f.title,
    ->   CASE (SELECT count(*) FROM inventory i 
    ->         WHERE i.film_id = f.film_id)
    ->     WHEN 0 THEN 'Out Of Stock'
    ->     WHEN 1 THEN 'Scarce'
    ->     WHEN 2 THEN 'Scarce'
    ->     WHEN 3 THEN 'Available'
    ->     WHEN 4 THEN 'Available'
    ->     ELSE 'Common'
    ->   END film_availability
    -> FROM film f
    -> ;
+-----------------------------+-------------------+



| title                       | film_availability |
+-----------------------------+-------------------+
| ACADEMY DINOSAUR            | Common            |
| ACE GOLDFINGER              | Available         |
| ADAPTATION HOLES            | Available         |
| AFFAIR PREJUDICE            | Common            |
| AFRICAN EGG                 | Available         |
| AGENT TRUMAN                | Common            |
| AIRPLANE SIERRA             | Common            |
| AIRPORT POLLOCK             | Available         |
| ALABAMA DEVIL               | Common            |
| ALADDIN CALENDAR            | Common            |
| ALAMO VIDEOTAPE             | Common            |
| ALASKA PHANTOM              | Common            |
| ALI FOREVER                 | Available         |
| ALICE FANTASIA              | Out Of Stock      |
...
| YOUNG LANGUAGE              | Scarce            |
| YOUTH KICK                  | Scarce            |
| ZHIVAGO CORE                | Scarce            |
| ZOOLANDER FICTION           | Common            |
| ZORRO ARK                   | Common            |
+-----------------------------+-------------------+
1000 rows in set (0.01 sec)

For	this	query,	I	stopped	counting	after	5,	since	every	other	number
greater	than	5	will	be	given	the	'Common'	label.

Division-by-Zero	Errors

When	performing	calculations	that	include	division,	you	should	always
take	care	to	ensure	that	the	denominators	are	never	equal	to	zero.	Whereas
some	database	servers,	such	as	Oracle	Database,	will	throw	an	error	when
a	zero	denominator	is	encountered,	MySQL	simply	sets	the	result	of	the
calculation	to	null,	as	demonstrated	by	the	following:

mysql> SELECT	100	/	0;

+---------+
| 100 / 0 |
+---------+
|    NULL |
+---------+
1 row in set (0.00 sec)



To	safeguard	your	calculations	from	encountering	errors	or,	even	worse,
from	being	mysteriously	set	to	null,	you	should	wrap	all	denominators	in
conditional	logic,	as	demonstrated	by	the	following:

mysql> SELECT c.first_name, c.last_name,
    ->   sum(p.amount) tot_payment_amt,
    ->   count(p.amount) num_payments,
    ->   sum(p.amount) /

    ->     CASE	WHEN	count(p.amount)	=	0	THEN	1

    ->       ELSE	count(p.amount)

    ->     END avg_payment

    -> FROM customer c
    ->   LEFT OUTER JOIN payment p
    ->   ON c.customer_id = p.customer_id
    -> GROUP BY c.first_name, c.last_name;
+------------+------------+-----------------+--------------+-------------+
| first_name | last_name  | tot_payment_amt | num_payments | avg_payment |
+------------+------------+-----------------+--------------+-------------+
| MARY       | SMITH      |          118.68 |           32 |    3.708750 |
| PATRICIA   | JOHNSON    |          128.73 |           27 |    4.767778 |
| LINDA      | WILLIAMS   |          135.74 |           26 |    5.220769 |
| BARBARA    | JONES      |           81.78 |           22 |    3.717273 |
| ELIZABETH  | BROWN      |          144.62 |           38 |    3.805789 |
...
| EDUARDO    | HIATT      |          130.73 |           27 |    4.841852 |
| TERRENCE   | GUNDERSON  |          117.70 |           30 |    3.923333 |
| ENRIQUE    | FORSYTHE   |           96.72 |           28 |    3.454286 |
| FREDDIE    | DUGGAN     |           99.75 |           25 |    3.990000 |
| WADE       | DELVALLE   |           83.78 |           22 |    3.808182 |
| AUSTIN     | CINTRON    |           83.81 |           19 |    4.411053 |
+------------+------------+-----------------+--------------+-------------+
599 rows in set (0.07 sec)

This	query	computes	the	average	payment	amount	for	each	customer.
Since	some	customers	may	be	new	and	have	yet	to	rent	a	film,	it	is	best	to
include	the	case	expression	to	ensure	that	the	denominator	is	never	zero.

Conditional	Updates

When	updating	rows	in	a	table,	you	sometimes	need	conditional	logic	to
generate	a	value	for	a	column.	For	example,	let’s	say	that	you	run	a	job
every	week	that	will	set	the	customer.active	column	to	0	for	any



customers	who	haven’t	rented	a	film	in	the	last	90	days.	Here’s	a
statement	that	will	set	the	value	to	either	0	or	1	for	every	customer:

UPDATE customer
SET active =
  CASE
    WHEN 90 <= (SELECT datediff(now(), max(rental_date))
                FROM rental r
                WHERE r.customer_id = customer.customer_id)
      THEN 0
    ELSE 1
  END
WHERE active = 1;

This	statement	uses	a	correlated	subquery	to	determine	the	number	of	days
since	the	last	rental	date	for	each	customer	and	compares	the	value	to	90;
if	the	number	returned	by	the	subquery	is	90	or	higher,	the	customer	is
marked	as	inactive.

Handling	Null	Values

While	null	values	are	the	appropriate	thing	to	store	in	a	table	if	the	value
for	a	column	is	unknown,	it	is	not	always	appropriate	to	retrieve	null
values	for	display	or	to	take	part	in	expressions.	For	example,	you	might
want	to	display	the	word	unknown	on	a	data	entry	screen	rather	than
leaving	a	field	blank.	When	retrieving	the	data,	you	can	use	a	case
expression	to	substitute	the	string	if	the	value	is	null,	as	in:

SELECT c.first_name, c.last_name,
  CASE
    WHEN a.address IS NULL THEN 'Unknown'
    ELSE a.address
  END address,
  CASE
    WHEN ct.city IS NULL THEN 'Unknown'
    ELSE ct.city
  END city,
  CASE
    WHEN cn.country IS NULL THEN 'Unknown'



    ELSE cn.country
  END country
FROM customer c
  LEFT OUTER JOIN address a
  ON c.address_id = a.address_id
  LEFT OUTER JOIN city ct
  ON a.city_id = ct.city_id
  LEFT OUTER JOIN country cn
  ON ct.country_id = cn.country_id;

For	calculations,	null	values	often	cause	a	null	result,	as	demonstrated
by	the	following	example:

mysql> SELECT	(7	*	5)	/	((3	+	14)	*	null);

+-----------------------------+
| (7 * 5) / ((3 + 14) * null) |
+-----------------------------+
|                        NULL |
+-----------------------------+
1 row in set (0.08 sec)

When	performing	calculations,	case	expressions	are	useful	for	translating
a	null	value	into	a	number	(usually	0	or	1)	that	will	allow	the	calculation
to	yield	a	non-null	value.

Test	Your	Knowledge
Challenge	your	ability	to	work	through	conditional	logic	problems	with
the	examples	that	follow.	When	you’re	done,	compare	your	solutions	with
those	in	Appendix	B.

Exercise	11-1

Rewrite	the	following	query,	which	uses	a	simple	case	expression,	so	that
the	same	results	are	achieved	using	a	searched	case	expression.	Try	to	use
as	few	when	clauses	as	possible.

SELECT name,
  CASE name



  CASE name
    WHEN 'English' THEN 'latin1'
    WHEN 'Italian' THEN 'latin1'
    WHEN 'French' THEN 'latin1'
    WHEN 'German' THEN 'latin1'
    WHEN 'Japanese' THEN 'utf8'
    WHEN 'Mandarin' THEN 'utf8'
    ELSE 'Unknown'
  END character_set
FROM language;

Exercise	11-2

Rewrite	the	following	query	so	that	the	result	set	contains	a	single	row
with	five	columns	(one	for	each	rating).	Name	the	five	columns	G,	PG,
PG_13,	R,	and	NC_17.

mysql> SELECT rating, count(*)
    -> FROM film
    -> GROUP BY rating;
+--------+----------+
| rating | count(*) |
+--------+----------+
| PG     |      194 |
| G      |      178 |
| NC-17  |      210 |
| PG-13  |      223 |
| R      |      195 |
+--------+----------+
5 rows in set (0.00 sec)



Chapter	12.	Transactions

All	of	the	examples	thus	far	in	this	book	have	been	individual,
independent	SQL	statements.	While	this	may	be	the	norm	for	ad	hoc
reporting	or	data	maintenance	scripts,	application	logic	will	frequently
include	multiple	SQL	statements	that	need	to	execute	together	as	a	logical
unit	of	work.	This	chapter	explores	transactions,	which	are	the	mechanism
used	to	group	a	set	of	SQL	statements	together	such	that	either	all	or	none
of	the	statements	succeed.

Multiuser	Databases
Database	management	systems	allow	a	single	user	to	query	and	modify
data,	but	in	today’s	world	there	may	be	thousands	of	people	making
changes	to	a	database	simultaneously.	If	every	user	is	only	executing
queries,	such	as	might	be	the	case	with	a	data	warehouse	during	normal
business	hours,	then	there	are	very	few	issues	for	the	database	server	to
deal	with.	If	some	of	the	users	are	adding	and/or	modifying	data,	however,
the	server	must	handle	quite	a	bit	more	bookkeeping.

Let’s	say,	for	example,	that	you	are	running	a	report	that	sums	up	the
current	week’s	film	rental	activity.	At	the	same	time	you	are	running	the
report,	however,	the	following	activities	are	occurring:

A	customer	rents	a	film.

A	customer	returns	a	film	after	the	due	date	and	pays	a	late	fee.

Five	new	films	are	added	to	inventory.



While	your	report	is	running,	therefore,	multiple	users	are	modifying	the
underlying	data,	so	what	numbers	should	appear	on	the	report?	The
answer	depends	somewhat	on	how	your	server	handles	locking,	which	is
described	in	the	next	section.

Locking

Locks	are	the	mechanism	the	database	server	uses	to	control	simultaneous
use	of	data	resources.	When	some	portion	of	the	database	is	locked,	any
other	users	wishing	to	modify	(or	possibly	read)	that	data	must	wait	until
the	lock	has	been	released.	Most	database	servers	use	one	of	two	locking
strategies:

Database	writers	must	request	and	receive	from	the	server	a	write
lock	to	modify	data,	and	database	readers	must	request	and
receive	from	the	server	a	read	lock	to	query	data.	While	multiple
users	can	read	data	simultaneously,	only	one	write	lock	is	given
out	at	a	time	for	each	table	(or	portion	thereof),	and	read	requests
are	blocked	until	the	write	lock	is	released.

Database	writers	must	request	and	receive	from	the	server	a	write
lock	to	modify	data,	but	readers	do	not	need	any	type	of	lock	to
query	data.	Instead,	the	server	ensures	that	a	reader	sees	a
consistent	view	of	the	data	(the	data	seems	the	same	even	though
other	users	may	be	making	modifications)	from	the	time	her
query	begins	until	her	query	has	finished.	This	approach	is	known
as	versioning.

There	are	pros	and	cons	to	both	approaches.	The	first	approach	can	lead	to
long	wait	times	if	there	are	many	concurrent	read	and	write	requests,	and
the	second	approach	can	be	problematic	if	there	are	long-running	queries
while	data	is	being	modified.	Of	the	three	servers	discussed	in	this	book,
Microsoft	SQL	Server	uses	the	first	approach,	Oracle	Database	uses	the
second	approach,	and	MySQL	uses	both	approaches	(depending	on	your



choice	of	storage	engine,	which	we’ll	discuss	a	bit	later	in	the	chapter).

Lock	Granularities

There	are	also	a	number	of	different	strategies	that	you	may	employ	when
deciding	how	to	lock	a	resource.	The	server	may	apply	a	lock	at	one	of
three	different	levels,	or	granularities:

Table	locks

Keep	multiple	users	from	modifying	data	in	the	same	table
simultaneously

Page	locks

Keep	multiple	users	from	modifying	data	on	the	same	page	(a	page	is	a
segment	of	memory	generally	in	the	range	of	2	KB	to	16	KB)	of	a
table	simultaneously

Row	locks

Keep	multiple	users	from	modifying	the	same	row	in	a	table
simultaneously

Again,	there	are	pros	and	cons	to	these	approaches.	It	takes	very	little
bookkeeping	to	lock	entire	tables,	but	this	approach	quickly	yields
unacceptable	wait	times	as	the	number	of	users	increases.	On	the	other
hand,	row	locking	takes	quite	a	bit	more	bookkeeping,	but	it	allows	many
users	to	modify	the	same	table	as	long	as	they	are	interested	in	different
rows.	Of	the	three	servers	discussed	in	this	book,	Microsoft	SQL	Server
uses	page,	row,	and	table	locking,	Oracle	Database	uses	only	row	locking,
and	MySQL	uses	table,	page,	or	row	locking	(depending,	again,	on	your
choice	of	storage	engine).	SQL	Server	will,	under	certain	circumstances,
escalate	locks	from	row	to	page,	and	from	page	to	table,	whereas	Oracle
Database	will	never	escalate	locks.



To	get	back	to	your	report,	the	data	that	appears	on	the	pages	of	the	report
will	mirror	either	the	state	of	the	database	when	your	report	started	(if
your	server	uses	a	versioning	approach)	or	the	state	of	the	database	when
the	server	issues	the	reporting	application	a	read	lock	(if	your	server	uses
both	read	and	write	locks).

What	Is	a	Transaction?
If	database	servers	enjoyed	100%	uptime,	if	users	always	allowed
programs	to	finish	executing,	and	if	applications	always	completed
without	encountering	fatal	errors	that	halt	execution,	then	there	would	be
nothing	left	to	discuss	regarding	concurrent	database	access.	However,	we
can	rely	on	none	of	these	things,	so	one	more	element	is	necessary	to
allow	multiple	users	to	access	the	same	data.

This	extra	piece	of	the	concurrency	puzzle	is	the	transaction,	which	is	a
device	for	grouping	together	multiple	SQL	statements	such	that	either	all
or	none	of	the	statements	succeed	(a	property	known	as	atomicity).	If	you
attempt	to	transfer	$500	from	your	savings	account	to	your	checking
account,	you	would	be	a	bit	upset	if	the	money	were	successfully
withdrawn	from	your	savings	account	but	never	made	it	to	your	checking
account.	Whatever	the	reason	for	the	failure	(the	server	was	shut	down	for
maintenance,	the	request	for	a	page	lock	on	the	account	table	timed	out,
etc.),	you	want	your	$500	back.

To	protect	against	this	kind	of	error,	the	program	that	handles	your
transfer	request	would	first	begin	a	transaction,	then	issue	the	SQL
statements	needed	to	move	the	money	from	your	savings	to	your	checking
account,	and,	if	everything	succeeds,	end	the	transaction	by	issuing	the
commit	command.	If	something	unexpected	happens,	however,	the



program	would	issue	a	rollback	command,	which	instructs	the	server	to
undo	all	changes	made	since	the	transaction	began.	The	entire	process
might	look	something	like	the	following:

START TRANSACTION;
 
 /* withdraw money from first account, making sure balance is sufficient */
UPDATE account SET avail_balance = avail_balance - 500
WHERE account_id = 9988
  AND avail_balance > 500;
 
IF <exactly one row was updated by the previous statement> THEN
  /* deposit money into second account */
  UPDATE account SET avail_balance = avail_balance + 500
    WHERE account_id = 9989;
 
  IF <exactly one row was updated by the previous statement> THEN
    /* everything worked, make the changes permanent */
    COMMIT;
  ELSE
    /* something went wrong, undo all changes in this transaction */
    ROLLBACK;
  END IF;
ELSE
  /* insufficient funds, or error encountered during update */
  ROLLBACK;
END IF;

NOTE
While	the	previous	code	block	may	look	similar	to	one	of	the	procedural	languages	provided	by
the	major	database	companies,	such	as	Oracle’s	PL/SQL	or	Microsoft’s	Transact-SQL,	it	is
written	in	pseudocode	and	does	not	attempt	to	mimic	any	particular	language.

The	previous	code	block	begins	by	starting	a	transaction	and	then	attempts
to	remove	$500	from	the	checking	account	and	add	it	to	the	savings
account.	If	all	goes	well,	the	transaction	is	committed;	if	anything	goes
awry,	however,	the	transaction	is	rolled	back,	meaning	that	all	data
changes	since	the	beginning	of	the	transaction	are	undone.



By	using	a	transaction,	the	program	ensures	that	your	$500	either	stays	in
your	savings	account	or	moves	to	your	checking	account,	without	the
possibility	of	it	falling	into	a	crack.	Regardless	of	whether	the	transaction
was	committed	or	was	rolled	back,	all	resources	acquired	(e.g.,	write
locks)	during	the	execution	of	the	transaction	are	released	when	the
transaction	completes.

Of	course,	if	the	program	manages	to	complete	both	update	statements
but	the	server	shuts	down	before	a	commit	or	rollback	can	be	executed,
then	the	transaction	will	be	rolled	back	when	the	server	comes	back
online.	(One	of	the	tasks	that	a	database	server	must	complete	before
coming	online	is	to	find	any	incomplete	transactions	that	were	underway
when	the	server	shut	down	and	roll	them	back.)	Additionally,	if	your
program	finishes	a	transaction	and	issues	a	commit	but	the	server	shuts
down	before	the	changes	have	been	applied	to	permanent	storage	(i.e.,	the
modified	data	is	sitting	in	memory	but	has	not	been	flushed	to	disk),	then
the	database	server	must	reapply	the	changes	from	your	transaction	when
the	server	is	restarted	(a	property	known	as	durability).

Starting	a	Transaction

Database	servers	handle	transaction	creation	in	one	of	two	ways:

An	active	transaction	is	always	associated	with	a	database
session,	so	there	is	no	need	or	method	to	explicitly	begin	a
transaction.	When	the	current	transaction	ends,	the	server
automatically	begins	a	new	transaction	for	your	session.

Unless	you	explicitly	begin	a	transaction,	individual	SQL
statements	are	automatically	committed	independently	of	one
another.	To	begin	a	transaction,	you	must	first	issue	a	command.

Of	the	three	servers,	Oracle	Database	takes	the	first	approach,	while



Microsoft	SQL	Server	and	MySQL	take	the	second	approach.	One	of	the
advantages	of	Oracle’s	approach	to	transactions	is	that,	even	if	you	are
issuing	only	a	single	SQL	command,	you	have	the	ability	to	roll	back	the
changes	if	you	don’t	like	the	outcome	or	if	you	change	your	mind.	Thus,	if
you	forget	to	add	a	where	clause	to	your	delete	statement,	you	will	have
the	opportunity	to	undo	the	damage	(assuming	you’ve	had	your	morning
coffee	and	realize	that	you	didn’t	mean	to	delete	all	125,000	rows	in	your
table).	With	MySQL	and	SQL	Server,	however,	once	you	press	the	Enter
key,	the	changes	brought	about	by	your	SQL	statement	will	be	permanent
(unless	your	DBA	can	retrieve	the	original	data	from	a	backup	or	from
some	other	means).

The	SQL:2003	standard	includes	a	start transaction	command	to	be
used	when	you	want	to	explicitly	begin	a	transaction.	While	MySQL
conforms	to	the	standard,	SQL	Server	users	must	instead	issue	the
command	begin transaction.	With	both	servers,	until	you	explicitly
begin	a	transaction,	you	are	in	what	is	known	as	autocommit	mode,	which
means	that	individual	statements	are	automatically	committed	by	the
server.	You	can,	therefore,	decide	that	you	want	to	be	in	a	transaction	and
issue	a	start/begin	transaction	command,	or	you	can	simply	let	the	server
commit	individual	statements.

Both	MySQL	and	SQL	Server	allow	you	to	turn	off	autocommit	mode	for
individual	sessions,	in	which	case	the	servers	will	act	just	like	Oracle
Database	regarding	transactions.	With	SQL	Server,	you	issue	the
following	command	to	disable	autocommit	mode:

SET IMPLICIT_TRANSACTIONS ON

MySQL	allows	you	to	disable	autocommit	mode	via	the	following:

SET AUTOCOMMIT=0



SET AUTOCOMMIT=0

Once	you	have	left	autocommit	mode,	all	SQL	commands	take	place
within	the	scope	of	a	transaction	and	must	be	explicitly	committed	or
rolled	back.

NOTE
A	word	of	advice:	shut	off	autocommit	mode	each	time	you	log	in,	and	get	in	the	habit	of
running	all	of	your	SQL	statements	within	a	transaction.	If	nothing	else,	it	may	save	you	the
embarrassment	of	having	to	ask	your	DBA	to	reconstruct	data	that	you	have	inadvertently
deleted.

Ending	a	Transaction

Once	a	transaction	has	begun,	whether	explicitly	via	the	start
transaction	command	or	implicitly	by	the	database	server,	you	must
explicitly	end	your	transaction	for	your	changes	to	become	permanent.
You	do	this	by	way	of	the	commit	command,	which	instructs	the	server	to
mark	the	changes	as	permanent	and	release	any	resources	(i.e.,	page	or
row	locks)	used	during	the	transaction.

If	you	decide	that	you	want	to	undo	all	the	changes	made	since	starting	the
transaction,	you	must	issue	the	rollback	command,	which	instructs	the
server	to	return	the	data	to	its	pre-transaction	state.	After	the	rollback	has
been	completed,	any	resources	used	by	your	session	are	released.

Along	with	issuing	either	the	commit	or	rollback	command,	there	are
several	other	scenarios	by	which	your	transaction	can	end,	either	as	an
indirect	result	of	your	actions	or	as	a	result	of	something	outside	your
control:



The	server	shuts	down,	in	which	case	your	transaction	will	be
rolled	back	automatically	when	the	server	is	restarted.

You	issue	an	SQL	schema	statement,	such	as	alter table,
which	will	cause	the	current	transaction	to	be	committed	and	a
new	transaction	to	be	started.

You	issue	another	start transaction	command,	which	will
cause	the	previous	transaction	to	be	committed.

The	server	prematurely	ends	your	transaction	because	the	server
detects	a	deadlock	and	decides	that	your	transaction	is	the	culprit.
In	this	case,	the	transaction	will	be	rolled	back,	and	you	will
receive	an	error	message.

Of	these	four	scenarios,	the	first	and	third	are	fairly	straightforward,	but
the	other	two	merit	some	discussion.	As	far	as	the	second	scenario	is
concerned,	alterations	to	a	database,	whether	it	be	the	addition	of	a	new
table	or	index	or	the	removal	of	a	column	from	a	table,	cannot	be	rolled
back,	so	commands	that	alter	your	schema	must	take	place	outside	a
transaction.	If	a	transaction	is	currently	underway,	therefore,	the	server
will	commit	your	current	transaction,	execute	the	SQL	schema	statement
command(s),	and	then	automatically	start	a	new	transaction	for	your
session.	The	server	will	not	inform	you	of	what	has	happened,	so	you
should	be	careful	that	the	statements	that	comprise	a	unit	of	work	are	not
inadvertently	broken	up	into	multiple	transactions	by	the	server.

The	fourth	scenario	deals	with	deadlock	detection.	A	deadlock	occurs
when	two	different	transactions	are	waiting	for	resources	that	the	other
transaction	currently	holds.	For	example,	transaction	A	might	have	just
updated	the	account	table	and	is	waiting	for	a	write	lock	on	the
transaction	table,	while	transaction	B	has	inserted	a	row	into	the
transaction	table	and	is	waiting	for	a	write	lock	on	the	account	table.	If
both	transactions	happen	to	be	modifying	the	same	page	or	row



(depending	on	the	lock	granularity	in	use	by	the	database	server),	then
they	will	each	wait	forever	for	the	other	transaction	to	finish	and	free	up
the	needed	resource.	Database	servers	must	always	be	on	the	lookout	for
these	situations	so	that	throughput	doesn’t	grind	to	a	halt;	when	a	deadlock
is	detected,	one	of	the	transactions	is	chosen	(either	arbitrarily	or	by	some
criteria)	to	be	rolled	back	so	that	the	other	transaction	may	proceed.	Most
of	the	time,	the	terminated	transaction	can	be	restarted	and	will	succeed
without	encountering	another	deadlock	situation.

Unlike	the	second	scenario	discussed	earlier,	the	database	server	will	raise
an	error	to	inform	you	that	your	transaction	has	been	rolled	back	due	to
deadlock	detection.	With	MySQL,	for	example,	you	will	receive	error
1213,	which	carries	the	following	message:

Message: Deadlock found when trying to get lock; try restarting transaction

As	the	error	message	suggests,	it	is	a	reasonable	practice	to	retry	a
transaction	that	has	been	rolled	back	due	to	deadlock	detection.	However,
if	deadlocks	become	fairly	common,	then	you	may	need	to	modify	the
applications	that	access	the	database	to	decrease	the	probability	of
deadlocks	(one	common	strategy	is	to	ensure	that	data	resources	are
always	accessed	in	the	same	order,	such	as	always	modifying	account	data
before	inserting	transaction	data).

Transaction	Savepoints

In	some	cases,	you	may	encounter	an	issue	within	a	transaction	that
requires	a	rollback,	but	you	may	not	want	to	undo	all	of	the	work	that	has
transpired.	For	these	situations,	you	can	establish	one	or	more	savepoints
within	a	transaction	and	use	them	to	roll	back	to	a	particular	location
within	your	transaction	rather	than	rolling	all	the	way	back	to	the	start	of



the	transaction.

CHOOSING	A	STORAGE	ENGINE
When	using	Oracle	Database	or	Microsoft	SQL	Server,	a	single	set	of	code	is	responsible	for	low-level
database	operations,	such	as	retrieving	a	particular	row	from	a	table	based	on	primary	key	value.	The
MySQL	server,	however,	has	been	designed	so	that	multiple	storage	engines	may	be	utilized	to	provide
low-level	database	functionality,	including	resource	locking	and	transaction	management.	As	of	version
8.0,	MySQL	includes	the	following	storage	engines:

MyISAM

A	nontransactional	engine	employing	table	locking

MEMORY

A	nontransactional	engine	used	for	in-memory	tables

CSV

A	transactional	engine	that	stores	data	in	comma-separated	files

InnoDB

A	transactional	engine	employing	row-level	locking

Merge

A	specialty	engine	used	to	make	multiple	identical	MyISAM	tables	appear	as	a	single	table	(a.k.a.	table
partitioning)

Archive

A	specialty	engine	used	to	store	large	amounts	of	unindexed	data,	mainly	for	archival	purposes

Although	you	might	think	that	you	would	be	forced	to	choose	a	single	storage	engine	for	your	database,
MySQL	is	flexible	enough	to	allow	you	to	choose	a	storage	engine	on	a	table-by-table	basis.	For	any	tables
that	might	take	part	in	transactions,	however,	you	should	choose	the	InnoDB	engine,	which	uses	row-level
locking	and	versioning	to	provide	the	highest	level	of	concurrency	across	the	different	storage	engines.

You	may	explicitly	specify	a	storage	engine	when	creating	a	table,	or	you	can	change	an	existing	table	to
use	a	different	engine.	If	you	do	not	know	what	engine	is	assigned	to	a	table,	you	can	use	the	show table
command,	as	demonstrated	by	the	following:

mysql> show table status like 'customer' \G;
*************************** 1. row ***************************
           Name: customer
         Engine:	InnoDB
        Version: 10
     Row_format: Dynamic
           Rows: 599
 Avg_row_length: 136
    Data_length: 81920
Max_data_length: 0



   Index_length: 49152
      Data_free: 0
 Auto_increment: 599
    Create_time: 2019-03-12 14:24:46
    Update_time: NULL
     Check_time: NULL
      Collation: utf8_general_ci
       Checksum: NULL
 Create_options:
        Comment:
1 row in set (0.16 sec)

Looking	at	the	second	item,	you	can	see	that	the	customer	table	is	already	using	the	InnoDB	engine.	If	it
were	not,	you	could	assign	the	InnoDB	engine	to	the	transaction	table	via	the	following	command:

ALTER TABLE customer ENGINE = INNODB;

All	savepoints	must	be	given	a	name,	which	allows	you	to	have	multiple
savepoints	within	a	single	transaction.	To	create	a	savepoint	named
my_savepoint,	you	can	do	the	following:

SAVEPOINT my_savepoint;

To	roll	back	to	a	particular	savepoint,	you	simply	issue	the	rollback
command	followed	by	the	keywords	to savepoint	and	the	name	of	the
savepoint,	as	in:

ROLLBACK TO SAVEPOINT my_savepoint;

Here’s	an	example	of	how	savepoints	may	be	used:

START TRANSACTION;
 
UPDATE product
SET date_retired = CURRENT_TIMESTAMP()
WHERE product_cd = 'XYZ';
 
SAVEPOINT before_close_accounts;
 
UPDATE account
SET status = 'CLOSED', close_date = CURRENT_TIMESTAMP(),
  last_activity_date = CURRENT_TIMESTAMP()
WHERE product_cd = 'XYZ';
 



 
ROLLBACK TO SAVEPOINT before_close_accounts;
COMMIT;

The	net	effect	of	this	transaction	is	that	the	mythical	XYZ	product	is
retired	but	none	of	the	accounts	are	closed.

When	using	savepoints,	remember	the	following:

Despite	the	name,	nothing	is	saved	when	you	create	a	savepoint.
You	must	eventually	issue	a	commit	if	you	want	your	transaction
to	be	made	permanent.

If	you	issue	a	rollback	without	naming	a	savepoint,	all
savepoints	within	the	transaction	will	be	ignored,	and	the	entire
transaction	will	be	undone.

If	you	are	using	SQL	Server,	you	will	need	to	use	the	proprietary
command	save	transaction	to	create	a	savepoint	and	rollback
transaction	to	roll	back	to	a	savepoint,	with	each	command	being
followed	by	the	savepoint	name.

Test	Your	Knowledge
Test	your	understanding	of	transactions	by	working	through	the	following
exercise.	When	you’re	done,	compare	your	solution	with	that	in
Appendix	B.

Exercise	12-1

Generate	a	unit	of	work	to	transfer	$50	from	account	123	to	account	789.
You	will	need	to	insert	two	rows	into	the	transaction	table	and	update
two	rows	in	the	account	table.	Use	the	following	table	definitions/data:

   Account:
account_id avail_balance last_activity_date



account_id avail_balance last_activity_date
---------- ------------- ------------------
123  500  2019-07-10 20:53:27
789  75  2019-06-22 15:18:35
 
   Transaction:
txn_id  txn_date account_id txn_type_cd amount
--------- ------------ ----------- ----------- --------
1001  2019-05-15 123  C  500
1002  2019-06-01 789  C  75
 

Use	txn_type_cd = 'C'	to	indicate	a	credit	(addition),	and	use
txn_type_cd = 'D'	to	indicate	a	debit	(subtraction).



Chapter	13.	Indexes	and
Constraints

Because	the	focus	of	this	book	is	on	programming	techniques,	the	first	12
chapters	concentrated	on	elements	of	the	SQL	language	that	you	can	use
to	craft	powerful	select,	insert,	update,	and	delete	statements.
However,	other	database	features	indirectly	affect	the	code	you	write.	This
chapter	focuses	on	two	of	those	features:	indexes	and	constraints.

Indexes
When	you	insert	a	row	into	a	table,	the	database	server	does	not	attempt	to
put	the	data	in	any	particular	location	within	the	table.	For	example,	if	you
add	a	row	to	the	customer	table,	the	server	doesn’t	place	the	row	in
numeric	order	via	the	customer_id	column	or	in	alphabetical	order	via
the	last_name	column.	Instead,	the	server	simply	places	the	data	in	the
next	available	location	within	the	file	(the	server	maintains	a	list	of	free
space	for	each	table).	When	you	query	the	customer	table,	therefore,	the
server	will	need	to	inspect	every	row	of	the	table	to	answer	the	query.	For
example,	let’s	say	that	you	issue	the	following	query:

mysql> SELECT first_name, last_name
    -> FROM customer
    -> WHERE last_name LIKE 'Y%';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| LUIS       | YANEZ     |
| MARVIN     | YEE       |
| CYNTHIA    | YOUNG     |
+------------+-----------+



3 rows in set (0.09 sec)

To	find	all	customers	whose	last	name	begins	with	Y,	the	server	must	visit
each	row	in	the	customer	table	and	inspect	the	contents	of	the	last_name
column;	if	the	last	name	begins	with	Y,	then	the	row	is	added	to	the	result
set.	This	type	of	access	is	known	as	a	table	scan.

While	this	method	works	fine	for	a	table	with	only	three	rows,	imagine
how	long	it	might	take	to	answer	the	query	if	the	table	contains	three
million	rows.	At	some	number	of	rows	larger	than	three	and	smaller	than
three	million,	a	line	is	crossed	where	the	server	cannot	answer	the	query
within	a	reasonable	amount	of	time	without	additional	help.	This	help
comes	in	the	form	of	one	or	more	indexes	on	the	customer	table.

Even	if	you	have	never	heard	of	a	database	index,	you	are	certainly	aware
of	what	an	index	is	(e.g.,	this	book	has	one).	An	index	is	simply	a
mechanism	for	finding	a	specific	item	within	a	resource.	Each	technical
publication,	for	example,	includes	an	index	at	the	end	that	allows	you	to
locate	a	specific	word	or	phrase	within	the	publication.	The	index	lists
these	words	and	phrases	in	alphabetical	order,	allowing	the	reader	to	move
quickly	to	a	particular	letter	within	the	index,	find	the	desired	entry,	and
then	find	the	page	or	pages	on	which	the	word	or	phrase	may	be	found.

In	the	same	way	that	a	person	uses	an	index	to	find	words	within	a
publication,	a	database	server	uses	indexes	to	locate	rows	in	a	table.
Indexes	are	special	tables	that,	unlike	normal	data	tables,	are	kept	in	a
specific	order.	Instead	of	containing	all	of	the	data	about	an	entity,
however,	an	index	contains	only	the	column	(or	columns)	used	to	locate
rows	in	the	data	table,	along	with	information	describing	where	the	rows
are	physically	located.	Therefore,	the	role	of	indexes	is	to	facilitate	the
retrieval	of	a	subset	of	a	table’s	rows	and	columns	without	the	need	to



inspect	every	row	in	the	table.

Index	Creation

Returning	to	the	customer	table,	you	might	decide	to	add	an	index	on	the
email	column	to	speed	up	any	queries	that	specify	a	value	for	this	column,
as	well	as	any	update	or	delete	operations	that	specify	a	customer’s
email	address.	Here’s	how	you	can	add	such	an	index	to	a	MySQL
database:

mysql> ALTER TABLE customer
    -> ADD INDEX idx_email (email);
Query OK, 0 rows affected (1.87 sec)
Records: 0  Duplicates: 0  Warnings: 0

This	statement	creates	an	index	(a	B-tree	index	to	be	precise,	but	more	on
this	shortly)	on	the	customer.email	column;	furthermore,	the	index	is
given	the	name	idx_email.	With	the	index	in	place,	the	query	optimizer
(which	we	discussed	in	Chapter	3)	can	choose	to	use	the	index	if	it	is
deemed	beneficial	to	do	so.	If	there	is	more	than	one	index	on	a	table,	the
optimizer	must	decide	which	index	will	be	the	most	beneficial	for	a
particular	SQL	statement.

NOTE
MySQL	treats	indexes	as	optional	components	of	a	table,	which	is	why	in	earlier	versions	you
would	use	the	alter table	command	to	add	or	remove	an	index.	Other	database	servers,
including	SQL	Server	and	Oracle	Database,	treat	indexes	as	independent	schema	objects.	For
both	SQL	Server	and	Oracle,	therefore,	you	would	generate	an	index	using	the	create index
command,	as	in:

CREATE INDEX idx_email
ON customer (email);

As	of	MySQL	version	5,	a	create index	command	is	available,	although	it	is	mapped	to	the
alter table	command.	You	must	still	use	the	alter table	command	to	create	primary	key



indexes,	however.

All	database	servers	allow	you	to	look	at	the	available	indexes.	MySQL
users	can	use	the	show	command	to	see	all	of	the	indexes	on	a	specific
table,	as	in:

mysql> SHOW INDEX FROM customer \G;
*************************** 1. row ***************************
        Table: customer
   Non_unique: 0
     Key_name: PRIMARY
 Seq_in_index: 1
  Column_name: customer_id
    Collation: A
  Cardinality: 599
     Sub_part: NULL
       Packed: NULL
         Null:
   Index_type: BTREE
...
*************************** 2. row ***************************
        Table: customer
   Non_unique: 1
     Key_name: idx_fk_store_id
 Seq_in_index: 1
  Column_name: store_id
    Collation: A
  Cardinality: 2
     Sub_part: NULL
       Packed: NULL
         Null:
   Index_type: BTREE
...
*************************** 3. row ***************************
        Table: customer
   Non_unique: 1
     Key_name: idx_fk_address_id
 Seq_in_index: 1
  Column_name: address_id
    Collation: A
  Cardinality: 599
     Sub_part: NULL
       Packed: NULL
         Null:



   Index_type: BTREE
...
*************************** 4. row ***************************
        Table: customer
   Non_unique: 1
     Key_name: idx_last_name
 Seq_in_index: 1
  Column_name: last_name
    Collation: A
  Cardinality: 599
     Sub_part: NULL
       Packed: NULL
         Null:
   Index_type: BTREE
...
*************************** 5. row ***************************
        Table: customer
   Non_unique: 1
     Key_name: idx_email
 Seq_in_index: 1
  Column_name: email
    Collation: A
  Cardinality: 599
     Sub_part: NULL
       Packed: NULL
         Null: YES
   Index_type: BTREE
...
5 rows in set (0.06 sec)

The	output	shows	that	there	are	five	indexes	on	the	customer	table:	one
on	the	customer_id	column	called	PRIMARY,	and	four	others	on	the
store_id,	address_id,	last_name,	and	email	columns.	If	you	are
wondering	where	these	indexes	came	from,	I	created	the	index	on	the
email	column,	and	the	rest	were	installed	as	part	of	the	sample	Sakila
database.	Here’s	the	statement	used	to	create	the	table:

CREATE TABLE customer (
  customer_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
  store_id TINYINT UNSIGNED NOT NULL,
  first_name VARCHAR(45) NOT NULL,
  last_name VARCHAR(45) NOT NULL,
  email VARCHAR(50) DEFAULT NULL,
  address_id SMALLINT UNSIGNED NOT NULL,
  active BOOLEAN NOT NULL DEFAULT TRUE,



  create_date DATETIME NOT NULL,
  last_update TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
  PRIMARY	KEY		(customer_id),
		KEY	idx_fk_store_id	(store_id),

		KEY	idx_fk_address_id	(address_id),

		KEY	idx_last_name	(last_name),

  ...

When	the	table	was	created,	the	MySQL	server	automatically	generated	an
index	on	the	primary	key	column,	which	in	this	case	is	customer_id,	and
gave	the	index	the	name	PRIMARY.	This	is	a	special	type	of	index	used
with	a	primary	key	constraint,	but	I	will	cover	constraints	later	in	this
chapter.

If,	after	creating	an	index,	you	decide	that	the	index	is	not	proving	useful,
you	can	remove	it	via	the	following:

mysql> ALTER TABLE customer
    -> DROP INDEX idx_email;
Query OK, 0 rows affected (0.50 sec)
Records: 0  Duplicates: 0  Warnings: 0

NOTE
SQL	Server	and	Oracle	Database	users	must	use	the	drop index	command	to	remove	an	index,
as	in:

DROP INDEX idx_email; (Oracle)
 
DROP INDEX idx_email ON customer; (SQL Server)

MySQL	now	also	supports	the	drop index	command,	although	it	is	also	mapped	to	the	alter
table	command.

UNIQUE	INDEXES

When	designing	a	database,	it	is	important	to	consider	which	columns	are



allowed	to	contain	duplicate	data	and	which	are	not.	For	example,	it	is
allowable	to	have	two	customers	named	John	Smith	in	the	customer	table
since	each	row	will	have	a	different	identifier	(customer_id),	email,	and
address	to	help	tell	them	apart.	You	would	not,	however,	want	to	allow
two	different	customers	to	have	the	same	email	address.	You	can	enforce	a
rule	against	duplicate	values	by	creating	a	unique	index	on	the
customer.email	column.

A	unique	index	plays	multiple	roles;	along	with	providing	all	the	benefits
of	a	regular	index,	it	also	serves	as	a	mechanism	for	disallowing	duplicate
values	in	the	indexed	column.	Whenever	a	row	is	inserted	or	when	the
indexed	column	is	modified,	the	database	server	checks	the	unique	index
to	see	whether	the	value	already	exists	in	another	row	in	the	table.	Here’s
how	you	would	create	a	unique	index	on	the	customer.email	column:

mysql> ALTER TABLE customer
    -> ADD UNIQUE idx_email (email);

Query OK, 0 rows affected (0.64 sec)
Records: 0  Duplicates: 0  Warnings: 0

NOTE
SQL	Server	and	Oracle	Database	users	need	only	add	the	unique	keyword	when	creating	an
index,	as	in:

CREATE UNIQUE INDEX idx_email
ON customer (email);

With	the	index	in	place,	you	will	receive	an	error	if	you	try	to	add	a	new
customer	with	an	email	address	that	already	exists:

mysql> INSERT INTO customer
    ->  (store_id, first_name, last_name, email, address_id, active)



    -> VALUES
    ->  (1,'ALAN','KAHN', 'ALAN.KAHN@sakilacustomer.org', 394, 1);
ERROR 1062 (23000): Duplicate entry 'ALAN.KAHN@sakilacustomer.org' 
  for key 'idx_email'

You	should	not	build	unique	indexes	on	your	primary	key	column(s),
since	the	server	already	checks	uniqueness	for	primary	key	values.	You
may,	however,	create	more	than	one	unique	index	on	the	same	table	if	you
feel	that	it	is	warranted.

MULTICOLUMN	INDEXES

Along	with	the	single-column	indexes	demonstrated	thus	far,	you	may
also	build	indexes	that	span	multiple	columns.	If,	for	example,	you	find
yourself	searching	for	customers	by	first	and	last	names,	you	can	build	an
index	on	both	columns	together,	as	in:

mysql> ALTER TABLE customer
    -> ADD INDEX idx_full_name (last_name, first_name);
Query OK, 0 rows affected (0.35 sec)
Records: 0  Duplicates: 0  Warnings: 0

This	index	will	be	useful	for	queries	that	specify	the	first	and	last	names	or
just	the	last	name,	but	it	would	not	be	useful	for	queries	that	specify	only
the	customer’s	first	name.	To	understand	why,	consider	how	you	would
find	a	person’s	phone	number;	if	you	know	the	person’s	first	and	last
names,	you	can	use	a	phone	book	to	find	the	number	quickly,	since	a
phone	book	is	organized	by	last	name	and	then	by	first	name.	If	you	know
only	the	person’s	first	name,	you	would	need	to	scan	every	entry	in	the
phone	book	to	find	all	the	entries	with	the	specified	first	name.

When	building	multiple-column	indexes,	therefore,	you	should	think
carefully	about	which	column	to	list	first,	which	column	to	list	second,	and
so	on,	to	help	make	the	index	as	useful	as	possible.	Keep	in	mind,



however,	that	there	is	nothing	stopping	you	from	building	multiple
indexes	using	the	same	set	of	columns	but	in	a	different	order	if	you	feel
that	it	is	needed	to	ensure	adequate	response	time.

Types	of	Indexes

Indexing	is	a	powerful	tool,	but	since	there	are	many	different	types	of
data,	a	single	indexing	strategy	doesn’t	always	do	the	job.	The	following
sections	illustrate	the	different	types	of	indexing	available	from	various
servers.

B-TREE	INDEXES

All	the	indexes	shown	thus	far	are	balanced-tree	indexes,	which	are	more
commonly	known	as	B-tree	indexes.	MySQL,	Oracle	Database,	and	SQL
Server	all	default	to	B-tree	indexing,	so	you	will	get	a	B-tree	index	unless
you	explicitly	ask	for	another	type.	As	you	might	expect,	B-tree	indexes
are	organized	as	trees,	with	one	or	more	levels	of	branch	nodes	leading	to
a	single	level	of	leaf	nodes.	Branch	nodes	are	used	for	navigating	the	tree,
while	leaf	nodes	hold	the	actual	values	and	location	information.	For
example,	a	B-tree	index	built	on	the	customer.last_name	column	might
look	something	like	Figure	13-1.



Figure	13-1.	B-tree	example

If	you	were	to	issue	a	query	to	retrieve	all	customers	whose	last	name
starts	with	G,	the	server	would	look	at	the	top	branch	node	(called	the	root
node)	and	follow	the	link	to	the	branch	node	that	handles	last	names
beginning	with	A	through	M.	This	branch	node	would,	in	turn,	direct	the
server	to	a	leaf	node	containing	last	names	beginning	with	G	through	I.
The	server	then	starts	reading	the	values	in	the	leaf	node	until	it
encounters	a	value	that	doesn’t	begin	with	G	(which,	in	this	case,	is



Hawthorne).

As	rows	are	inserted,	updated,	and	deleted	from	the	customer	table,	the
server	will	attempt	to	keep	the	tree	balanced	so	that	there	aren’t	far	more
branch/leaf	nodes	on	one	side	of	the	root	node	than	the	other.	The	server
can	add	or	remove	branch	nodes	to	redistribute	the	values	more	evenly	and
can	even	add	or	remove	an	entire	level	of	branch	nodes.	By	keeping	the
tree	balanced,	the	server	is	able	to	traverse	quickly	to	the	leaf	nodes	to	find
the	desired	values	without	having	to	navigate	through	many	levels	of
branch	nodes.

BITMAP	INDEXES

Although	B-tree	indexes	are	great	at	handling	columns	that	contain	many
different	values,	such	as	a	customer’s	first/last	names,	they	can	become
unwieldy	when	built	on	a	column	that	allows	only	a	small	number	of
values.	For	example,	you	may	decide	to	generate	an	index	on	the
customer.active	column	so	that	you	can	quickly	retrieve	all	active	or
inactive	accounts.	Because	there	are	only	two	different	values	(stored	as	1
for	active	and	0	for	inactive),	however,	and	because	there	are	far	more
active	customers,	it	can	be	difficult	to	maintain	a	balanced	B-tree	index	as
the	number	of	customers	grows.

For	columns	that	contain	only	a	small	number	of	values	across	a	large
number	of	rows	(known	as	low-cardinality	data),	a	different	indexing
strategy	is	needed.	To	handle	this	situation	more	efficiently,	Oracle
Database	includes	bitmap	indexes,	which	generate	a	bitmap	for	each	value
stored	in	the	column.	If	you	were	to	build	a	bitmap	index	on	the
customer.active	column,	the	index	would	maintain	two	bitmaps:	one	for
the	value	0	and	another	for	the	value	1.	When	you	write	a	query	to	retrieve
all	inactive	customers,	the	database	server	can	traverse	the	0	bitmap	and



quickly	retrieve	the	desired	rows.

Bitmap	indexes	are	a	nice,	compact	indexing	solution	for	low-cardinality
data,	but	this	indexing	strategy	breaks	down	if	the	number	of	values	stored
in	the	column	climbs	too	high	in	relation	to	the	number	of	rows	(known	as
high-cardinality	data),	since	the	server	would	need	to	maintain	too	many
bitmaps.	For	example,	you	would	never	build	a	bitmap	index	on	your
primary	key	column,	since	this	represents	the	highest	possible	cardinality
(a	different	value	for	every	row).

Oracle	users	can	generate	bitmap	indexes	by	simply	adding	the	bitmap
keyword	to	the	create index	statement,	as	in:

CREATE BITMAP INDEX idx_active ON customer (active);

Bitmap	indexes	are	commonly	used	in	data	warehousing	environments,
where	large	amounts	of	data	are	generally	indexed	on	columns	containing
relatively	few	values	(e.g.,	sales	quarters,	geographic	regions,	products,
salespeople).

TEXT	INDEXES

If	your	database	stores	documents,	you	may	need	to	allow	users	to	search
for	words	or	phrases	in	the	documents.	You	certainly	don’t	want	the	server
to	peruse	each	document	and	scan	for	the	desired	text	each	time	a	search	is
requested,	but	traditional	indexing	strategies	don’t	work	for	this	situation.
To	handle	this	situation,	MySQL,	SQL	Server,	and	Oracle	Database
include	specialized	indexing	and	search	mechanisms	for	documents;	both
SQL	Server	and	MySQL	include	what	they	call	full-text	indexes,	and
Oracle	Database	includes	a	powerful	set	of	tools	known	as	Oracle	Text.
Document	searches	are	specialized	enough	that	it	is	not	practical	to	show



an	example,	but	it	is	useful	to	at	least	know	what	is	available.

How	Indexes	Are	Used

Indexes	are	generally	used	by	the	server	to	quickly	locate	rows	in	a
particular	table,	after	which	the	server	visits	the	associated	table	to	extract
the	additional	information	requested	by	the	user.	Consider	the	following
query:

mysql> SELECT customer_id, first_name, last_name
    -> FROM customer
    -> WHERE first_name LIKE 'S%' AND last_name LIKE 'P%';
+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
|          84 | SARA       | PERRY     |
|         197 | SUE        | PETERS    |
|         167 | SALLY      | PIERCE    |
+-------------+------------+-----------+
3 rows in set (0.00 sec)

For	this	query,	the	server	can	employ	any	of	the	following	strategies:

Scan	all	rows	in	the	customer	table.

Use	the	index	on	the	last_name	column	to	find	all	customers
whose	last	name	starts	with	P;	then	visit	each	row	of	the
customer	table	to	find	only	rows	whose	first	name	starts	with	S.

Use	the	index	on	the	last_name	and	first_name	columns	to	find
all	customers	whose	last	name	starts	with	P	and	whose	first	name
starts	with	S.

The	third	choice	seems	to	be	the	best	option,	since	the	index	will	yield	all
of	the	rows	needed	for	the	result	set,	without	the	need	to	revisit	the	table.
But	how	do	you	know	which	of	the	three	options	will	be	utilized?	To	see
how	MySQL’s	query	optimizer	decides	to	execute	the	query,	I	use	the
explain	statement	to	ask	the	server	to	show	the	execution	plan	for	the



query	rather	than	executing	the	query:

mysql> EXPLAIN

    -> SELECT customer_id, first_name, last_name
    -> FROM customer
    -> WHERE first_name LIKE 'S%' AND last_name LIKE 'P%' \G;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: customer
   partitions: NULL
         type: range
possible_keys: idx_last_name,idx_full_name
          key: idx_full_name

      key_len: 274
          ref: NULL
         rows: 28
     filtered: 11.11
        Extra: Using where; Using	index

1 row in set, 1 warning (0.00 sec)

NOTE
Each	database	server	includes	tools	to	allow	you	to	see	how	the	query	optimizer	handles	your
SQL	statement.	SQL	Server	allows	you	to	see	an	execution	plan	by	issuing	the	statement	set
showplan_text on	before	running	your	SQL	statement.	Oracle	Database	includes	the	explain
plan	statement,	which	writes	the	execution	plan	to	a	special	table	called	plan_table.

Looking	at	the	query	results,	the	possible_keys	column	tells	you	that	the
server	could	decide	to	use	either	the	idx_last_name	or	the
idx_full_name	index,	and	the	key	column	tells	you	that	the
idx_full_name	index	was	chosen.	Furthermore,	the	type	column	tells
you	that	a	range	scan	will	be	utilized,	meaning	that	the	database	server
will	be	looking	for	a	range	of	values	in	the	index,	rather	than	expecting	to
retrieve	a	single	row.

NOTE



The	process	that	I	just	led	you	through	is	an	example	of	query	tuning.	Tuning	involves	looking
at	an	SQL	statement	and	determining	the	resources	available	to	the	server	to	execute	the
statement.	You	can	decide	to	modify	the	SQL	statement,	to	adjust	the	database	resources,	or	to
do	both	in	order	to	make	a	statement	run	more	efficiently.	Tuning	is	a	detailed	topic,	and	I
strongly	urge	you	to	either	read	your	server’s	tuning	guide	or	pick	up	a	good	tuning	book	so	that
you	can	see	all	the	different	approaches	available	for	your	server.

The	Downside	of	Indexes

If	indexes	are	so	great,	why	not	index	everything?	Well,	the	key	to
understanding	why	more	indexes	are	not	necessarily	a	good	thing	is	to
keep	in	mind	that	every	index	is	a	table	(a	special	type	of	table	but	still	a
table).	Therefore,	every	time	a	row	is	added	to	or	removed	from	a	table,	all
indexes	on	that	table	must	be	modified.	When	a	row	is	updated,	any
indexes	on	the	column	or	columns	that	were	affected	need	to	be	modified
as	well.	Therefore,	the	more	indexes	you	have,	the	more	work	the	server
needs	to	do	to	keep	all	schema	objects	up-to-date,	which	tends	to	slow
things	down.

Indexes	also	require	disk	space	as	well	as	some	amount	of	care	from	your
administrators,	so	the	best	strategy	is	to	add	an	index	when	a	clear	need
arises.	If	you	need	an	index	for	only	special	purposes,	such	as	a	monthly
maintenance	routine,	you	can	always	add	the	index,	run	the	routine,	and
then	drop	the	index	until	you	need	it	again.	In	the	case	of	data	warehouses,
where	indexes	are	crucial	during	business	hours	as	users	run	reports	and
ad	hoc	queries	but	are	problematic	when	data	is	being	loaded	into	the
warehouse	overnight,	it	is	a	common	practice	to	drop	the	indexes	before
data	is	loaded	and	then	re-create	them	before	the	warehouse	opens	for
business.

In	general,	you	should	strive	to	have	neither	too	many	indexes	nor	too



few.	If	you	aren’t	sure	how	many	indexes	you	should	have,	you	can	use
this	strategy	as	a	default:

Make	sure	all	primary	key	columns	are	indexed	(most	servers
automatically	create	unique	indexes	when	you	create	primary	key
constraints).	For	multicolumn	primary	keys,	consider	building
additional	indexes	on	a	subset	of	the	primary	key	columns	or	on
all	the	primary	key	columns	but	in	a	different	order	than	the
primary	key	constraint	definition.

Build	indexes	on	all	columns	that	are	referenced	in	foreign	key
constraints.	Keep	in	mind	that	the	server	checks	to	make	sure
there	are	no	child	rows	when	a	parent	is	deleted,	so	it	must	issue	a
query	to	search	for	a	particular	value	in	the	column.	If	there’s	no
index	on	the	column,	the	entire	table	must	be	scanned.

Index	any	columns	that	will	frequently	be	used	to	retrieve	data.
Most	date	columns	are	good	candidates,	along	with	short	(2-	to
50-character)	string	columns.

After	you	have	built	your	initial	set	of	indexes,	try	to	capture	actual
queries	against	your	tables,	look	at	the	server’s	execution	plan,	and	modify
your	indexing	strategy	to	fit	the	most	common	access	paths.

Constraints
A	constraint	is	simply	a	restriction	placed	on	one	or	more	columns	of	a
table.	There	are	several	different	types	of	constraints,	including:

Primary	key	constraints

Identify	the	column	or	columns	that	guarantee	uniqueness	within	a
table

Foreign	key	constraints



Restrict	one	or	more	columns	to	contain	only	values	found	in	another
table’s	primary	key	columns	(may	also	restrict	the	allowable	values	in
other	tables	if	update cascade	or	delete cascade	rules	are
established)

Unique	constraints

Restrict	one	or	more	columns	to	contain	unique	values	within	a	table
(primary	key	constraints	are	a	special	type	of	unique	constraint)

Check	constraints

Restrict	the	allowable	values	for	a	column

Without	constraints,	a	database’s	consistency	is	suspect.	For	example,	if
the	server	allows	you	to	change	a	customer’s	ID	in	the	customer	table
without	changing	the	same	customer	ID	in	the	rental	table,	then	you	will
end	up	with	rental	data	that	no	longer	points	to	valid	customer	records
(known	as	orphaned	rows).	With	primary	and	foreign	key	constraints	in
place,	however,	the	server	will	either	raise	an	error	if	an	attempt	is	made	to
modify	or	delete	data	that	is	referenced	by	other	tables	or	propagate	the
changes	to	other	tables	for	you	(more	on	this	shortly).

NOTE
If	you	want	to	use	foreign	key	constraints	with	the	MySQL	server,	you	must	use	the	InnoDB
storage	engine	for	your	tables.

Constraint	Creation

Constraints	are	generally	created	at	the	same	time	as	the	associated	table
via	the	create table	statement.	To	illustrate,	here’s	an	example	from	the
schema	generation	script	for	the	Sakila	sample	database:

CREATE TABLE customer (



  customer_id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
  store_id TINYINT UNSIGNED NOT NULL,
  first_name VARCHAR(45) NOT NULL,
  last_name VARCHAR(45) NOT NULL,
  email VARCHAR(50) DEFAULT NULL,
  address_id SMALLINT UNSIGNED NOT NULL,
  active BOOLEAN NOT NULL DEFAULT TRUE,
  create_date DATETIME NOT NULL,
  last_update TIMESTAMP DEFAULT CURRENT_TIMESTAMP 
    ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY	KEY	(customer_id),

  KEY idx_fk_store_id (store_id),
  KEY idx_fk_address_id (address_id),
  KEY idx_last_name (last_name),
  CONSTRAINT	fk_customer_address	FOREIGN	KEY (address_id)	

				REFERENCES	address	(address_id) ON DELETE RESTRICT ON UPDATE 

CASCADE,
  CONSTRAINT	fk_customer_store	FOREIGN	KEY (store_id)	

				REFERENCES	store	(store_id) ON DELETE RESTRICT ON UPDATE CASCADE

)ENGINE=InnoDB DEFAULT CHARSET=utf8;

The	customer	table	includes	three	constraints:	one	to	specify	that	the
customer_id	column	serves	as	the	primary	key	for	the	table,	and	two
more	to	specify	that	the	address_id	and	store_id	columns	serve	as
foreign	keys	to	the	address	and	store	table.	Alternatively,	you	could
create	the	customer	table	without	foreign	key	constraints	and	add	the
foreign	key	constraints	later	via	alter table	statements:

ALTER TABLE customer
ADD CONSTRAINT fk_customer_address FOREIGN KEY (address_id)
REFERENCES address (address_id) ON DELETE RESTRICT ON UPDATE CASCADE;
 
ALTER TABLE customer
ADD CONSTRAINT fk_customer_store FOREIGN KEY (store_id)
REFERENCES store (store_id) ON DELETE RESTRICT ON UPDATE CASCADE;

Both	of	these	statements	include	several	on	clauses:

on delete restrict,	which	will	cause	the	server	to	raise	an
error	if	a	row	is	deleted	in	the	parent	table	(address	or	store)
that	is	referenced	in	the	child	table	(customer)



on update cascade,	which	will	cause	the	server	to	propagate	a
change	to	the	primary	key	value	of	a	parent	table	(address	or
store)	to	the	child	table	(customer)

The	on delete restrict	clause	protects	against	orphaned	records	when
rows	are	deleted	from	the	parent	table.	To	illustrate,	let’s	pick	a	row	in	the
address	table	and	show	the	data	from	both	the	address	and	customer
tables	that	share	this	value:

mysql> SELECT c.first_name, c.last_name, c.address_id, a.address

    -> FROM customer c
    ->   INNER JOIN address a
    ->   ON c.address_id = a.address_id
    -> WHERE a.address_id = 123;

+------------+-----------+------------+----------------------------------+
| first_name | last_name | address_id | address                          |
+------------+-----------+------------+----------------------------------+
| SHERRY     | MARSHALL  |        123	| 1987 Coacalco de Berriozbal Loop |

+------------+-----------+------------+----------------------------------+
1 row in set (0.00 sec)

The	results	show	that	there	is	a	single	customer	row	(for	Sherry	Marshall)
whose	address_id	column	contains	the	value	123.

Here’s	what	happens	if	you	try	to	remove	this	row	from	the	parent
(address)	table:

mysql> DELETE FROM address WHERE address_id = 123;
ERROR 1451 (23000): Cannot delete or update a parent row: 
  a foreign key constraint fails (`sakila`.`customer`, 
  CONSTRAINT `fk_customer_address` FOREIGN KEY (`address_id`) 
  REFERENCES `address` (`address_id`) 
  ON DELETE RESTRICT ON UPDATE CASCADE)

Because	at	least	one	row	in	the	child	table	contains	the	value	123	in	the
address_id	column,	the	on delete restrict	clause	of	the	foreign	key
constraint	caused	the	statement	to	fail.



The	on update cascade	clause	also	protects	against	orphaned	records
when	a	primary	key	value	is	updated	in	the	parent	table	using	a	different
strategy.	Here’s	what	happens	if	you	modify	a	value	in	the
address.address_id	column:

mysql> UPDATE address
    -> SET address_id = 9999

    -> WHERE address_id = 123;

Query OK, 1 row affected (0.37 sec)
Rows matched: 1  Changed: 1  Warnings: 0

The	statement	executed	without	error,	and	one	row	was	modified.	But
what	happened	to	Sherry	Marshall’s	row	in	the	customer	table?	Does	it
still	point	to	address	ID	123,	which	no	longer	exists?	To	find	out,	let’s	run
the	last	query	again,	but	substitute	the	new	value	9999	for	the	previous
value	of	123:

mysql> SELECT c.first_name, c.last_name, c.address_id, a.address

    -> FROM customer c
    ->   INNER JOIN address a
    ->   ON c.address_id = a.address_id
    -> WHERE a.address_id = 9999;

+------------+-----------+------------+----------------------------------+
| first_name | last_name | address_id | address                          |
+------------+-----------+------------+----------------------------------+
| SHERRY     | MARSHALL  |       9999	| 1987 Coacalco de Berriozbal Loop |

+------------+-----------+------------+----------------------------------+
1 row in set (0.00 sec)

As	you	can	see,	the	same	results	are	returned	as	before	(other	than	the	new
address	ID	value),	which	means	that	the	value	9999	was	automatically
updated	in	the	customer	table.	This	is	known	as	a	cascade,	and	it’s	the
second	mechanism	used	to	protect	against	orphaned	rows.

Along	with	restrict	and	cascade,	you	can	also	choose	set null,	which
will	set	the	foreign	key	value	to	null	in	the	child	table	when	a	row	is
deleted	or	updated	in	the	parent	table.	Altogether,	there	are	six	different



options	to	choose	from	when	defining	foreign	key	constraints:

on delete restrict

on update cascade

on delete set null

on update restrict

on update cascade

on update set null

These	are	optional,	so	you	can	choose	zero,	one,	or	two	(one	on delete
and	one	on update)	of	these	when	defining	your	foreign	key	constraints.

Finally,	if	you	want	to	remove	a	primary	or	foreign	key	constraint,	you
can	use	the	alter table	statement	again,	except	that	you	specify	drop
instead	of	add.	While	it	is	unusual	to	drop	a	primary	key	constraint,
foreign	key	constraints	are	sometimes	dropped	during	certain	maintenance
operations	and	then	reestablished.

Test	Your	Knowledge
Work	through	the	following	exercises	to	test	your	knowledge	of	indexes
and	constraints.	When	you’re	done,	compare	your	solutions	with	those	in
Appendix	B.

Exercise	13-1

Generate	an	alter table	statement	for	the	rental	table	so	that	an	error
will	be	raised	if	a	row	having	a	value	found	in	the	rental.customer_id
column	is	deleted	from	the	customer	table.

Exercise	13-2



Exercise	13-2

Generate	a	multicolumn	index	on	the	payment	table	that	could	be	used	by
both	of	the	following	queries:

SELECT customer_id, payment_date, amount
FROM payment
WHERE payment_date > cast('2019-12-31 23:59:59' as datetime);

SELECT customer_id, payment_date, amount
FROM payment
​WHERE payment_date > cast('2019-12-31 23:59:59' as datetime)
  AND amount < 5;



Chapter	14.	Views

Well-designed	applications	generally	expose	a	public	interface	while
keeping	implementation	details	private,	thereby	enabling	future	design
changes	without	impacting	end	users.	When	designing	your	database,	you
can	achieve	a	similar	result	by	keeping	your	tables	private	and	allowing
your	users	to	access	data	only	through	a	set	of	views.	This	chapter	strives
to	define	what	views	are,	how	they	are	created,	and	when	and	how	you
might	want	to	use	them.

What	Are	Views?
A	view	is	simply	a	mechanism	for	querying	data.	Unlike	tables,	views	do
not	involve	data	storage;	you	won’t	need	to	worry	about	views	filling	up
your	disk	space.	You	create	a	view	by	assigning	a	name	to	a	select
statement	and	then	storing	the	query	for	others	to	use.	Other	users	can	then
use	your	view	to	access	data	just	as	though	they	were	querying	tables
directly	(in	fact,	they	may	not	even	know	they	are	using	a	view).

As	a	simple	example,	let’s	say	that	you	want	to	partially	obscure	the	email
address	in	the	customer	table.	The	marketing	department,	for	example,
may	need	access	to	email	addresses	in	order	to	advertise	promotions,	but
otherwise	your	company’s	privacy	policy	dictates	that	this	data	be	kept
secure.	Therefore,	instead	of	allowing	direct	access	to	the	customer	table,
you	define	a	view	called	customer_vw	and	mandate	that	all	nonmarketing
personnel	use	it	to	access	customer	data.	Here’s	the	view	definition:

CREATE VIEW customer_vw



 (customer_id,
  first_name,
  last_name,
  email 
 )
AS
SELECT 
  customer_id,
  first_name,
  last_name,
  concat(substr(email,1,2), '*****', substr(email, -4)) email
FROM customer;

The	first	part	of	the	statement	lists	the	view’s	column	names,	which	may
be	different	from	those	of	the	underlying	table.	The	second	part	of	the
statement	is	a	select	statement,	which	must	contain	one	expression	for
each	column	in	the	view.	The	email	column	is	generated	by	taking	the
first	two	characters	of	the	email	address,	concatenated	with	'*****',	and
then	concatenated	with	the	last	four	characters	of	the	email	address.

When	the	create view	statement	is	executed,	the	database	server	simply
stores	the	view	definition	for	future	use;	the	query	is	not	executed,	and	no
data	is	retrieved	or	stored.	Once	the	view	has	been	created,	users	can
query	it	just	like	they	would	a	table,	as	in:

mysql> SELECT first_name, last_name, email
    -> FROM customer_vw;

+-------------+--------------+-------------+
| first_name  | last_name    | email       |
+-------------+--------------+-------------+
| MARY        | SMITH        | MA*****.org |
| PATRICIA    | JOHNSON      | PA*****.org |
| LINDA       | WILLIAMS     | LI*****.org |
| BARBARA     | JONES        | BA*****.org |
| ELIZABETH   | BROWN        | EL*****.org |
...
| ENRIQUE     | FORSYTHE     | EN*****.org |
| FREDDIE     | DUGGAN       | FR*****.org |
| WADE        | DELVALLE     | WA*****.org |
| AUSTIN      | CINTRON      | AU*****.org |
+-------------+--------------+-------------+
599 rows in set (0.00 sec)



Even	though	the	customer_vw	view	definition	includes	four	columns	of
the	customer	table,	the	previous	query	retrieves	only	three	of	the	four.	As
you’ll	see	later	in	the	chapter,	this	is	an	important	distinction	if	some	of
the	columns	in	your	view	are	attached	to	functions	or	subqueries.

From	the	user’s	standpoint,	a	view	looks	exactly	like	a	table.	If	you	want
to	know	what	columns	are	available	in	a	view,	you	can	use	MySQL’s	(or
Oracle’s)	describe	command	to	examine	it:

mysql> describe customer_vw;
+-------------+----------------------+------+-----+---------+-------+
| Field       | Type                 | Null | Key | Default | Extra |
+-------------+----------------------+------+-----+---------+-------+
| customer_id | smallint(5) unsigned | NO   |     | 0       |       |
| first_name  | varchar(45)          | NO   |     | NULL    |       |
| last_name   | varchar(45)          | NO   |     | NULL    |       |
| email       | varchar(11)          | YES  |     | NULL    |       |
+-------------+----------------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

You	are	free	to	use	any	clauses	of	the	select	statement	when	querying
through	a	view,	including	group by,	having,	and	order by.	Here’s	an
example:

mysql> SELECT first_name, count(*), min(last_name), max(last_name)
    -> FROM customer_vw
    -> WHERE first_name LIKE 'J%'
    -> GROUP BY first_name
    -> HAVING count(*) > 1
    -> ORDER BY 1;
+------------+----------+----------------+----------------+
| first_name | count(*) | min(last_name) | max(last_name) |
+------------+----------+----------------+----------------+
| JAMIE      |        2 | RICE           | WAUGH          |
| JESSIE     |        2 | BANKS          | MILAM          |
+------------+----------+----------------+----------------+
2 rows in set (0.00 sec)

In	addition,	you	can	join	views	to	other	tables	(or	even	to	other	views)
within	a	query,	as	in:



mysql> SELECT cv.first_name, cv.last_name, p.amount
    -> FROM customer_vw cv
    ->   INNER JOIN payment p
    ->   ON cv.customer_id = p.customer_id
    -> WHERE p.amount >= 11;
+------------+-----------+--------+
| first_name | last_name | amount |
+------------+-----------+--------+
| KAREN      | JACKSON   |  11.99 |
| VICTORIA   | GIBSON    |  11.99 |
| VANESSA    | SIMS      |  11.99 |
| ALMA       | AUSTIN    |  11.99 |
| ROSEMARY   | SCHMIDT   |  11.99 |
| TANYA      | GILBERT   |  11.99 |
| RICHARD    | MCCRARY   |  11.99 |
| NICHOLAS   | BARFIELD  |  11.99 |
| KENT       | ARSENAULT |  11.99 |
| TERRANCE   | ROUSH     |  11.99 |
+------------+-----------+--------+
10 rows in set (0.01 sec)

This	query	joins	the	customer_vw	view	to	the	payment	table	in	order	to
find	customers	who	have	paid	$11	or	more	for	a	film	rental.

Why	Use	Views?
In	the	previous	section,	I	demonstrated	a	simple	view	whose	sole	purpose
was	to	mask	the	contents	of	the	customer.email	column.	While	views
are	often	employed	for	this	purpose,	there	are	many	reasons	for	using
views,	as	detailed	in	the	following	subsections.

Data	Security

If	you	create	a	table	and	allow	users	to	query	it,	they	will	be	able	to	access
every	column	and	every	row	in	the	table.	As	I	pointed	out	earlier,
however,	your	table	may	include	some	columns	that	contain	sensitive	data,
such	as	identification	numbers	or	credit	card	numbers;	not	only	is	it	a	bad
idea	to	expose	such	data	to	all	users,	but	also	it	might	violate	your



company’s	privacy	policies,	or	even	state	or	federal	laws,	to	do	so.

The	best	approach	for	these	situations	is	to	keep	the	table	private	(i.e.,
don’t	grant	select	permission	to	any	users)	and	then	to	create	one	or
more	views	that	either	omit	or	obscure	(such	as	the	'*****'	approach
taken	with	the	customer_vw.email	column)	the	sensitive	columns.	You
may	also	constrain	which	rows	a	set	of	users	may	access	by	adding	a
where	clause	to	your	view	definition.	For	example,	the	next	view
definition	excludes	inactive	customers:

CREATE VIEW active_customer_vw
 (customer_id,
  first_name,
  last_name,
  email
 )
AS
SELECT
  customer_id,
  first_name,
  last_name,
  concat(substr(email,1,2), '*****', substr(email, -4)) email
FROM customer
WHERE	active	=	1;

If	you	provide	this	view	to	your	marketing	department,	they	will	be	able	to
avoid	sending	information	to	inactive	customers,	because	the	condition	in
the	view’s	where	clause	will	always	be	included	in	their	queries.

NOTE
Oracle	Database	users	have	another	option	for	securing	both	rows	and	columns	of	a	table:
Virtual	Private	Database	(VPD).	VPD	allows	you	to	attach	policies	to	your	tables,	after	which
the	server	will	modify	a	user’s	query	as	necessary	to	enforce	the	policies.	For	example,	if	you
enact	a	policy	that	members	of	the	sales	and	marketing	departments	can	see	only	active
customers,	then	the	condition	active = 1	will	be	added	to	all	of	their	queries	against	the
customer	table.



Data	Aggregation

Reporting	applications	generally	require	aggregated	data,	and	views	are	a
great	way	to	make	it	appear	as	though	data	is	being	preaggregated	and
stored	in	the	database.	As	an	example,	let’s	say	that	an	application
generates	a	report	each	month	showing	the	total	sales	for	each	film
category	so	that	the	managers	can	decide	what	new	films	to	add	to
inventory.	Rather	than	allowing	the	application	developers	to	write	queries
against	the	base	tables,	you	could	provide	them	with	the	following	view:

CREATE VIEW sales_by_film_category
AS
SELECT
  c.name AS category,
  SUM(p.amount) AS total_sales
FROM payment AS p
  INNER JOIN rental AS r ON p.rental_id = r.rental_id
  INNER JOIN inventory AS i ON r.inventory_id = i.inventory_id
  INNER JOIN film AS f ON i.film_id = f.film_id
  INNER JOIN film_category AS fc ON f.film_id = fc.film_id
  INNER JOIN category AS c ON fc.category_id = c.category_id
GROUP BY c.name
ORDER BY total_sales DESC;

Using	this	approach	gives	you	a	great	deal	of	flexibility	as	a	database
designer.	If	you	decide	at	some	point	in	the	future	that	query	performance
would	improve	dramatically	if	the	data	were	preaggregated	in	a	table
rather	than	summed	using	a	view,	you	could	create	a
film_category_sales	table,	load	it	with	aggregated	data,	and	modify	the
sales_by_film_category	view	definition	to	retrieve	data	from	this	table.
Afterward,	all	queries	that	use	the	sales_by_film_category	view	will
retrieve	data	from	the	new	film_category_sales	table,	meaning	that
users	will	see	a	performance	improvement	without	needing	to	modify	their
queries.

1



Hiding	Complexity

One	of	the	most	common	reasons	for	deploying	views	is	to	shield	end
users	from	complexity.	For	example,	let’s	say	that	a	report	is	created	each
month	showing	information	about	all	of	the	films,	along	with	the	film
category,	the	number	of	actors	appearing	in	the	film,	the	total	number	of
copies	in	inventory,	and	the	number	of	rentals	for	each	film.	Rather	than
expecting	the	report	designer	to	navigate	six	different	tables	to	gather	the
necessary	data,	you	could	provide	a	view	that	looks	as	follows:

CREATE VIEW film_stats
AS
SELECT f.film_id, f.title, f.description, f.rating,
 (SELECT c.name
  FROM category c
    INNER JOIN film_category fc
    ON c.category_id = fc.category_id
  WHERE fc.film_id = f.film_id) category_name,
 (SELECT count(*)
  FROM film_actor fa
  WHERE fa.film_id = f.film_id
 ) num_actors,
 (SELECT count(*)
  FROM inventory i
  WHERE i.film_id = f.film_id
 ) inventory_cnt,
 (SELECT count(*)
  FROM inventory i
    INNER JOIN rental r
    ON i.inventory_id = r.inventory_id
  WHERE i.film_id = f.film_id
 ) num_rentals
FROM film f;

This	view	definition	is	interesting	because	even	though	data	from	six
different	tables	can	be	retrieved	through	the	view,	the	from	clause	of	the
query	has	only	one	table	(film).	Data	from	the	other	five	tables	is
generated	using	scalar	subqueries.	If	someone	uses	this	view	but	does	not
reference	the	category_name,	num_actors,	inventory_cnt,	or
num_rentals	column,	then	none	of	the	subqueries	will	be	executed.	This



approach	allows	the	view	to	be	used	for	supplying	descriptive	information
from	the	film	table	without	unnecessarily	joining	five	other	tables.

Joining	Partitioned	Data

Some	database	designs	break	large	tables	into	multiple	pieces	in	order	to
improve	performance.	For	example,	if	the	payment	table	became	large,	the
designers	may	decide	to	break	it	into	two	tables:	payment_current,
which	holds	the	latest	six	months	of	data,	and	payment_historic,	which
holds	all	data	up	to	six	months	ago.	If	a	customer	wants	to	see	all	the
payments	for	a	particular	customer,	you	would	need	to	query	both	tables.
By	creating	a	view	that	queries	both	tables	and	combines	the	results
together,	however,	you	can	make	it	look	like	all	payment	data	is	stored	in
a	single	table.	Here’s	the	view	definition:

CREATE VIEW payment_all
 (payment_id,
  customer_id,
  staff_id,
  rental_id,
  amount,
  payment_date,
  last_update
 )
AS
SELECT payment_id, customer_id, staff_id, rental_id,
  amount, payment_date, last_update
FROM payment_historic
UNION ALL
SELECT payment_id, customer_id, staff_id, rental_id,
  amount, payment_date, last_update
FROM payment_current;

Using	a	view	in	this	case	is	a	good	idea	because	it	allows	the	designers	to
change	the	structure	of	the	underlying	data	without	the	need	to	force	all
database	users	to	modify	their	queries.

Updatable	Views



Updatable	Views
If	you	provide	users	with	a	set	of	views	to	use	for	data	retrieval,	what
should	you	do	if	the	users	also	need	to	modify	the	same	data?	It	might
seem	a	bit	strange,	for	example,	to	force	the	users	to	retrieve	data	using	a
view	but	then	allow	them	to	directly	modify	the	underlying	table	using
update	or	insert	statements.	For	this	purpose,	MySQL,	Oracle	Database,
and	SQL	Server	all	allow	you	to	modify	data	through	a	view,	as	long	as
you	abide	by	certain	restrictions.	In	the	case	of	MySQL,	a	view	is
updatable	if	the	following	conditions	are	met:

No	aggregate	functions	are	used	(max(),	min(),	avg(),	etc.).

The	view	does	not	employ	group by	or	having	clauses.

No	subqueries	exist	in	the	select	or	from	clause,	and	any
subqueries	in	the	where	clause	do	not	refer	to	tables	in	the	from
clause.

The	view	does	not	utilize	union,	union all,	or	distinct.

The	from	clause	includes	at	least	one	table	or	updatable	view.

The	from	clause	uses	only	inner	joins	if	there	is	more	than	one
table	or	view.

To	demonstrate	the	utility	of	updatable	views,	it	might	be	best	to	start	with
a	simple	view	definition	and	then	to	move	to	a	more	complex	view.

Updating	Simple	Views

The	view	at	the	beginning	of	the	chapter	is	about	as	simple	as	it	gets,	so
let’s	start	there:

CREATE VIEW customer_vw
 (customer_id,
  first_name,
  last_name,



  email
 )
AS
SELECT
  customer_id,
  first_name,
  last_name,
  concat(substr(email,1,2), '*****', substr(email, -4)) email
FROM customer;

The	customer_vw	view	queries	a	single	table,	and	only	one	of	the	four
columns	is	derived	via	an	expression.	This	view	definition	doesn’t	violate
any	of	the	restrictions	listed	earlier,	so	you	can	use	it	to	modify	data	in	the
customer	table.	Let’s	use	the	view	to	update	Mary	Smith’s	last	name	to
Smith-Allen:

mysql> UPDATE customer_vw
    -> SET last_name = 'SMITH-ALLEN'
    -> WHERE customer_id = 1;
Query OK, 1 row affected (0.11 sec)
Rows matched: 1  Changed: 1  Warnings: 0

As	you	can	see,	the	statement	claims	to	have	modified	one	row,	but	let’s
check	the	underlying	customer	table	just	to	be	sure:

mysql> SELECT first_name, last_name, email
    -> FROM customer
    -> WHERE customer_id = 1;
+------------+-------------+-------------------------------+
| first_name | last_name   | email                         |
+------------+-------------+-------------------------------+
| MARY       | SMITH-ALLEN | MARY.SMITH@sakilacustomer.org |

+------------+-------------+-------------------------------+
1 row in set (0.00 sec)

While	you	can	modify	most	of	the	columns	in	the	view	in	this	fashion,	you
will	not	be	able	to	modify	the	email	column,	since	it	is	derived	from	an
expression:

mysql> UPDATE customer_vw



    -> SET email = 'MARY.SMITH-ALLEN@sakilacustomer.org'
    -> WHERE customer_id = 1;
ERROR 1348 (HY000): Column	'email'	is	not	updatable

In	this	case,	it	may	not	be	a	bad	thing,	since	the	main	reason	for	creating
the	view	was	to	obscure	the	email	addresses.

If	you	want	to	insert	data	using	the	customer_vw	view,	you	are	out	of
luck;	views	that	contain	derived	columns	cannot	be	used	for	inserting	data,
even	if	the	derived	columns	are	not	included	in	the	statement.	For
example,	the	next	statement	attempts	to	populate	only	the	customer_id,
first_name,	and	last_name	columns	using	the	customer_vw	view:

mysql> INSERT INTO customer_vw
    ->  (customer_id,
    ->   first_name,
    ->   last_name)
    -> VALUES (99999,'ROBERT','SIMPSON');
ERROR 1471 (HY000): The target table customer_vw of the INSERT 
is not insertable-into

Now	that	you	have	seen	the	limitations	of	simple	views,	the	next	section
will	demonstrate	the	use	of	a	view	that	joins	multiple	tables.

Updating	Complex	Views

While	single-table	views	are	certainly	common,	many	of	the	views	that
you	come	across	will	include	multiple	tables	in	the	from	clause	of	the
underlying	query.	The	next	view,	for	example,	joins	the	customer,
address,	city,	and	country	tables	so	that	all	the	data	for	customers	can
be	easily	queried:

CREATE VIEW customer_details
AS
SELECT c.customer_id,
  c.store_id,
  c.first_name,



  c.last_name,
  c.address_id,
  c.active,
  c.create_date,
  a.address,
  ct.city,
  cn.country,
  a.postal_code
FROM customer c
  INNER JOIN address a
  ON c.address_id = a.address_id
  INNER JOIN city ct
  ON a.city_id = ct.city_id
  INNER JOIN country cn
  ON ct.country_id = cn.country_id;

You	may	use	this	view	to	update	data	in	either	the	customer	or	address
table,	as	the	following	statements	demonstrate:

mysql> UPDATE customer_details
    -> SET last_name = 'SMITH-ALLEN', active = 0
    -> WHERE customer_id = 1;
Query OK, 1 row affected (0.10 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> UPDATE customer_details
    -> SET address = '999 Mockingbird Lane'
    -> WHERE customer_id = 1;
Query OK, 1 row affected (0.06 sec)
Rows matched: 1  Changed: 1  Warnings: 0

The	first	statement	modifies	the	customer.last_name	and
customer.active	columns,	whereas	the	second	statement	modifies	the
address.address	column.	You	might	be	wondering	what	happens	if	you
try	to	update	columns	from	both	tables	in	a	single	statement,	so	let’s	find
out:

mysql> UPDATE customer_details
    -> SET last_name = 'SMITH-ALLEN',
    ->   active = 0,
    ->   address = '999 Mockingbird Lane'
    -> WHERE customer_id = 1;
ERROR 1393 (HY000): Can not modify more than one base table 



  through a join view 'sakila.customer_details'

As	you	can	see,	you	are	allowed	to	modify	both	of	the	underlying	tables
separately,	but	not	within	a	single	statement.	Next,	let’s	try	to	insert	data
into	both	tables	for	some	new	customers	(customer_id = 9998 and
9999):

mysql> INSERT INTO customer_details
    ->  (customer_id, store_id, first_name, last_name,
    ->   address_id, active, create_date)
    -> VALUES (9998, 1, 'BRIAN', 'SALAZAR', 5, 1, now());
Query OK, 1 row affected (0.23 sec)

This	statement,	which	only	populates	columns	from	the	customer	table,
works	fine.	Let’s	see	what	happens	if	we	expand	the	column	list	to	also
include	a	column	from	the	address	table:

mysql> INSERT INTO customer_details
    ->  (customer_id, store_id, first_name, last_name,
    ->   address_id, active, create_date, address)

    -> VALUES (9999, 2, 'THOMAS', 'BISHOP', 7, 1, now(),
    ->  '999	Mockingbird	Lane');

ERROR 1393 (HY000): Can not modify more than one base table 
  through a join view 'sakila.customer_details'

This	version,	which	includes	columns	spanning	two	different	tables,	raises
an	exception.	In	order	to	insert	data	through	a	complex	view,	you	would
need	to	know	from	where	each	column	is	sourced.	Since	many	views	are
created	to	hide	complexity	from	end	users,	this	seems	to	defeat	the
purpose	if	the	users	need	to	have	explicit	knowledge	of	the	view
definition.

NOTE
Oracle	Database	and	SQL	Server	also	allow	data	to	be	inserted	and	updated	through	views,	but,
like	MySQL,	there	are	many	restrictions.	If	you	are	willing	to	write	some	PL/SQL	or	Transact-
SQL,	however,	you	can	use	a	feature	called	instead-of	triggers,	which	allows	you	to	essentially



intercept	insert,	update,	and	delete	statements	against	a	view	and	write	custom	code	to
incorporate	the	changes.	Without	this	type	of	feature,	there	are	usually	too	many	restrictions	to
make	updating	through	views	a	feasible	strategy	for	nontrivial	applications.

Test	Your	Knowledge
Test	your	understanding	of	views	by	working	through	the	following
exercises.	When	you’re	done,	compare	your	solutions	with	those	in
Appendix	B.

Exercise	14-1

Create	a	view	definition	that	can	be	used	by	the	following	query	to
generate	the	given	results:

SELECT title, category_name, first_name, last_name
FROM film_ctgry_actor

WHERE last_name = 'FAWCETT'; 

+---------------------+---------------+------------+-----------+
| title               | category_name | first_name | last_name |
+---------------------+---------------+------------+-----------+
| ACE GOLDFINGER      | Horror        | BOB        | FAWCETT   |
| ADAPTATION HOLES    | Documentary   | BOB        | FAWCETT   |
| CHINATOWN GLADIATOR | New           | BOB        | FAWCETT   |
| CIRCUS YOUTH        | Children      | BOB        | FAWCETT   |
| CONTROL ANTHEM      | Comedy        | BOB        | FAWCETT   |
| DARES PLUTO         | Animation     | BOB        | FAWCETT   |
| DARN FORRESTER      | Action        | BOB        | FAWCETT   |
| DAZED PUNK          | Games         | BOB        | FAWCETT   |
| DYNAMITE TARZAN     | Classics      | BOB        | FAWCETT   |
| HATE HANDICAP       | Comedy        | BOB        | FAWCETT   |
| HOMICIDE PEACH      | Family        | BOB        | FAWCETT   |
| JACKET FRISCO       | Drama         | BOB        | FAWCETT   |
| JUMANJI BLADE       | New           | BOB        | FAWCETT   |
| LAWLESS VISION      | Animation     | BOB        | FAWCETT   |
| LEATHERNECKS DWARFS | Travel        | BOB        | FAWCETT   |
| OSCAR GOLD          | Animation     | BOB        | FAWCETT   |
| PELICAN COMFORTS    | Documentary   | BOB        | FAWCETT   |
| PERSONAL LADYBUGS   | Music         | BOB        | FAWCETT   |



| RAGING AIRPLANE     | Sci-Fi        | BOB        | FAWCETT   |
| RUN PACIFIC         | New           | BOB        | FAWCETT   |
| RUNNER MADIGAN      | Music         | BOB        | FAWCETT   |
| SADDLE ANTITRUST    | Comedy        | BOB        | FAWCETT   |
| SCORPION APOLLO     | Drama         | BOB        | FAWCETT   |
| SHAWSHANK BUBBLE    | Travel        | BOB        | FAWCETT   |
| TAXI KICK           | Music         | BOB        | FAWCETT   |
| BERETS AGENT        | Action        | JULIA      | FAWCETT   |
| BOILED DARES        | Travel        | JULIA      | FAWCETT   |
| CHISUM BEHAVIOR     | Family        | JULIA      | FAWCETT   |
| CLOSER BANG         | Comedy        | JULIA      | FAWCETT   |
| DAY UNFAITHFUL      | New           | JULIA      | FAWCETT   |
| HOPE TOOTSIE        | Classics      | JULIA      | FAWCETT   |
| LUKE MUMMY          | Animation     | JULIA      | FAWCETT   |
| MULAN MOON          | Comedy        | JULIA      | FAWCETT   |
| OPUS ICE            | Foreign       | JULIA      | FAWCETT   |
| POLLOCK DELIVERANCE | Foreign       | JULIA      | FAWCETT   |
| RIDGEMONT SUBMARINE | New           | JULIA      | FAWCETT   |
| SHANGHAI TYCOON     | Travel        | JULIA      | FAWCETT   |
| SHAWSHANK BUBBLE    | Travel        | JULIA      | FAWCETT   |
| THEORY MERMAID      | Animation     | JULIA      | FAWCETT   |
| WAIT CIDER          | Animation     | JULIA      | FAWCETT   |
+---------------------+---------------+------------+-----------+
40 rows in set (0.00 sec)

Exercise	14-2

The	film	rental	company	manager	would	like	to	have	a	report	that	includes
the	name	of	every	country,	along	with	the	total	payments	for	all	customers
who	live	in	each	country.	Generate	a	view	definition	that	queries	the
country	table	and	uses	a	scalar	subquery	to	calculate	a	value	for	a	column
named	tot_payments.

1 	This	view	definition	is	included	in	the	Sakila	sample	database,	along	with	six	others,	several
of	which	will	be	used	in	upcoming	examples.



Chapter	15.	Metadata

Along	with	storing	all	of	the	data	that	various	users	insert	into	a	database,
a	database	server	also	needs	to	store	information	about	all	of	the	database
objects	(tables,	views,	indexes,	etc.)	that	were	created	to	store	this	data.
The	database	server	stores	this	information,	not	surprisingly,	in	a	database.
This	chapter	discusses	how	and	where	this	information,	known	as
metadata,	is	stored,	how	you	can	access	it,	and	how	you	can	use	it	to	build
flexible	systems.

Data	About	Data
Metadata	is	essentially	data	about	data.	Every	time	you	create	a	database
object,	the	database	server	needs	to	record	various	pieces	of	information.
For	example,	if	you	were	to	create	a	table	with	multiple	columns,	a
primary	key	constraint,	three	indexes,	and	a	foreign	key	constraint,	the
database	server	would	need	to	store	all	the	following	information:

Table	name

Table	storage	information	(tablespace,	initial	size,	etc.)

Storage	engine

Column	names

Column	data	types

Default	column	values

not null	column	constraints

Primary	key	columns



Primary	key	name

Name	of	primary	key	index

Index	names

Index	types	(B-tree,	bitmap)

Indexed	columns

Index	column	sort	order	(ascending	or	descending)

Index	storage	information

Foreign	key	name

Foreign	key	columns

Associated	table/columns	for	foreign	keys

This	data	is	collectively	known	as	the	data	dictionary	or	system	catalog.
The	database	server	needs	to	store	this	data	persistently,	and	it	needs	to	be
able	to	quickly	retrieve	this	data	in	order	to	verify	and	execute	SQL
statements.	Additionally,	the	database	server	must	safeguard	this	data	so
that	it	can	be	modified	only	via	an	appropriate	mechanism,	such	as	the
alter table	statement.

While	standards	exist	for	the	exchange	of	metadata	between	different
servers,	every	database	server	uses	a	different	mechanism	to	publish
metadata,	such	as:

A	set	of	views,	such	as	Oracle	Database’s	user_tables	and
all_constraints	views

A	set	of	system-stored	procedures,	such	as	SQL	Server’s
sp_tables	procedure	or	Oracle	Database’s	dbms_metadata
package

A	special	database,	such	as	MySQL’s	information_schema



database

Along	with	SQL	Server’s	system-stored	procedures,	which	are	a	vestige	of
its	Sybase	lineage,	SQL	Server	also	includes	a	special	schema	called
information_schema	that	is	provided	automatically	within	each	database.
Both	MySQL	and	SQL	Server	provide	this	interface	to	conform	with	the
ANSI	SQL:2003	standard.	The	remainder	of	this	chapter	discusses	the
information_schema	objects	that	are	available	in	MySQL	and	SQL
Server.

information_schema
All	of	the	objects	available	within	the	information_schema	database	(or
schema,	in	the	case	of	SQL	Server)	are	views.	Unlike	the	describe
utility,	which	I	used	in	several	chapters	of	this	book	as	a	way	to	show	the
structure	of	various	tables	and	views,	the	views	within
information_schema	can	be	queried	and,	thus,	used	programmatically
(more	on	this	later	in	the	chapter).	Here’s	an	example	that	demonstrates
how	to	retrieve	the	names	of	all	of	the	tables	in	the	Sakila	database:

mysql> SELECT table_name, table_type
    -> FROM information_schema.tables
    -> WHERE table_schema = 'sakila'
    -> ORDER BY 1;
+----------------------------+------------+
| TABLE_NAME                 | TABLE_TYPE |
+----------------------------+------------+
| actor                      | BASE TABLE |
| actor_info                 | VIEW       |
| address                    | BASE TABLE |
| category                   | BASE TABLE |
| city                       | BASE TABLE |
| country                    | BASE TABLE |
| customer                   | BASE TABLE |
| customer_list              | VIEW       |
| film                       | BASE TABLE |
| film_actor                 | BASE TABLE |
| film_category              | BASE TABLE |



| film_list                  | VIEW       |
| film_text                  | BASE TABLE |
| inventory                  | BASE TABLE |
| language                   | BASE TABLE |
| nicer_but_slower_film_list | VIEW       |
| payment                    | BASE TABLE |
| rental                     | BASE TABLE |
| sales_by_film_category     | VIEW       |
| sales_by_store             | VIEW       |
| staff                      | BASE TABLE |
| staff_list                 | VIEW       |
| store                      | BASE TABLE |
+----------------------------+------------+
23 rows in set (0.00 sec)

As	you	can	see,	the	information_schema.tables	view	includes	both
tables	and	views;	if	you	want	to	exclude	the	views,	simply	add	another
condition	to	the	where	clause:

mysql> SELECT table_name, table_type
    -> FROM information_schema.tables
    -> WHERE table_schema = 'sakila'
    ->   AND	table_type	=	'BASE	TABLE'

    -> ORDER BY 1;
+---------------+------------+
| TABLE_NAME    | TABLE_TYPE |
+---------------+------------+
| actor         | BASE TABLE |
| address       | BASE TABLE |
| category      | BASE TABLE |
| city          | BASE TABLE |
| country       | BASE TABLE |
| customer      | BASE TABLE |
| film          | BASE TABLE |
| film_actor    | BASE TABLE |
| film_category | BASE TABLE |
| film_text     | BASE TABLE |
| inventory     | BASE TABLE |
| language      | BASE TABLE |
| payment       | BASE TABLE |
| rental        | BASE TABLE |
| staff         | BASE TABLE |
| store         | BASE TABLE |
+---------------+------------+
16 rows in set (0.00 sec)



If	you	are	only	interested	in	information	about	views,	you	can	query
information_schema.views.	Along	with	the	view	names,	you	can
retrieve	additional	information,	such	as	a	flag	that	shows	whether	a	view	is
updatable:

mysql> SELECT table_name, is_updatable
    -> FROM information_schema.views
    -> WHERE table_schema = 'sakila'
    -> ORDER BY 1;
+----------------------------+--------------+
| TABLE_NAME                 | IS_UPDATABLE |
+----------------------------+--------------+
| actor_info                 | NO           |
| customer_list              | YES          |
| film_list                  | NO           |
| nicer_but_slower_film_list | NO           |
| sales_by_film_category     | NO           |
| sales_by_store             | NO           |
| staff_list                 | YES          |
+----------------------------+--------------+
7 rows in set (0.00 sec)

Column	information	for	both	tables	and	views	is	available	via	the	columns
view.	The	following	query	shows	column	information	for	the	film	table:

mysql> SELECT column_name, data_type, 
    ->   character_maximum_length char_max_len,
    ->   numeric_precision num_prcsn, numeric_scale num_scale
    -> FROM information_schema.columns
    -> WHERE table_schema = 'sakila' AND table_name = 'film'
    -> ORDER BY ordinal_position;
+----------------------+-----------+--------------+-----------+-----------+
| COLUMN_NAME          | DATA_TYPE | char_max_len | num_prcsn | num_scale |
+----------------------+-----------+--------------+-----------+-----------+
| film_id              | smallint  |         NULL |         5 |         0 |
| title                | varchar   |          255 |      NULL |      NULL |
| description          | text      |        65535 |      NULL |      NULL |
| release_year         | year      |         NULL |      NULL |      NULL |
| language_id          | tinyint   |         NULL |         3 |         0 |
| original_language_id | tinyint   |         NULL |         3 |         0 |
| rental_duration      | tinyint   |         NULL |         3 |         0 |
| rental_rate          | decimal   |         NULL |         4 |         2 |
| length               | smallint  |         NULL |         5 |         0 |
| replacement_cost     | decimal   |         NULL |         5 |         2 |



| rating               | enum      |            5 |      NULL |      NULL |
| special_features     | set       |           54 |      NULL |      NULL |
| last_update          | timestamp |         NULL |      NULL |      NULL |
+----------------------+-----------+--------------+-----------+-----------+
13 rows in set (0.00 sec)

The	ordinal_position	column	is	included	merely	as	a	means	to	retrieve
the	columns	in	the	order	in	which	they	were	added	to	the	table.

You	can	retrieve	information	about	a	table’s	indexes	via	the
information_schema.statistics	view	as	demonstrated	by	the
following	query,	which	retrieves	information	for	the	indexes	built	on	the
rental	table:

mysql> SELECT index_name, non_unique, seq_in_index, column_name
    -> FROM information_schema.statistics
    -> WHERE table_schema = 'sakila' AND table_name = 'rental'
    -> ORDER BY 1, 3;
+---------------------+------------+--------------+--------------+
| INDEX_NAME          | NON_UNIQUE | SEQ_IN_INDEX | COLUMN_NAME  |
+---------------------+------------+--------------+--------------+
| idx_fk_customer_id  |          1 |            1 | customer_id  |
| idx_fk_inventory_id |          1 |            1 | inventory_id |
| idx_fk_staff_id     |          1 |            1 | staff_id     |
| PRIMARY             |          0 |            1 | rental_id    |
| rental_date         |          0 |            1 | rental_date  |
| rental_date         |          0 |            2 | inventory_id |
| rental_date         |          0 |            3 | customer_id  |
+---------------------+------------+--------------+--------------+
7 rows in set (0.02 sec)

The	rental	table	has	a	total	of	five	indexes,	one	of	which	has	three
columns	(rental_date)	and	one	of	which	is	a	unique	index	(PRIMARY)
used	for	the	primary	key	constraint.

You	can	retrieve	the	different	types	of	constraints	(foreign	key,	primary
key,	unique)	that	have	been	created	via	the
information_schema.table_constraints	view.	Here’s	a	query	that
retrieves	all	of	the	constraints	in	the	Sakila	schema:



mysql> SELECT constraint_name, table_name, constraint_type
    -> FROM information_schema.table_constraints
    -> WHERE table_schema = 'sakila'
    -> ORDER BY 3,1;
+---------------------------+---------------+-----------------+
| constraint_name           | table_name    | constraint_type |
+---------------------------+---------------+-----------------+
| fk_address_city           | address       | FOREIGN KEY     |
| fk_city_country           | city          | FOREIGN KEY     |
| fk_customer_address       | customer      | FOREIGN KEY     |
| fk_customer_store         | customer      | FOREIGN KEY     |
| fk_film_actor_actor       | film_actor    | FOREIGN KEY     |
| fk_film_actor_film        | film_actor    | FOREIGN KEY     |
| fk_film_category_category | film_category | FOREIGN KEY     |
| fk_film_category_film     | film_category | FOREIGN KEY     |
| fk_film_language          | film          | FOREIGN KEY     |
| fk_film_language_original | film          | FOREIGN KEY     |
| fk_inventory_film         | inventory     | FOREIGN KEY     |
| fk_inventory_store        | inventory     | FOREIGN KEY     |
| fk_payment_customer       | payment       | FOREIGN KEY     |
| fk_payment_rental         | payment       | FOREIGN KEY     |
| fk_payment_staff          | payment       | FOREIGN KEY     |
| fk_rental_customer        | rental        | FOREIGN KEY     |
| fk_rental_inventory       | rental        | FOREIGN KEY     |
| fk_rental_staff           | rental        | FOREIGN KEY     |
| fk_staff_address          | staff         | FOREIGN KEY     |
| fk_staff_store            | staff         | FOREIGN KEY     |
| fk_store_address          | store         | FOREIGN KEY     |
| fk_store_staff            | store         | FOREIGN KEY     |
| PRIMARY                   | film          | PRIMARY KEY     |
| PRIMARY                   | film_actor    | PRIMARY KEY     |
| PRIMARY                   | staff         | PRIMARY KEY     |
| PRIMARY                   | film_category | PRIMARY KEY     |
| PRIMARY                   | store         | PRIMARY KEY     |
| PRIMARY                   | actor         | PRIMARY KEY     |
| PRIMARY                   | film_text     | PRIMARY KEY     |
| PRIMARY                   | address       | PRIMARY KEY     |
| PRIMARY                   | inventory     | PRIMARY KEY     |
| PRIMARY                   | customer      | PRIMARY KEY     |
| PRIMARY                   | category      | PRIMARY KEY     |
| PRIMARY                   | language      | PRIMARY KEY     |
| PRIMARY                   | city          | PRIMARY KEY     |
| PRIMARY                   | payment       | PRIMARY KEY     |
| PRIMARY                   | country       | PRIMARY KEY     |
| PRIMARY                   | rental        | PRIMARY KEY     |
| idx_email                 | customer      | UNIQUE          |
| idx_unique_manager        | store         | UNIQUE          |
| rental_date               | rental        | UNIQUE          |
+---------------------------+---------------+-----------------+
41 rows in set (0.02 sec)



Table	15-1	shows	many	of	the	information_schema	views	that	are
available	in	MySQL	version	8.0.

Table	15-1.	information_schema	views

View	name Provides	information	about...

	
	 	 	
schemata
	
	 	 	

	
	 	 	
Databases
	
	 	 	

	
	 	 	
tables
	
	 	 	

	
	 	 	
Tables	and	views
	
	 	 	

	
	 	 	
columns
	
	 	 	

	
	 	 	
Columns	of	tables	and	views
	
	 	 	

	
	 	 	
statistics
	
	 	 	

	
	 	 	
Indexes
	
	 	 	

	
	 	 	
user_privileges
	
	 	 	

	
	 	 	
Who	has	privileges	on	which	schema	objects
	
	 	 	

	
	 	 	
schema_privileges
	
	 	 	

	
	 	 	
Who	has	privileges	on	which	databases
	
	 	 	

	
	 	 	

	
	 	 	



	 	 	
table_privileges
	
	 	 	

	 	 	
Who	has	privileges	on	which	tables
	
	 	 	

	
	 	 	
column_privileges
	
	 	 	

	
	 	 	
Who	has	privileges	on	which	columns	of	
which	tables
	
	 	 	

	
	 	 	
character_sets
	
	 	 	

	
	 	 	
What	character	sets	are	available
	
	 	 	

	
	 	 	
collations
	
	 	 	

	
	 	 	
What	collations	are	available	for	which	
character	sets
	
	 	 	

	
	 	 	
collation_character_set_applicab
ility
	
	 	 	

	
	 	 	
Which	character	sets	are	available	for	which	
collation
	
	 	 	

	
	 	 	
table_constraints
	
	 	 	

	
	 	 	
The	unique,	foreign	key,	and	primary	key	
constraints
	
	 	 	

	
	 	 	
key_column_usage
	
	 	 	

	
	 	 	
The	constraints	associated	with	each	key	
column
	
	 	 	

	
	 	 	
routines
	

	
	 	 	
Stored	routines	(procedures	and	functions)
	



	
	 	 	

	
	 	 	

	
	 	 	
views
	
	 	 	

	
	 	 	
Views
	
	 	 	

	
	 	 	
triggers
	
	 	 	

	
	 	 	
Table	triggers
	
	 	 	

	
	 	 	
plugins
	
	 	 	

	
	 	 	
Server	plug-ins
	
	 	 	

	
	 	 	
engines
	
	 	 	

	
	 	 	
Available	storage	engines
	
	 	 	

	
	 	 	
partitions
	
	 	 	

	
	 	 	
Table	partitions
	
	 	 	

	
	 	 	
events
	
	 	 	

	
	 	 	
Scheduled	events
	
	 	 	

	
	 	 	
processlist
	
	 	 	

	
	 	 	
Running	processes
	
	 	 	

	
	 	 	
referential_constraints
	
	 	 	

	
	 	 	
Foreign	keys
	
	 	 	



	 	 	 	 	 	

	
	 	 	

parameters
	
	 	 	

	
	 	 	

Stored	procedure	and	function	parameters
	
	 	 	

	
	 	 	
profiling
	
	 	 	

	
	 	 	
User	profiling	information
	
	 	 	

While	some	of	these	views,	such	as	engines,	events,	and	plugins,	are
specific	to	MySQL,	many	of	these	views	are	available	in	SQL	Server	as
well.	If	you	are	using	Oracle	Database,	please	consult	the	online	Oracle
Database	Reference	Guide	for	information	about	the	user_,	all_,	and
dba_	views,	as	well	as	the	dbms_metadata	package.

Working	with	Metadata
As	I	mentioned	earlier,	having	the	ability	to	retrieve	information	about
your	schema	objects	via	SQL	queries	opens	up	some	interesting
possibilities.	This	section	shows	several	ways	in	which	you	can	make	use
of	metadata	in	your	applications.

Schema	Generation	Scripts

While	some	project	teams	include	a	full-time	database	designer	who
oversees	the	design	and	implementation	of	the	database,	many	projects
take	the	“design-by-committee”	approach,	allowing	multiple	people	to
create	database	objects.	After	several	weeks	or	months	of	development,
you	may	need	to	generate	a	script	that	will	create	the	various	tables,
indexes,	views,	and	so	on,	that	the	team	has	deployed.	Although	a	variety

https://oreil.ly/qV7sE


of	tools	and	utilities	will	generate	these	types	of	scripts	for	you,	you	can
also	query	the	information_schema	views	and	generate	the	script
yourself.

As	an	example,	let’s	build	a	script	that	will	create	the	sakila.category
table.	Here’s	the	command	used	to	build	the	table,	which	I	extracted	from
the	script	used	to	build	the	example	database:

CREATE TABLE category (
  category_id TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
  name VARCHAR(25) NOT NULL,
  last_update TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP 
    ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY  (category_id)
)ENGINE=InnoDB DEFAULT CHARSET=utf8;

Although	it	would	certainly	be	easier	to	generate	the	script	with	the	use	of
a	procedural	language	(e.g.,	Transact-SQL	or	Java),	since	this	is	a	book
about	SQL,	I’m	going	to	write	a	single	query	that	will	generate	the	create
table	statement.	The	first	step	is	to	query	the
information_schema.columns	table	to	retrieve	information	about	the
columns	in	the	table:

mysql> SELECT 'CREATE TABLE category (' create_table_statement
    -> UNION ALL
    -> SELECT cols.txt
    -> FROM
    ->  (SELECT concat('  ',column_name, ' ', column_type,
    ->    CASE
    ->      WHEN is_nullable = 'NO' THEN ' not null'
    ->      ELSE ''
    ->    END,
    ->    CASE
    ->      WHEN extra IS NOT NULL AND extra LIKE 'DEFAULT_GENERATED%'
    ->       THEN concat(' DEFAULT ',column_default,substr(extra,18))
    ->      WHEN extra IS NOT NULL THEN concat(' ', extra)
    ->      ELSE ''
    ->    END,
    ->    ',') txt
    ->   FROM information_schema.columns



    ->   WHERE table_schema = 'sakila' AND table_name = 'category'
    ->   ORDER BY ordinal_position
    ->  ) cols
    -> UNION ALL
    -> SELECT ')';
+-----------------------------------------------------------------------+
| create_table_statement                                                |
+-----------------------------------------------------------------------+
| CREATE TABLE category (                                               |
|   category_id tinyint(3) unsigned not null auto_increment,            |
|   name varchar(25) not null ,                                         |
|   last_update timestamp not null DEFAULT CURRENT_TIMESTAMP            |
|     on update CURRENT_TIMESTAMP,                                      |
| )                                                                     |
+-----------------------------------------------------------------------+
5 rows in set (0.00 sec)

Well,	that	got	us	pretty	close;	we	just	need	to	add	queries	against	the
table_constraints	and	key_column_usage	views	to	retrieve
information	about	the	primary	key	constraint:

mysql> SELECT 'CREATE TABLE category (' create_table_statement
    -> UNION ALL
    -> SELECT cols.txt
    -> FROM
    ->  (SELECT concat('  ',column_name, ' ', column_type,
    ->    CASE
    ->      WHEN is_nullable = 'NO' THEN ' not null'
    ->      ELSE ''
    ->    END,
    ->    CASE
    ->      WHEN extra IS NOT NULL AND extra LIKE 'DEFAULT_GENERATED%'
    ->        THEN concat(' DEFAULT ',column_default,substr(extra,18))
    ->      WHEN extra IS NOT NULL THEN concat(' ', extra)
    ->      ELSE ''
    ->    END,
    ->    ',') txt
    ->   FROM information_schema.columns
    ->   WHERE table_schema = 'sakila' AND table_name = 'category'
    ->   ORDER BY ordinal_position
    ->  ) cols
    -> UNION ALL
    -> SELECT concat('  constraint primary key (')
    -> FROM information_schema.table_constraints
    -> WHERE table_schema = 'sakila' AND table_name = 'category'
    ->   AND constraint_type = 'PRIMARY KEY'
    -> UNION ALL



    -> SELECT cols.txt
    -> FROM
    ->  (SELECT concat(CASE WHEN ordinal_position > 1 THEN '   ,'
    ->     ELSE '    ' END, column_name) txt
    ->   FROM information_schema.key_column_usage
    ->   WHERE table_schema = 'sakila' AND table_name = 'category'
    ->     AND constraint_name = 'PRIMARY'
    ->   ORDER BY ordinal_position
    ->  ) cols
    -> UNION ALL
    -> SELECT '  )'
    -> UNION ALL
    -> SELECT ')';
+-----------------------------------------------------------------------+
| create_table_statement                                                |
+-----------------------------------------------------------------------+
| CREATE TABLE category (                                               |
|   category_id tinyint(3) unsigned not null auto_increment,            |
|   name varchar(25) not null ,                                         |
|   last_update timestamp not null DEFAULT CURRENT_TIMESTAMP            |
|     on update CURRENT_TIMESTAMP,                                      |
|   constraint primary key (                                            |
|     category_id                                                       |
|   )                                                                   |
| )                                                                     |
+-----------------------------------------------------------------------+
8 rows in set (0.02 sec)

To	see	whether	the	statement	is	properly	formed,	I’ll	paste	the	query
output	into	the	mysql	tool	(I’ve	changed	the	table	name	to	category2	so
that	it	won’t	step	on	our	existing	table):

mysql> CREATE TABLE category2 (
    ->   category_id tinyint(3) unsigned not null auto_increment,
    ->   name varchar(25) not null ,
    ->   last_update timestamp not null DEFAULT CURRENT_TIMESTAMP 
    ->     on update CURRENT_TIMESTAMP,
    ->   constraint primary key (
    ->     category_id
    ->   )
    -> );
Query OK, 0 rows affected (0.61 sec)

The	statement	executed	without	errors,	and	there	is	now	a	category2
table	in	the	Sakila	database.	For	the	query	to	generate	a	well-formed



create table	statement	for	any	table,	more	work	is	required	(such	as
handling	indexes	and	foreign	key	constraints),	but	I’ll	leave	that	as	an
exercise.

NOTE
If	you	are	using	a	graphical	development	tool	such	as	Toad,	Oracle	SQL	Developer,	or	MySQL
Workbench,	you	will	be	able	to	easily	generate	these	types	of	scripts	without	writing	your	own
queries.	But,	just	in	case	you	are	stuck	on	a	deserted	island	with	only	the	MySQL	command-line
client...

Deployment	Verification

Many	organizations	allow	for	database	maintenance	windows,	wherein
existing	database	objects	may	be	administered	(such	as	adding/dropping
partitions)	and	new	schema	objects	and	code	can	be	deployed.	After	the
deployment	scripts	have	been	run,	it’s	a	good	idea	to	run	a	verification
script	to	ensure	that	the	new	schema	objects	are	in	place	with	the
appropriate	columns,	indexes,	primary	keys,	and	so	forth.	Here’s	a	query
that	returns	the	number	of	columns,	number	of	indexes,	and	number	of
primary	key	constraints	(0	or	1)	for	each	table	in	the	Sakila	schema:

mysql> SELECT tbl.table_name,
    ->  (SELECT count(*) FROM information_schema.columns clm
    ->   WHERE clm.table_schema = tbl.table_schema
    ->     AND clm.table_name = tbl.table_name) num_columns,
    ->  (SELECT count(*) FROM information_schema.statistics sta
    ->   WHERE sta.table_schema = tbl.table_schema
    ->     AND sta.table_name = tbl.table_name) num_indexes,
    ->  (SELECT count(*) FROM information_schema.table_constraints tc
    ->   WHERE tc.table_schema = tbl.table_schema
    ->     AND tc.table_name = tbl.table_name
    ->     AND tc.constraint_type = 'PRIMARY KEY') num_primary_keys
    -> FROM information_schema.tables tbl
    -> WHERE tbl.table_schema = 'sakila' AND tbl.table_type = 'BASE TABLE'
    -> ORDER BY 1;



+---------------+-------------+-------------+------------------+
| TABLE_NAME    | num_columns | num_indexes | num_primary_keys |
+---------------+-------------+-------------+------------------+
| actor         |           4 |           2 |                1 |
| address       |           9 |           3 |                1 |
| category      |           3 |           1 |                1 |
| city          |           4 |           2 |                1 |
| country       |           3 |           1 |                1 |
| customer      |           9 |           7 |                1 |
| film          |          13 |           4 |                1 |
| film_actor    |           3 |           3 |                1 |
| film_category |           3 |           3 |                1 |
| film_text     |           3 |           3 |                1 |
| inventory     |           4 |           4 |                1 |
| language      |           3 |           1 |                1 |
| payment       |           7 |           4 |                1 |
| rental        |           7 |           7 |                1 |
| staff         |          11 |           3 |                1 |
| store         |           4 |           3 |                1 |
+---------------+-------------+-------------+------------------+
16 rows in set (0.01 sec)

You	could	execute	this	statement	before	and	after	the	deployment	and	then
verify	any	differences	between	the	two	sets	of	results	before	declaring	the
deployment	a	success.

Dynamic	SQL	Generation

Some	languages,	such	as	Oracle’s	PL/SQL	and	Microsoft’s	Transact-SQL,
are	supersets	of	the	SQL	language,	meaning	that	they	include	SQL
statements	in	their	grammar	along	with	the	usual	procedural	constructs,
such	as	“if-then-else”	and	“while.”	Other	languages,	such	as	Java,	include
the	ability	to	interface	with	a	relational	database	but	do	not	include	SQL
statements	in	the	grammar,	meaning	that	all	SQL	statements	must	be
contained	within	strings.

Therefore,	most	relational	database	servers,	including	SQL	Server,	Oracle
Database,	and	MySQL,	allow	SQL	statements	to	be	submitted	to	the
server	as	strings.	Submitting	strings	to	a	database	engine	rather	than



utilizing	its	SQL	interface	is	generally	known	as	dynamic	SQL	execution.
Oracle’s	PL/SQL	language,	for	example,	includes	an	execute immediate
command,	which	you	can	use	to	submit	a	string	for	execution,	while	SQL
Server	includes	a	system	stored	procedure	called	sp_executesql	for
executing	SQL	statements	dynamically.

MySQL	provides	the	statements	prepare,	execute,	and	deallocate	to
allow	for	dynamic	SQL	execution.	Here’s	a	simple	example:

mysql> SET @qry = 'SELECT customer_id, first_name, last_name FROM customer';
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE dynsql1 FROM @qry;
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql> EXECUTE dynsql1;
+-------------+-------------+--------------+
| customer_id | first_name  | last_name    |
+-------------+-------------+--------------+
|         505 | RAFAEL      | ABNEY        |
|         504 | NATHANIEL   | ADAM         |
|          36 | KATHLEEN    | ADAMS        |
|          96 | DIANA       | ALEXANDER    |
...
|          31 | BRENDA      | WRIGHT       |
|         318 | BRIAN       | WYMAN        |
|         402 | LUIS        | YANEZ        |
|         413 | MARVIN      | YEE          |
|          28 | CYNTHIA     | YOUNG        |
+-------------+-------------+--------------+
599 rows in set (0.02 sec)

mysql> DEALLOCATE PREPARE dynsql1;
Query OK, 0 rows affected (0.00 sec)

The	set	statement	simply	assigns	a	string	to	the	qry	variable,	which	is
then	submitted	to	the	database	engine	(for	parsing,	security	checking,	and
optimization)	using	the	prepare	statement.	After	executing	the	statement
by	calling	execute,	the	statement	must	be	closed	using	deallocate



prepare,	which	frees	any	database	resources	(e.g.,	cursors)	that	have	been
utilized	during	execution.

The	next	example	shows	how	you	could	execute	a	query	that	includes
placeholders	so	that	conditions	can	be	specified	at	runtime:

mysql> SET @qry = 'SELECT customer_id, first_name, last_name 
  FROM customer WHERE customer_id = ?';

Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE dynsql2 FROM @qry;
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql> SET @custid = 9;
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE dynsql2 USING @custid;
+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
|           9 | MARGARET   | MOORE     |
+-------------+------------+-----------+
1 row in set (0.00 sec)

mysql> SET @custid = 145;
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE dynsql2 USING @custid;
+-------------+------------+-----------+
| customer_id | first_name | last_name |
+-------------+------------+-----------+
|         145 | LUCILLE    | HOLMES    |
+-------------+------------+-----------+
1 row in set (0.00 sec)

mysql> DEALLOCATE PREPARE dynsql2;
Query OK, 0 rows affected (0.00 sec)

In	this	sequence,	the	query	contains	a	placeholder	(the	?	at	the	end	of	the
statement)	so	that	the	customer	ID	value	can	be	submitted	at	runtime.	The
statement	is	prepared	once	and	then	executed	twice,	once	for	customer	ID
9	and	again	for	customer	ID	145,	after	which	the	statement	is	closed.



What,	you	may	wonder,	does	this	have	to	do	with	metadata?	Well,	if	you
are	going	to	use	dynamic	SQL	to	query	a	table,	why	not	build	the	query
string	using	metadata	rather	than	hardcoding	the	table	definition?	The
following	example	generates	the	same	dynamic	SQL	string	as	the	previous
example,	but	it	retrieves	the	column	names	from	the
information_schema.columns	view:

mysql> SELECT concat('SELECT ',
    ->   concat_ws(',', cols.col1, cols.col2, cols.col3, cols.col4,
    ->     cols.col5, cols.col6, cols.col7, cols.col8, cols.col9),
    ->   ' FROM customer WHERE customer_id = ?')
    -> INTO	@qry

    -> FROM
    ->  (SELECT
    ->     max(CASE WHEN ordinal_position = 1 THEN column_name
    ->       ELSE NULL END) col1,
    ->     max(CASE WHEN ordinal_position = 2 THEN column_name
    ->       ELSE NULL END) col2,
    ->     max(CASE WHEN ordinal_position = 3 THEN column_name
    ->       ELSE NULL END) col3,
    ->     max(CASE WHEN ordinal_position = 4 THEN column_name
    ->       ELSE NULL END) col4,
    ->     max(CASE WHEN ordinal_position = 5 THEN column_name
    ->       ELSE NULL END) col5,
    ->     max(CASE WHEN ordinal_position = 6 THEN column_name
    ->       ELSE NULL END) col6,
    ->     max(CASE WHEN ordinal_position = 7 THEN column_name
    ->       ELSE NULL END) col7,
    ->     max(CASE WHEN ordinal_position = 8 THEN column_name
    ->       ELSE NULL END) col8,
    ->     max(CASE WHEN ordinal_position = 9 THEN column_name
    ->       ELSE NULL END) col9
    ->   FROM information_schema.columns
    ->   WHERE table_schema = 'sakila' AND table_name = 'customer'
    ->   GROUP BY table_name
    ->  ) cols;
Query OK, 1 row affected (0.00 sec)
mysql> SELECT @qry;
+--------------------------------------------------------------------+
| @qry                                                               |
+--------------------------------------------------------------------+
| SELECT customer_id,store_id,first_name,last_name,email,
    address_id,active,create_date,last_update 
  FROM customer WHERE customer_id = ?                                |
+--------------------------------------------------------------------+



1 row in set (0.00 sec)

mysql> PREPARE dynsql3 FROM @qry;
Query OK, 0 rows affected (0.00 sec)
Statement prepared

mysql> SET @custid = 45;
Query OK, 0 rows affected (0.00 sec)

mysql> EXECUTE dynsql3 USING @custid;
+-------------+----------+------------+-----------+
| customer_id | store_id | first_name | last_name 
+-------------+----------+------------+-----------+
|          45 |        1 | JANET      | PHILLIPS  
+-------------+----------+------------+-----------+

   +-----------------------------------+------------+-------- 
   | email                             | address_id | active 
   +-----------------------------------+------------+-------- 
   | JANET.PHILLIPS@sakilacustomer.org | 49         |      1  
   +-----------------------------------+------------+-------- 
   
   +---------------------+---------------------+
   | create_date         | last_update         |
   +---------------------+---------------------+
   | 2006-02-14 22:04:36 | 2006-02-15 04:57:20 |
   +---------------------+---------------------+
1 row in set (0.00 sec)

mysql> DEALLOCATE PREPARE dynsql3;
Query OK, 0 rows affected (0.00 sec)

The	query	pivots	the	first	nine	columns	in	the	customer	table,	builds	a
query	string	using	the	concat	and	concat_ws	functions,	and	assigns	the
string	to	the	qry	variable.	The	query	string	is	then	executed	as	before.

NOTE
Generally,	it	would	be	better	to	generate	the	query	using	a	procedural	language	that	includes
looping	constructs,	such	as	Java,	PL/SQL,	Transact-SQL,	or	MySQL’s	Stored	Procedure
Language.	However,	I	wanted	to	demonstrate	a	pure	SQL	example,	so	I	had	to	limit	the	number
of	columns	retrieved	to	some	reasonable	number,	which	in	this	example	is	nine.



Test	Your	Knowledge
The	following	exercises	are	designed	to	test	your	understanding	of
metadata.	When	you’re	finished,	see	Appendix	B	for	the	solutions.

Exercise	15-1

Write	a	query	that	lists	all	of	the	indexes	in	the	Sakila	schema.	Include	the
table	names.

Exercise	15-2

Write	a	query	that	generates	output	that	can	be	used	to	create	all	of	the
indexes	on	the	sakila.customer	table.	Output	should	be	of	the	form:

"ALTER TABLE <table_name> ADD INDEX <index_name> (<column_list>)"



Chapter	16.	Analytic	Functions

Data	volumes	have	been	growing	at	a	staggering	pace,	and	organizations
are	having	difficulty	storing	all	of	it,	not	to	mention	trying	to	make	sense
of	it.	While	data	analysis	has	traditionally	occurred	outside	of	the	database
server,	using	specialized	tools	or	languages	such	as	Excel,	R,	and	Python,
the	SQL	language	includes	a	robust	set	of	functions	useful	for	analytical
processing.	If	you	need	to	generate	rankings	to	identify	the	top	10
salespeople	in	your	company	or	if	you	are	generating	a	financial	report	for
your	customer	and	need	to	calculate	three-month	rolling	averages,	you	can
use	SQL’s	built-in	analytic	functions	to	perform	these	types	of
calculations.

Analytic	Function	Concepts
After	the	database	server	has	completed	all	of	the	steps	necessary	to
evaluate	a	query,	including	joining,	filtering,	grouping,	and	sorting,	the
result	set	is	complete	and	ready	to	be	returned	to	the	caller.	Imagine	if	you
could	pause	the	query	execution	at	this	point	and	take	a	walk	through	the
result	set	while	it	is	still	held	in	memory;	what	types	of	analysis	might	you
want	to	do?	If	your	result	set	contains	sales	data,	perhaps	you	might	want
to	generate	rankings	for	salespeople	or	regions,	or	calculate	percentage
differences	between	one	time	period	and	another.	If	you	are	generating
results	for	a	financial	report,	perhaps	you	would	like	to	calculate	subtotals
for	each	report	section,	and	a	grand	total	for	the	final	section.	Using
analytic	functions,	you	can	do	all	of	these	things	and	more.	Before	diving
into	the	details,	the	following	subsections	describe	the	mechanisms	used



by	several	of	the	most	commonly	used	analytic	functions.

Data	Windows

Let’s	say	you	have	written	a	query	that	generates	monthly	sales	totals	for	a
given	time	period.	For	example,	the	following	query	sums	up	the	total
monthly	payments	for	film	rentals	for	the	period	May	through	August
2005:

mysql> SELECT quarter(payment_date) quarter,
    ->   monthname(payment_date) month_nm,
    ->   sum(amount) monthly_sales
    -> FROM payment
    -> WHERE year(payment_date) = 2005
    -> GROUP BY quarter(payment_date), monthname(payment_date);
+---------+----------+---------------+
| quarter | month_nm | monthly_sales |
+---------+----------+---------------+
|       2 | May      |       4824.43 |
|       2 | June     |       9631.88 |
|       3 | July     |      28373.89 |
|       3 | August   |      24072.13 |
+---------+----------+---------------+
4 rows in set (0.13 sec)

Looking	at	the	results,	you	can	see	that	July	had	the	highest	monthly	total
across	all	four	months	and	that	June	had	the	highest	monthly	total	for
quarter	2.	In	order	to	determine	the	highest	values	programmatically,
however,	you	will	need	to	add	additional	columns	to	each	row	showing
the	maximum	values	per	quarter	and	over	the	entire	time	period.	Here’s
the	previous	query	but	with	two	new	columns	to	calculate	these	values:

mysql> SELECT quarter(payment_date) quarter,
    ->   monthname(payment_date) month_nm,
    ->   sum(amount) monthly_sales,
    ->   max(sum(amount))

    ->     over	()	max_overall_sales,

    ->   max(sum(amount))

    ->     over	(partition	by	quarter(payment_date))	

max_qrtr_sales



    -> FROM payment
    -> WHERE year(payment_date) = 2005
    -> GROUP BY quarter(payment_date), monthname(payment_date);
+---------+----------+---------------+-------------------+----------------+
| quarter | month_nm | monthly_sales | max_overall_sales | max_qrtr_sales |
+---------+----------+---------------+-------------------+----------------+
|       2 | May      |       4824.43 |          28373.89 |        9631.88 |
|       2 | June     |       9631.88 |          28373.89 |        9631.88 |
|       3 | July     |      28373.89 |          28373.89 |       28373.89 |
|       3 | August   |      24072.13 |          28373.89 |       28373.89 |
+---------+----------+---------------+-------------------+----------------+
4 rows in set (0.09 sec)

The	analytic	functions	used	to	generate	these	additional	columns	group
rows	into	two	different	sets:	one	set	containing	all	rows	in	the	same
quarter	and	another	set	containing	all	of	the	rows.	To	accommodate	this
type	of	analysis,	analytic	functions	include	the	ability	to	group	rows	into
windows,	which	effectively	partition	the	data	for	use	by	the	analytic
function	without	changing	the	overall	result	set.	Windows	are	defined
using	the	over	clause	combined	with	an	optional	partition by
subclause.	In	the	previous	query,	both	analytic	functions	include	an	over
clause,	but	the	first	one	is	empty,	indicating	that	the	window	should
include	the	entire	result	set,	whereas	the	second	one	specifies	that	the
window	should	include	only	rows	within	the	same	quarter.	Data	windows
may	contain	anywhere	from	a	single	row	to	all	of	the	rows	in	the	result	set,
and	different	analytic	functions	can	define	different	data	windows.

Localized	Sorting

Along	with	partitioning	your	result	set	into	data	windows	for	your	analytic
functions,	you	may	also	specify	a	sort	order.	For	example,	if	you	want	to
define	a	ranking	number	for	each	month,	where	the	value	1	is	given	to	the
month	having	the	highest	sales,	you	will	need	to	specify	which	column	(or
columns)	to	use	for	the	ranking:

mysql> SELECT quarter(payment_date) quarter,



    ->   monthname(payment_date) month_nm,
    ->   sum(amount) monthly_sales,
    ->   rank()	over	(order	by	sum(amount)	desc) sales_rank

    -> FROM payment
    -> WHERE year(payment_date) = 2005
    -> GROUP BY quarter(payment_date), monthname(payment_date)
    -> ORDER BY 1, month(payment_date);
+---------+----------+---------------+------------+
| quarter | month_nm | monthly_sales | sales_rank |
+---------+----------+---------------+------------+
|       2 | May      |       4824.43 |          4 |
|       2 | June     |       9631.88 |          3 |
|       3 | July     |      28373.89 |          1 |
|       3 | August   |      24072.13 |          2 |
+---------+----------+---------------+------------+
4 rows in set (0.00 sec)

This	query	includes	a	call	to	the	rank	function,	which	will	be	covered	in
the	next	section,	and	specifies	that	the	sum	of	the	amount	column	be	used
to	generate	the	rankings,	with	the	values	sorted	in	descending	order.	Thus,
the	month	having	the	highest	sales	(July,	in	this	case)	will	be	given	a
ranking	of	1.

MULTIPLE	ORDER	BY	CLAUSES
The	previous	example	contains	two	order by	clauses,	one	at	the	end	of	the	query	to	determine
how	the	result	set	should	be	sorted	and	another	within	the	rank	function	to	determine	how	the
rankings	should	be	allocated.	While	it	is	unfortunate	that	the	same	clause	is	used	for	different
purposes,	keep	in	mind	that	even	if	you	are	using	analytic	functions	with	one	or	more	order by
clauses,	you	will	still	need	an	order by	clause	at	the	end	of	your	query	if	you	want	the	result	set
to	be	sorted	in	a	particular	way.

In	some	cases,	you	will	want	to	use	both	the	partition by	and	order by
subclauses	in	the	same	analytic	function	call.	For	example,	the	previous
example	can	be	modified	to	provide	a	different	set	of	rankings	per	quarter,
rather	than	a	single	ranking	across	the	entire	result	set:



mysql> SELECT quarter(payment_date) quarter,
    ->   monthname(payment_date) month_nm,
    ->   sum(amount) monthly_sales,
    ->   rank()	over	(partition	by	quarter(payment_date)

    ->     order	by	sum(amount)	desc) qtr_sales_rank

    -> FROM payment
    -> WHERE year(payment_date) = 2005
    -> GROUP BY quarter(payment_date), monthname(payment_date)
    -> ORDER BY 1, month(payment_date);
+---------+----------+---------------+----------------+
| quarter | month_nm | monthly_sales | qtr_sales_rank |
+---------+----------+---------------+----------------+
|       2 | May      |       4824.43 |              2 |
|       2 | June     |       9631.88 |              1 |
|       3 | July     |      28373.89 |              1 |
|       3 | August   |      24072.13 |              2 |
+---------+----------+---------------+----------------+
4 rows in set (0.00 sec)

While	these	examples	were	designed	to	illustrate	the	use	of	the	over
clause,	the	following	sections	will	describe	in	detail	the	various	analytic
functions.

Ranking
People	love	to	rank	things.	If	you	visit	your	favorite	news/sports/travel
sites,	you’ll	see	headlines	similar	to	the	following:

Top	10	Vacation	Values

Best	Mutual	Fund	Returns

Preseason	College	Football	Rankings

Top	100	Songs	of	All	Time

Companies	also	like	to	generate	rankings,	but	for	more	practical	purposes.
Knowing	which	products	are	the	best/worst	sellers	or	which	geographic
regions	generate	the	least/most	revenue	helps	organizations	make	strategic
decisions.



Ranking	Functions

There	are	multiple	ranking	functions	available	in	the	SQL	standard,	with
each	one	taking	a	different	approach	to	how	ties	are	handled:

row_number
Returns	a	unique	number	for	each	row,	with	rankings	arbitrarily
assigned	in	case	of	a	tie

rank
Returns	the	same	ranking	in	case	of	a	tie,	with	gaps	in	the	rankings

dense_rank
Returns	the	same	ranking	in	case	of	a	tie,	with	no	gaps	in	the	rankings

Let’s	look	at	an	example	to	help	illustrate	the	differences.	Say	that	the
marketing	department	wants	to	identify	the	top	10	customers	so	they	can
be	offered	a	free	film	rental.	The	following	query	determines	the	number
of	film	rentals	for	each	customer	and	sorts	the	results	in	descending	order:

mysql> SELECT customer_id, count(*) num_rentals
    -> FROM rental
    -> GROUP BY customer_id 
    -> ORDER BY 2 desc;
+-------------+-------------+
| customer_id | num_rentals |
+-------------+-------------+
|         148 |          46 |
|         526 |          45 |
|									236	|										42	|

|									144	|										42	|

|          75 |          41 |
|         469 |          40 |
|         197 |          40 |
|         137 |          39 |
|         468 |          39 |
|         178 |          39 |
|         459 |          38 |
|         410 |          38 |
|           5 |          38 |
|         295 |          38 |
|         257 |          37 |



|         366 |          37 |
|         176 |          37 |
|         198 |          37 |
|         267 |          36 |
|         439 |          36 |
|         354 |          36 |
|         348 |          36 |
|         380 |          36 |
|          29 |          36 |
|         371 |          35 |
|         403 |          35 |
|          21 |          35 |
...
|         136 |          15 |
|         248 |          15 |
|         110 |          14 |
|         281 |          14 |
|          61 |          14 |
|         318 |          12 |
+-------------+-------------+
599 rows in set (0.16 sec)

Looking	at	the	results,	the	third	and	fourth	customers	in	the	result	set	both
rented	42	films;	should	they	both	receive	the	same	ranking	of	3?	And	if	so,
should	the	customer	with	41	rentals	be	given	the	ranking	4,	or	should	we
skip	one	and	assign	ranking	5?	To	see	how	each	function	handles	ties
when	assigning	rankings,	the	next	query	adds	three	more	columns,	each
one	employing	a	different	ranking	function:

mysql> SELECT customer_id, count(*) num_rentals,
    ->   row_number() over (order by count(*) desc) row_number_rnk,

    ->   rank() over (order by count(*) desc) rank_rnk,

    ->   dense_rank() over (order by count(*) desc) dense_rank_rnk

    -> FROM rental
    -> GROUP BY customer_id
    -> ORDER BY 2 desc;
+-------------+-------------+----------------+----------+----------------+
| customer_id | num_rentals | row_number_rnk | rank_rnk | dense_rank_rnk |
+-------------+-------------+----------------+----------+----------------+
|         148 |          46 |              1 |        1 |              1 |
|         526 |          45 |              2 |        2 |              2 |
|         144 |          42 |              3 |        3 |              3 |
|         236 |          42 |              4 |        3 |              3 |
|										75	|										41	|														5	|								5	

|														4	|



|         197 |          40 |              6 |        6 |              5 |
|         469 |          40 |              7 |        6 |              5 |
|         468 |          39 |             10 |        8 |              6 |
|         137 |          39 |              8 |        8 |              6 |
|         178 |          39 |              9 |        8 |              6 |
|           5 |          38 |             11 |       11 |              7 |
|         295 |          38 |             12 |       11 |              7 |
|         410 |          38 |             13 |       11 |              7 |
|         459 |          38 |             14 |       11 |              7 |
|         198 |          37 |             16 |       15 |              8 |
|         257 |          37 |             17 |       15 |              8 |
|         366 |          37 |             18 |       15 |              8 |
|         176 |          37 |             15 |       15 |              8 |
|         348 |          36 |             21 |       19 |              9 |
|         354 |          36 |             22 |       19 |              9 |
|         380 |          36 |             23 |       19 |              9 |
|         439 |          36 |             24 |       19 |              9 |
|          29 |          36 |             19 |       19 |              9 |
|         267 |          36 |             20 |       19 |              9 |
|          50 |          35 |             26 |       25 |             10 |
|         506 |          35 |             37 |       25 |             10 |
|         368 |          35 |             32 |       25 |             10 |
|          91 |          35 |             27 |       25 |             10 |
|         371 |          35 |             33 |       25 |             10 |
|         196 |          35 |             28 |       25 |             10 |
|         373 |          35 |             34 |       25 |             10 |
|         204 |          35 |             29 |       25 |             10 |
|         381 |          35 |             35 |       25 |             10 |
|         273 |          35 |             30 |       25 |             10 |
|          21 |          35 |             25 |       25 |             10 |
|         403 |          35 |             36 |       25 |             10 |
|         274 |          35 |             31 |       25 |             10 |
|          66 |          34 |             42 |       38 |             11 |
...
|         136 |          15 |            594 |      594 |             30 |
|         248 |          15 |            595 |      594 |             30 |
|         110 |          14 |            597 |      596 |             31 |
|         281 |          14 |            598 |      596 |             31 |
|          61 |          14 |            596 |      596 |             31 |
|         318 |          12 |            599 |      599 |             32 |
+-------------+-------------+----------------+----------+----------------+
599 rows in set (0.01 sec)

The	third	column	uses	the	row_number	function	to	assign	a	unique	ranking
to	each	row,	without	regard	to	ties.	Each	of	the	599	rows	is	assigned	a
number	from	1	to	599,	with	the	ranking	value	arbitrarily	assigned	for



customers	who	have	the	same	number	of	film	rentals.	The	next	two
columns,	however,	assign	the	same	ranking	in	case	of	a	tie,	but	the
difference	lies	in	whether	or	not	a	gap	is	left	in	the	ranking	values	after	a
tie.	Looking	at	row	5	of	the	result	set,	you	can	see	that	the	rank	function
skips	the	value	4	and	assigns	the	value	5,	whereas	the	dense_rank
function	assigns	the	value	4.

To	get	back	to	the	original	request,	how	would	you	identify	the	top	10
customers?	There	are	three	possible	solutions:

Use	the	row_number	function	to	identify	customers	ranked	from	1
to	10,	which	results	in	exactly	10	customers	in	this	example,	but
in	other	cases	might	exclude	customers	having	the	same	number
of	rentals	as	the	10th	ranked	customer.

Use	the	rank	function	to	identify	customers	ranked	10	or	less,
which	also	results	in	exactly	10	customers.

Use	the	dense_rank	function	to	identify	customers	ranked	10	or
less,	which	yields	a	list	of	37	customers.

If	there	are	no	ties	in	your	result	set,	then	any	of	these	functions	will
suffice,	but	for	many	situations	the	rank	function	may	be	the	best	option.

Generating	Multiple	Rankings

The	example	in	the	previous	section	generates	a	single	ranking	across	the
entire	set	of	customers,	but	what	if	you	want	to	generate	multiple	sets	of
rankings	within	the	same	result	set?	To	extend	the	prior	example,	let’s	say
the	marketing	department	decides	to	offer	free	film	rentals	to	the	top	five
customers	every	month.	To	generate	the	data,	the	rental_month	column
can	be	added	to	the	previous	query:

mysql> SELECT customer_id,



    ->   monthname(rental_date) rental_month,

    ->   count(*) num_rentals
    -> FROM rental
    -> GROUP BY customer_id, monthname(rental_date)

    -> ORDER BY 2, 3 desc;
+-------------+--------------+-------------+
| customer_id | rental_month | num_rentals |

+-------------+--------------+-------------+
|         119 | August       |          18 |
|          15 | August       |          18 |
|         569 | August       |          18 |
|         148 | August       |          18 |
|         141 | August       |          17 |
|          21 | August       |          17 |
|         266 | August       |          17 |
|         418 | August       |          17 |
|         410 | August       |          17 |
|         342 | August       |          17 |
|         274 | August       |          16 |
...
|         281 | August       |           2 |
|         318 | August       |           1 |
|          75 | February     |           3 |
|         155 | February     |           2 |
|         175 | February     |           2 |
|         516 | February     |           2 |
|         361 | February     |           2 |
|         269 | February     |           2 |
|         208 | February     |           2 |
|          53 | February     |           2 |
...
|          22 | February     |           1 |
|         472 | February     |           1 |
|         148 | July         |          22 |
|         102 | July         |          21 |
|         236 | July         |          20 |
|          75 | July         |          20 |
|          91 | July         |          19 |
|          30 | July         |          19 |
|          64 | July         |          19 |
|         137 | July         |          19 |
...
|         339 | May          |           1 |
|         485 | May          |           1 |
|         116 | May          |           1 |
|         497 | May          |           1 |
|         180 | May          |           1 |
+-------------+--------------+-------------+
2466 rows in set (0.02 sec)



In	order	to	create	a	new	set	of	rankings	for	each	month,	you	will	need	to
add	something	to	the	rank	function	to	describe	how	to	divide	the	result	set
into	different	data	windows	(months,	in	this	case).	This	is	done	using	the
partition by	clause,	which	is	added	to	the	over	clause:

mysql> SELECT customer_id,
    ->   monthname(rental_date) rental_month,
    ->   count(*) num_rentals,
    ->   rank() over	(partition	by	monthname(rental_date)

    ->     order by count(*) desc) rank_rnk
    -> FROM rental
    -> GROUP BY customer_id, monthname(rental_date)
    -> ORDER BY 2, 3 desc;
+-------------+--------------+-------------+----------+
| customer_id | rental_month | num_rentals | rank_rnk |
+-------------+--------------+-------------+----------+
|         569 | August							|          18 |        1 |

|         119 | August       |          18 |        1 |
|         148 | August       |          18 |        1 |
|          15 | August       |          18 |        1 |
|         141 | August       |          17 |        5 |
|         410 | August       |          17 |        5 |
|         418 | August       |          17 |        5 |
|          21 | August       |          17 |        5 |
|         266 | August       |          17 |        5 |
|         342 | August       |          17 |        5 |
|         144 | August       |          16 |       11 |
|         274 | August       |          16 |       11 |
...
|         164 | August       |           2 |      596 |
|         318 | August       |           1 |      599 |
|          75 | February					|           3 |        1 |

|         457 | February     |           2 |        2 |
|          53 | February     |           2 |        2 |
|         354 | February     |           2 |        2 |

|         352 | February     |           1 |       24 |
|         373 | February     |           1 |       24 |
|         148 | July									|          22 |        1 |

|         102 | July         |          21 |        2 |
|         236 | July         |          20 |        3 |
|          75 | July         |          20 |        3 |
|          91 | July         |          19 |        5 |
|         354 | July         |          19 |        5 |
|          30 | July         |          19 |        5 |
|          64 | July         |          19 |        5 |



|         137 | July         |          19 |        5 |
|         526 | July         |          19 |        5 |
|         366 | July         |          19 |        5 |
|         595 | July         |          19 |        5 |
|         469 | July         |          18 |       13 |
...
|         457 | May          |           1 |      347 |
|         356 | May          |           1 |      347 |
|         481 | May          |           1 |      347 |
|          10 | May          |           1 |      347 |
+-------------+--------------+-------------+----------+
2466 rows in set (0.03 sec)

Looking	at	the	results,	you	can	see	that	the	rankings	are	reset	to	1	for	each
month.	In	order	to	generate	the	desired	results	for	the	marketing
department	(top	five	customers	from	each	month),	you	can	simply	wrap
the	previous	query	in	a	subquery	and	add	a	filter	condition	to	exclude	any
rows	with	a	ranking	higher	than	five:

SELECT customer_id, rental_month, num_rentals,
  rank_rnk ranking
FROM
 (SELECT customer_id,
    monthname(rental_date) rental_month,
    count(*) num_rentals,
    rank() over (partition by monthname(rental_date)
      order by count(*) desc) rank_rnk
  FROM rental
  GROUP BY customer_id, monthname(rental_date)
 ) cust_rankings
WHERE	rank_rnk	<=	5

ORDER BY rental_month, num_rentals desc, rank_rnk;

Since	analytic	functions	can	be	used	only	in	the	SELECT	clause,	you	will
often	need	to	nest	queries	if	you	need	to	do	any	filtering	or	grouping	based
on	the	results	from	the	analytic	function.

Reporting	Functions
Along	with	generating	rankings,	another	common	use	for	analytic



functions	is	to	find	outliers	(e.g.,	min	or	max	values)	or	to	generate	sums
or	averages	across	an	entire	data	set.	For	these	types	of	uses,	you	will	be
using	aggregate	functions	(min,	max,	avg,	sum,	count),	but	instead	of
using	them	with	a	group by	clause,	you	will	pair	them	with	an	over
clause.	Here’s	an	example	that	generates	monthly	and	grand	totals	for	all
payments	of	$10	or	higher:

mysql> SELECT monthname(payment_date) payment_month,
    ->   amount,
    ->   sum(amount) 

    ->     over	(partition	by	monthname(payment_date))	

monthly_total,

    ->   sum(amount)	over	()	grand_total

    -> FROM payment
    -> WHERE amount >= 10
    -> ORDER BY 1;
+---------------+--------+---------------+-------------+
| payment_month | amount | monthly_total | grand_total |
+---------------+--------+---------------+-------------+
| August        |  10.99 |        521.53 |     1262.86 |
| August        |  11.99 |        521.53 |     1262.86 |
| August        |  10.99 |        521.53 |     1262.86 |
| August        |  10.99 |        521.53 |     1262.86 |
...
| August        |  10.99 |        521.53 |     1262.86 |
| August        |  10.99 |        521.53 |     1262.86 |
| August        |  10.99 |        521.53 |     1262.86 |
| July          |  10.99 |        519.53 |     1262.86 |
| July          |  10.99 |        519.53 |     1262.86 |
| July          |  10.99 |        519.53 |     1262.86 |
| July          |  10.99 |        519.53 |     1262.86 |
...
| July          |  10.99 |        519.53 |     1262.86 |
| July          |  10.99 |        519.53 |     1262.86 |
| July          |  10.99 |        519.53 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  11.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |



| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| June          |  10.99 |        165.85 |     1262.86 |
| May           |  10.99 |         55.95 |     1262.86 |
| May           |  10.99 |         55.95 |     1262.86 |
| May           |  10.99 |         55.95 |     1262.86 |
| May           |  10.99 |         55.95 |     1262.86 |
| May           |  11.99 |         55.95 |     1262.86 |
+---------------+--------+---------------+-------------+
114 rows in set (0.01 sec)

The	grand_total	column	contains	the	same	value	($1,262.86)	for	every
row	because	the	over	clause	is	empty,	which	specifies	that	the	summation
be	done	over	the	entire	result	set.	The	monthly_total	column,	however,
contains	a	different	value	for	each	month,	since	there	is	a	partition by
clause	specifying	that	the	result	set	be	split	into	multiple	data	windows
(one	for	each	month).

While	it	may	seem	of	little	value	to	include	a	column	such	as
grand_total	with	the	same	value	for	every	row,	these	types	of	columns
can	also	be	used	for	calculations,	as	shown	in	the	following	query:

mysql> SELECT monthname(payment_date) payment_month,
    ->   sum(amount) month_total,
    ->   round(sum(amount) /	sum(sum(amount))	over	()

    ->     *	100,	2)	pct_of_total

    -> FROM payment
    -> GROUP BY monthname(payment_date);
+---------------+-------------+--------------+
| payment_month | month_total | pct_of_total |
+---------------+-------------+--------------+
| May           |     4824.43 |         7.16 |
| June          |     9631.88 |        14.29 |
| July          |    28373.89 |        42.09 |
| August        |    24072.13 |        35.71 |
| February      |      514.18 |         0.76 |
+---------------+-------------+--------------+
5 rows in set (0.04 sec)



This	query	calculates	the	total	payments	for	each	month	by	summing	the
amount	column,	and	then	calculates	the	percentage	of	the	total	payments
for	each	month	by	summing	the	monthly	sums	to	use	as	the	denominator
in	the	calculation.

Reporting	functions	may	also	be	used	for	comparisons,	such	as	the	next
query,	which	uses	a	case	expression	to	determine	whether	a	monthly	total
is	the	max,	min,	or	somewhere	in	the	middle:

mysql>	SELECT	monthname(payment_date)	payment_month,
				->			sum(amount)	month_total,

				->			CASE	sum(amount)

				->					WHEN	max(sum(amount))	over	()	THEN	'Highest'

				->					WHEN	min(sum(amount))	over	()	THEN	'Lowest'

				->					ELSE	'Middle'

				->			END	descriptor
				->	FROM	payment
				->	GROUP	BY	monthname(payment_date);
+---------------+-------------+------------+
|	payment_month	|	month_total	|	descriptor	|
+---------------+-------------+------------+
|	May											|					4824.43	|	Middle					|
|	June										|					9631.88	|	Middle					|

|	July										|				28373.89	|	Highest				|
|	August								|				24072.13	|	Middle					|

|	February						|						514.18	|	Lowest					|
+---------------+-------------+------------+
5	rows	in	set	(0.04	sec)

The	descriptor	column	acts	as	a	quasi-ranking	function,	in	that	it	helps
identify	the	top/bottom	values	across	a	set	of	rows.

Window	Frames



As	described	earlier	in	the	chapter,	data	windows	for	analytic	functions	are
defined	using	the	partition by	clause,	which	allows	you	to	group	rows
by	common	values.	But	what	if	you	need	even	finer	control	over	which
rows	to	include	in	a	data	window?	For	example,	perhaps	you	want	to
generate	a	running	total	starting	from	the	beginning	of	the	year	up	to	the
current	row.	For	these	types	of	calculations,	you	can	include	a	“frame”
subclause	to	define	exactly	which	rows	to	include	in	the	data	window.
Here’s	a	query	that	sums	payments	for	each	week	and	includes	a	reporting
function	to	calculate	the	rolling	sum:

mysql> SELECT yearweek(payment_date) payment_week,
    ->   sum(amount) week_total,
    ->   sum(sum(amount))
    ->     over	(order	by	yearweek(payment_date)

    ->       rows	unbounded	preceding) rolling_sum

    -> FROM payment
    -> GROUP BY yearweek(payment_date)
    -> ORDER BY 1;
+--------------+------------+-------------+
| payment_week | week_total | rolling_sum |
+--------------+------------+-------------+
|       200521 |    2847.18 |     2847.18 |
|       200522 |    1977.25 |     4824.43 |
|       200524 |    5605.42 |    10429.85 |
|       200525 |    4026.46 |    14456.31 |
|       200527 |    8490.83 |    22947.14 |
|       200528 |    5983.63 |    28930.77 |
|       200530 |   11031.22 |    39961.99 |
|       200531 |    8412.07 |    48374.06 |
|       200533 |   10619.11 |    58993.17 |
|       200534 |    7909.16 |    66902.33 |
|       200607 |     514.18 |    67416.51 |
+--------------+------------+-------------+
11 rows in set (0.04 sec)

The	rolling_sum	column	expression	includes	the	rows unbounded
preceding	subclause	to	define	a	data	window	from	the	beginning	of	the
result	set	up	to	and	including	the	current	row.	The	data	window	consists	of
a	single	row	for	the	first	row	in	the	result	set,	two	rows	for	the	second	row,



etc.	The	value	for	the	last	row	is	the	summation	of	the	entire	result	set.

Along	with	rolling	sums,	you	can	calculate	rolling	averages.	Here’s	a
query	that	calculates	a	three-week	rolling	average	of	total	payments:

mysql> SELECT yearweek(payment_date) payment_week,
    ->   sum(amount) week_total,
    ->   avg(sum(amount))

    ->     over (order by yearweek(payment_date)
    ->       rows	between	1	preceding	and	1	following) 

rolling_3wk_avg
    -> FROM payment
    -> GROUP BY yearweek(payment_date)
    -> ORDER BY 1;
+--------------+------------+-----------------+
| payment_week | week_total | rolling_3wk_avg |
+--------------+------------+-----------------+
|       200521 |    2847.18 |     2412.215000 |
|       200522 |    1977.25 |     3476.616667 |
|       200524 |    5605.42 |     3869.710000 |
|       200525 |    4026.46 |     6040.903333 |
|       200527 |    8490.83 |     6166.973333 |
|       200528 |    5983.63 |     8501.893333 |
|       200530 |   11031.22 |     8475.640000 |
|       200531 |    8412.07 |    10020.800000 |
|       200533 |   10619.11 |     8980.113333 |
|       200534 |    7909.16 |     6347.483333 |
|       200607 |     514.18 |     4211.670000 |
+--------------+------------+-----------------+
11 rows in set (0.03 sec)

The	rolling_3wk_avg	column	defines	a	data	window	consisting	of	the
current	row,	the	prior	row,	and	the	next	row.	The	data	window	will
therefore	consist	of	three	rows,	except	for	the	first	and	last	rows,	which
will	have	a	data	window	consisting	of	just	two	rows	(since	there	is	no
prior	row	for	the	first	row	and	no	next	row	for	the	last	row).

Specifying	a	number	of	rows	for	your	data	window	works	fine	in	many
cases,	but	if	there	are	gaps	in	your	data,	you	might	want	to	try	a	different
approach.	In	the	previous	result	set,	for	example,	there	is	data	for	weeks



200521,	200522,	and	200524,	but	no	data	for	week	200523.	If	you	want	to
specify	a	date	interval	rather	than	a	number	of	rows,	you	can	specify	a
range	for	your	data	window,	as	shown	in	the	following	query:

mysql> SELECT date(payment_date), sum(amount),
    ->   avg(sum(amount)) over (order by date(payment_date)
    ->     range	between	interval	3	day	preceding

    ->       and	interval	3	day	following) 7_day_avg

    -> FROM payment
    -> WHERE payment_date BETWEEN '2005-07-01' AND '2005-09-01'
    -> GROUP BY date(payment_date)
    -> ORDER BY 1;
+--------------------+-------------+-------------+
| date(payment_date) | sum(amount) | 7_day_avg   |
+--------------------+-------------+-------------+
| 2005-07-05         |      128.73 | 1603.740000 |
| 2005-07-06         |     2131.96 | 1698.166000 |
| 2005-07-07         |     1943.39 | 1738.338333 |
| 2005-07-08         |     2210.88 | 1766.917143 |
| 2005-07-09         |     2075.87 | 2049.390000 |
| 2005-07-10         |     1939.20 | 2035.628333 |
| 2005-07-11         |     1938.39 | 2054.076000 |
| 2005-07-12         |     2106.04 | 2014.875000 |
| 2005-07-26         |      160.67 | 2046.642500 |
| 2005-07-27         |     2726.51 | 2206.244000 |
| 2005-07-28         |     2577.80 | 2316.571667 |
| 2005-07-29         |     2721.59 | 2388.102857 |
| 2005-07-30         |     2844.65 | 2754.660000 |
| 2005-07-31         |     2868.21 | 2759.351667 |
| 2005-08-01         |     2817.29 | 2795.662000 |
| 2005-08-02         |     2726.57 | 2814.180000 |
|	2005-08-16									|						111.77	|	1973.837500	|

| 2005-08-17         |     2457.07 | 2123.822000 |
| 2005-08-18         |     2710.79 | 2238.086667 |
| 2005-08-19         |     2615.72 | 2286.465714 |
| 2005-08-20         |     2723.76 | 2630.928571 |
| 2005-08-21         |     2809.41 | 2659.905000 |
| 2005-08-22         |     2576.74 | 2649.728000 |
| 2005-08-23         |     2523.01 | 2658.230000 |
+--------------------+-------------+-------------+
24 rows in set (0.03 sec)

The	7_day_avg	column	specifies	a	range	of	+/-3	days	and	will	include
only	those	rows	whose	payment_date	values	fall	within	that	range.	For
the	2005-08-16	calculation,	for	example,	only	the	values	for	08-16,	08-17,



08-18,	and	08-19	are	included,	since	there	are	no	rows	for	the	three	prior
dates	(08-13	through	08-15).

Lag	and	Lead

Along	with	computing	sums	and	averages	over	a	data	window,	another
common	reporting	task	involves	comparing	values	from	one	row	to
another.	For	example,	if	you	are	generating	monthly	sales	totals,	you	may
be	asked	to	create	a	column	showing	the	percentage	difference	from	the
prior	month,	which	will	require	a	way	to	retrieve	the	monthly	sales	total
from	the	previous	row.	This	can	be	accomplished	using	the	lag	function,
which	will	retrieve	a	column	value	from	a	prior	row	in	the	result	set,	or	the
lead	function,	which	will	retrieve	a	column	value	from	a	following	row.
Here’s	an	example	using	both	functions:

mysql> SELECT yearweek(payment_date) payment_week,
    ->   sum(amount) week_total,
    ->   lag(sum(amount),	1)

    ->     over	(order	by	yearweek(payment_date))	prev_wk_tot,

    ->   lead(sum(amount),	1)

    ->     over	(order	by	yearweek(payment_date))	next_wk_tot

    -> FROM payment
    -> GROUP BY yearweek(payment_date)
    -> ORDER BY 1;
+--------------+------------+-------------+-------------+
| payment_week | week_total | prev_wk_tot | next_wk_tot |
+--------------+------------+-------------+-------------+
|       200521 |    2847.18 |        NULL	|     1977.25 |

|       200522 |    1977.25 |     2847.18 |     5605.42 |
|       200524 |    5605.42 |     1977.25 |     4026.46 |
|       200525 |    4026.46 |     5605.42 |     8490.83 |

|       200527 |    8490.83 |     4026.46 |     5983.63 |

|       200528 |    5983.63 |     8490.83 |    11031.22 |

|       200530 |   11031.22 |     5983.63 |     8412.07 |
|       200531 |    8412.07 |    11031.22 |    10619.11 |
|       200533 |   10619.11 |     8412.07 |     7909.16 |
|       200534 |    7909.16 |    10619.11 |      514.18 |
|       200607 |     514.18 |     7909.16 |        NULL	|

+--------------+------------+-------------+-------------+
11 rows in set (0.03 sec)



Looking	at	the	results,	the	weekly	total	of	8,490.43	for	week	200527	also
appears	in	the	next_wk_tot	column	for	week	200525,	as	well	as	in	the
prev_wk_tot	column	for	week	200528.	Since	there	is	no	row	prior	to
200521	in	the	result	set,	the	value	generated	by	the	lag	function	is	null
for	the	first	row;	likewise,	the	value	generated	by	the	lead	function	is
null	for	the	last	row	in	the	result	set.	Both	lag	and	lead	allow	for	an
optional	second	parameter	(which	defaults	to	1)	to	describe	the	number	of
rows	prior/following	from	which	to	retrieve	the	column	value.

Here’s	how	you	could	use	the	lag	function	to	generate	the	percentage
difference	from	the	prior	week:

mysql> SELECT yearweek(payment_date) payment_week,
    ->   sum(amount) week_total,
    ->   round((sum(amount)	-	lag(sum(amount),	1)

    ->     over	(order	by	yearweek(payment_date)))

    ->     /	lag(sum(amount),	1)

    ->       over	(order	by	yearweek(payment_date))

    ->     *	100,	1)	pct_diff

    -> FROM payment
    -> GROUP BY yearweek(payment_date)
    -> ORDER BY 1;
+--------------+------------+----------+
| payment_week | week_total | pct_diff |
+--------------+------------+----------+
|       200521 |    2847.18 |     NULL |
|       200522 |    1977.25 |    -30.6 |
|       200524 |    5605.42 |    183.5 |
|       200525 |    4026.46 |    -28.2 |
|       200527 |    8490.83 |    110.9 |
|       200528 |    5983.63 |    -29.5 |
|       200530 |   11031.22 |     84.4 |
|       200531 |    8412.07 |    -23.7 |
|       200533 |   10619.11 |     26.2 |
|       200534 |    7909.16 |    -25.5 |
|       200607 |     514.18 |    -93.5 |
+--------------+------------+----------+
11 rows in set (0.07 sec)

Comparing	values	from	different	rows	in	the	same	result	set	is	a	common



practice	in	reporting	systems,	so	you	will	likely	find	many	uses	for	the	lag
and	lead	functions.

Column	Value	Concatenation

Although	not	technically	an	analytic	function,	there	is	one	more	important
function	to	demonstrate	since	it	works	with	groups	of	rows	within	a	data
window.	The	group_concat	function	is	used	to	pivot	a	set	of	column
values	into	a	single	delimited	string,	which	is	a	handy	way	to	denormalize
your	result	set	for	generating	XML	or	JSON	documents.	Here’s	an
example	of	how	this	function	could	be	used	to	generate	a	comma-
delimited	list	of	actors	for	each	film:

mysql> SELECT f.title,
    ->   group_concat(a.last_name	order	by	a.last_name 

    ->     separator	',	') actors

    -> FROM actor a
    ->   INNER JOIN film_actor fa
    ->   ON a.actor_id = fa.actor_id
    ->   INNER JOIN film f
    ->   ON fa.film_id = f.film_id
    -> GROUP BY f.title
    -> HAVING count(*) = 3;
+------------------------+--------------------------------+
| title                  | actors                         |
+------------------------+--------------------------------+
| ANNIE IDENTITY         | GRANT, KEITEL, MCQUEEN         |
| ANYTHING SAVANNAH      | MONROE, SWANK, WEST            |
| ARK RIDGEMONT          | BAILEY, DEGENERES, GOLDBERG    |
| ARSENIC INDEPENDENCE   | ALLEN, KILMER, REYNOLDS        |
...
| WHISPERER GIANT        | BAILEY, PECK, WALKEN           |
| WIND PHANTOM           | BALL, DENCH, GUINESS           |
| ZORRO ARK              | DEGENERES, MONROE, TANDY       |
+------------------------+--------------------------------+
119 rows in set (0.04 sec)

This	query	groups	rows	by	film	title	and	only	includes	films	in	which
exactly	three	actors	appear.	The	group_concat	function	acts	like	a	special
type	of	aggregate	function	that	pivots	all	of	the	last	names	of	all	actors



appearing	in	each	film	into	a	single	string.	If	you	are	using	SQL	Server,
you	can	use	the	string_agg	function	to	generate	this	type	of	output,	and
Oracle	users	can	use	the	listagg	function.

Test	Your	Knowledge
The	following	exercises	are	designed	to	test	your	understanding	of
analytic	functions.	When	you’re	finished,	see	Appendix	B	for	the
solutions.

For	all	exercises	in	this	section,	use	the	following	data	set	from	the
Sales_Fact	table:

Sales_Fact
+---------+----------+-----------+
| year_no | month_no | tot_sales |
+---------+----------+-----------+
|    2019 |        1 |     19228 |
|    2019 |        2 |     18554 |
|    2019 |        3 |     17325 |
|    2019 |        4 |     13221 |
|    2019 |        5 |      9964 |
|    2019 |        6 |     12658 |
|    2019 |        7 |     14233 |
|    2019 |        8 |     17342 |
|    2019 |        9 |     16853 |
|    2019 |       10 |     17121 |
|    2019 |       11 |     19095 |
|    2019 |       12 |     21436 |
|    2020 |        1 |     20347 |
|    2020 |        2 |     17434 |
|    2020 |        3 |     16225 |
|    2020 |        4 |     13853 |
|    2020 |        5 |     14589 |
|    2020 |        6 |     13248 |
|    2020 |        7 |      8728 |
|    2020 |        8 |      9378 |
|    2020 |        9 |     11467 |
|    2020 |       10 |     13842 |
|    2020 |       11 |     15742 |
|    2020 |       12 |     18636 |
+---------+----------+-----------+



24 rows in set (0.00 sec)

Exercise	16-1

Write	a	query	that	retrieves	every	row	from	Sales_Fact,	and	add	a
column	to	generate	a	ranking	based	on	the	tot_sales	column	values.	The
highest	value	should	receive	a	ranking	of	1,	and	the	lowest	a	ranking	of
24.

Exercise	16-2

Modify	the	query	from	the	previous	exercise	to	generate	two	sets	of
rankings	from	1	to	12,	one	for	2019	data	and	one	for	2020.

Exercise	16-3

Write	a	query	that	retrieves	all	2020	data,	and	include	a	column	that	will
contain	the	tot_sales	value	from	the	previous	month.



Chapter	17.	Working	with	Large
Databases

In	the	early	days	of	relational	databases,	hard	drive	capacity	was	measured
in	megabytes,	and	databases	were	generally	easy	to	administer	simply
because	they	couldn’t	get	very	large.	Today,	however,	hard	drive	capacity
has	ballooned	to	15	TB,	a	modern	disk	array	can	store	more	than	4	PB	of
data,	and	storage	in	the	cloud	is	essentially	limitless.	While	relational
databases	face	various	challenges	as	data	volumes	continue	to	grow,	there
are	strategies	such	as	partitioning,	clustering,	and	sharding	that	allow
companies	to	continue	to	utilize	relational	databases	by	spreading	data
across	multiple	storage	tiers	and	servers.	Other	companies	have	decided	to
move	to	big	data	platforms	such	as	Hadoop	in	order	to	handle	huge	data
volumes.	This	chapter	looks	at	some	of	these	strategies,	with	an	emphasis
on	techniques	for	scaling	relational	databases.

Partitioning
When	exactly	does	a	database	table	become	“too	big”?	If	you	ask	this
question	to	10	different	data	architects/administrators/developers,	you	will
likely	get	10	different	answers.	Most	people,	however,	would	agree	that
the	following	tasks	become	more	difficult	and/or	time	consuming	as	a
table	grows	past	a	few	million	rows:

Query	execution	requiring	full	table	scans

Index	creation/rebuild



Data	archival/deletion

Generation	of	table/index	statistics

Table	relocation	(e.g.,	move	to	a	different	tablespace)

Database	backups

These	tasks	can	start	as	routine	when	a	database	is	small,	then	become
time	consuming	as	more	data	accumulates,	and	then	become
problematic/impossible	due	to	limited	administrative	time	windows.	The
best	way	to	prevent	administrative	issues	from	occurring	in	the	future	is	to
break	large	tables	into	pieces,	or	partitions,	when	the	table	is	first	created
(although	tables	can	be	partitioned	later,	it	is	easier	to	do	so	initially).
Administrative	tasks	can	be	performed	on	individual	partitions,	often	in
parallel,	and	some	tasks	can	skip	one	or	more	partitions	entirely.

Partitioning	Concepts

Table	partitioning	was	introduced	in	the	late	1990s	by	Oracle,	but	since
then	every	major	database	server	has	added	the	ability	to	partition	tables
and	indexes.	When	a	table	is	partitioned,	two	or	more	table	partitions	are
created,	each	having	the	exact	same	definition	but	with	nonoverlapping
subsets	of	data.	For	example,	a	table	containing	sales	data	could	be
partitioned	by	month	using	the	column	containing	the	sale	date,	or	it	could
be	partitioned	by	geographic	region	using	the	state/province	code.

Once	a	table	has	been	partitioned,	the	table	itself	becomes	a	virtual
concept;	the	partitions	hold	the	data,	and	any	indexes	are	built	on	the	data
in	the	partitions.	However,	the	database	users	can	still	interact	with	the
table	without	knowing	that	the	table	had	been	partitioned.	This	is	similar
in	concept	to	a	view,	in	that	the	users	interact	with	schema	objects	that	are
interfaces	rather	than	actual	tables.	While	every	partition	must	have	the



same	schema	definition	(columns,	column	types,	etc.),	there	are	several
administrative	features	that	can	differ	for	each	partition:

Partitions	may	be	stored	on	different	tablespaces,	which	can	be	on
different	physical	storage	tiers.

Partitions	can	be	compressed	using	different	compression
schemes.

Local	indexes	(more	on	this	shortly)	can	be	dropped	for	some
partitions.

Table	statistics	can	be	frozen	on	some	partitions,	while	being
periodically	refreshed	on	others.

Individual	partitions	can	be	pinned	into	memory	or	stored	in	the
database’s	flash	storage	tier.

Thus,	table	partitioning	allows	for	flexibility	with	data	storage	and
administration,	while	still	presenting	the	simplicity	of	a	single	table	to
your	user	community.

Table	Partitioning

The	partitioning	scheme	available	in	most	relational	databases	is
horizontal	partitioning,	which	assigns	entire	rows	to	exactly	one	partition.
Tables	may	also	be	partitioned	vertically,	which	involves	assigning	sets	of
columns	to	different	partitions,	but	this	must	be	done	manually.	When
partitioning	a	table	horizontally,	you	must	choose	a	partition	key,	which	is
the	column	whose	values	are	used	to	assign	a	row	to	a	particular	partition.
In	most	cases,	a	table’s	partition	key	consists	of	a	single	column,	and	a
partitioning	function	is	applied	to	this	column	to	determine	in	which
partition	each	row	should	reside.

Index	Partitioning



If	your	partitioned	table	has	indexes,	you	will	get	to	choose	whether	a
particular	index	should	stay	intact,	known	as	a	global	index,	or	be	broken
into	pieces	such	that	each	partition	has	its	own	index,	which	is	called	a
local	index.	Global	indexes	span	all	partitions	of	the	table	and	are	useful
for	queries	that	do	not	specify	a	value	for	the	partition	key.	For	example,
let’s	say	your	table	is	partitioned	on	the	sale_date	column,	and	a	user
executes	the	following	query:

SELECT sum(amount) FROM sales WHERE geo_region_cd = 'US'

Since	this	query	does	not	include	a	filter	condition	on	the	sale_date
column,	the	server	will	need	to	search	every	partition	in	order	to	find	the
total	US	sales.	If	a	global	index	is	built	on	the	geo_region_cd	column,
however,	then	the	server	could	use	this	index	to	quickly	find	all	of	the
rows	containing	US	sales.

Partitioning	Methods

While	each	database	server	has	its	own	unique	partitioning	features,	the
next	three	sections	describe	the	common	partitioning	methods	available
across	most	servers.

RANGE	PARTITIONING

Range	partitioning	was	the	first	partitioning	method	to	be	implemented,
and	it	is	still	one	of	the	most	widely	used.	While	range	partitioning	can	be
used	for	several	different	column	types,	the	most	common	usage	is	to
break	up	tables	by	date	ranges.	For	example,	a	table	named	sales	could
be	partitioned	using	the	sale_date	column	such	that	data	for	each	week	is
stored	in	a	different	partition:

mysql> CREATE TABLE sales
    ->  (sale_id INT NOT NULL,



    ->   cust_id INT NOT NULL,
    ->   store_id INT NOT NULL,
    ->   sale_date DATE NOT NULL,
    ->   amount DECIMAL(9,2)
    ->  )
    -> PARTITION BY RANGE (yearweek(sale_date))
    ->  (PARTITION s1 VALUES LESS THAN (202002),
    ->   PARTITION s2 VALUES LESS THAN (202003),
    ->   PARTITION s3 VALUES LESS THAN (202004),
    ->   PARTITION s4 VALUES LESS THAN (202005),
    ->   PARTITION s5 VALUES LESS THAN (202006),
    ->   PARTITION s999 VALUES LESS THAN (MAXVALUE)
    ->  );
Query OK, 0 rows affected (1.78 sec)

This	statement	creates	six	different	partitions,	one	for	each	of	the	first	five
weeks	of	2020	and	a	sixth	partition	named	s999	to	hold	any	rows	beyond
week	five	of	year	2020.	For	this	table,	the	yearweek(sale_date)
expression	is	used	as	the	partitioning	function,	and	the	sale_date	column
serves	as	the	partitioning	key.	To	see	the	metadata	about	your	partitioned
tables,	you	can	use	the	partitions	table	in	the	information_schema
database:

mysql> SELECT partition_name, partition_method, partition_expression
    -> FROM	information_schema.partitions

    -> WHERE table_name = 'sales'
    -> ORDER BY partition_ordinal_position;
+----------------+------------------+-------------------------+
| PARTITION_NAME | PARTITION_METHOD | PARTITION_EXPRESSION    |
+----------------+------------------+-------------------------+
| s1             | RANGE            | yearweek(`sale_date`,0) |
| s2             | RANGE            | yearweek(`sale_date`,0) |
| s3             | RANGE            | yearweek(`sale_date`,0) |
| s4             | RANGE            | yearweek(`sale_date`,0) |
| s5             | RANGE            | yearweek(`sale_date`,0) |
| s999           | RANGE            | yearweek(`sale_date`,0) |
+----------------+------------------+-------------------------+
6 rows in set (0.00 sec)

One	of	the	administrative	tasks	that	will	need	to	be	performed	on	the
sales	table	involves	generating	new	partitions	to	hold	future	data	(to	keep
data	from	being	added	to	the	maxvalue	partition).	Different	databases



handle	this	in	different	ways,	but	in	MySQL	you	could	use	the
reorganize partition	clause	of	the	alter table	command	to	split	the
s999	partition	into	three	pieces:

ALTER TABLE sales REORGANIZE	PARTITION s999 INTO

 (PARTITION s6 VALUES LESS THAN (202007),
  PARTITION s7 VALUES LESS THAN (202008),
  PARTITION s999 VALUES LESS THAN (MAXVALUE)
 );

If	you	execute	the	previous	metadata	query	again,	you	will	now	see	eight
partitions:

mysql> SELECT partition_name, partition_method, partition_expression
    -> FROM information_schema.partitions
    -> WHERE table_name = 'sales'
    -> ORDER BY partition_ordinal_position;
+----------------+------------------+-------------------------+
| PARTITION_NAME | PARTITION_METHOD | PARTITION_EXPRESSION    |
+----------------+------------------+-------------------------+
| s1             | RANGE            | yearweek(`sale_date`,0) |
| s2             | RANGE            | yearweek(`sale_date`,0) |
| s3             | RANGE            | yearweek(`sale_date`,0) |
| s4             | RANGE            | yearweek(`sale_date`,0) |
| s5             | RANGE            | yearweek(`sale_date`,0) |
|	s6													|	RANGE												|	yearweek(`sale_date`,0)	|

|	s7													|	RANGE												|	yearweek(`sale_date`,0)	|

| s999           | RANGE            | yearweek(`sale_date`,0) |
+----------------+------------------+-------------------------+
8 rows in set (0.00 sec)

Next,	let’s	add	a	couple	of	rows	to	the	table:

mysql> INSERT INTO sales
    -> VALUES
    ->  (1, 1, 1, '2020-01-18', 2765.15),
    ->  (2, 3, 4, '2020-02-07', 5322.08);
Query OK, 2 rows affected (0.18 sec)
Records: 2  Duplicates: 0  Warnings: 0

The	table	now	has	two	rows,	but	into	which	partitions	were	they	inserted?
To	find	out,	let’s	use	the	partition	subclause	of	the	from	clause	to	count



the	number	of	rows	in	each	partition:

mysql> SELECT concat('# of rows in S1 = ', count(*)) partition_rowcount
    -> FROM	sales	PARTITION	(s1) UNION ALL

    -> SELECT concat('# of rows in S2 = ', count(*)) partition_rowcount
    -> FROM	sales	PARTITION	(s2) UNION ALL

    -> SELECT concat('# of rows in S3 = ', count(*)) partition_rowcount
    -> FROM	sales	PARTITION	(s3) UNION ALL

    -> SELECT concat('# of rows in S4 = ', count(*)) partition_rowcount
    -> FROM	sales	PARTITION	(s4) UNION ALL

    -> SELECT concat('# of rows in S5 = ', count(*)) partition_rowcount
    -> FROM	sales	PARTITION	(s5) UNION ALL

    -> SELECT concat('# of rows in S6 = ', count(*)) partition_rowcount
    -> FROM	sales	PARTITION	(s6) UNION ALL

    -> SELECT concat('# of rows in S7 = ', count(*)) partition_rowcount
    -> FROM	sales	PARTITION	(s7) UNION ALL

    -> SELECT concat('# of rows in S999 = ', count(*)) partition_rowcount
    -> FROM	sales	PARTITION	(s999);

+-----------------------+
| partition_rowcount    |
+-----------------------+
| # of rows in S1 = 0   |
| # of rows in S2 = 1   |

| # of rows in S3 = 0   |
| # of rows in S4 = 0   |
| # of rows in S5 = 1   |

| # of rows in S6 = 0   |
| # of rows in S7 = 0   |
| # of rows in S999 = 0 |
+-----------------------+
8 rows in set (0.00 sec)

The	results	show	that	one	row	was	inserted	into	partition	S2,	and	the	other
row	was	inserted	into	the	S5	partition.	The	ability	to	query	a	specific
partition	involves	knowing	the	partitioning	scheme,	so	it	is	unlikely	that
your	user	community	will	be	executing	these	types	of	queries,	but	they	are
commonly	used	for	administrative	types	of	activities.

LIST	PARTITIONING

If	the	column	chosen	as	the	partitioning	key	contains	state	codes	(e.g.,	CA,
TX,	VA,	etc.),	currencies	(e.g.,	USD,	EUR,	JPY,	etc.),	or	some	other



enumerated	set	of	values,	you	may	want	to	utilize	list	partitioning,	which
allows	you	to	specify	which	values	will	be	assigned	to	each	partition.	For
example,	let’s	say	that	the	sales	table	includes	the	column
geo_region_cd,	which	contains	the	following	values:

+---------------+--------------------------+
| geo_region_cd | description              |
+---------------+--------------------------+
| US_NE         | United States North East |
| US_SE         | United States South East |
| US_MW         | United States Mid West   |
| US_NW         | United States North West |
| US_SW         | United States South West |
| CAN           | Canada                   |
| MEX           | Mexico                   |
| EUR_E         | Eastern Europe           |
| EUR_W         | Western Europe           |
| CHN           | China                    |
| JPN           | Japan                    |
| IND           | India                    |
| KOR           | Korea                    |
+---------------+--------------------------+
13 rows in set (0.00 sec)

You	could	group	these	values	into	geographic	regions	and	create	a
partition	for	each	one,	as	in:

mysql> CREATE TABLE sales
    ->  (sale_id INT NOT NULL,
    ->   cust_id INT NOT NULL,
    ->   store_id INT NOT NULL,
    ->   sale_date DATE NOT NULL,
    ->   geo_region_cd VARCHAR(6) NOT NULL,
    ->   amount DECIMAL(9,2)
    ->  )
    -> PARTITION BY LIST COLUMNS (geo_region_cd)
    ->  (PARTITION NORTHAMERICA VALUES IN ('US_NE','US_SE','US_MW',
    ->                                     'US_NW','US_SW','CAN','MEX'),
    ->   PARTITION EUROPE VALUES IN ('EUR_E','EUR_W'),
    ->   PARTITION ASIA VALUES IN ('CHN','JPN','IND')
    ->  );
Query OK, 0 rows affected (1.13 sec)



The	table	has	three	partitions,	where	each	partition	includes	a	set	of	two	or
more	geo_region_cd	values.	Next,	let’s	add	a	few	rows	to	the	table:

mysql> INSERT INTO sales
    -> VALUES
    ->  (1, 1, 1, '2020-01-18', 'US_NE', 2765.15),
    ->  (2, 3, 4, '2020-02-07', 'CAN', 5322.08),
    ->  (3, 6, 27, '2020-03-11', 'KOR', 4267.12);
ERROR	1526	(HY000):	Table	has	no	partition	for	value	from	

column_list

It	looks	like	there	was	a	problem,	and	the	error	message	indicates	that	one
of	the	geographic	region	codes	was	not	assigned	to	a	partition.	Looking	at
the	create table	statement,	I	see	that	I	forgot	to	add	Korea	to	the	asia
partition.	This	can	be	fixed	using	an	alter table	statement:

mysql> ALTER TABLE sales REORGANIZE PARTITION ASIA INTO
    ->  (PARTITION ASIA VALUES IN ('CHN','JPN','IND', 'KOR'));

Query OK, 0 rows affected (1.28 sec)
Records: 0  Duplicates: 0  Warnings: 0

That	seemed	to	do	the	trick,	but	let’s	check	the	metadata	just	to	be	sure:

mysql> SELECT partition_name, partition_expression,
    ->   partition_description
    -> FROM information_schema.partitions
    -> WHERE table_name = 'sales'
    -> ORDER BY partition_ordinal_position;
+----------------+----------------------+---------------------------------+
| PARTITION_NAME | PARTITION_EXPRESSION | PARTITION_DESCRIPTION           |
+----------------+----------------------+---------------------------------+
| NORTHAMERICA   | `geo_region_cd`      | 'US_NE','US_SE','US_MW','US_NW',|
|                |                      | 'US_SW','CAN','MEX'             |
| EUROPE         | `geo_region_cd`      | 'EUR_E','EUR_W'                 |
| ASIA           | `geo_region_cd`      | 
'CHN','JPN','IND','KOR'									|

+----------------+----------------------+---------------------------------+
3 rows in set (0.00 sec)

Korea	has	indeed	been	added	to	the	asia	partition,	and	the	data	insertion
will	now	proceed	without	any	issues:



mysql> INSERT INTO sales
    -> VALUES
    ->  (1, 1, 1, '2020-01-18', 'US_NE', 2765.15),
    ->  (2, 3, 4, '2020-02-07', 'CAN', 5322.08),
    ->  (3, 6, 27, '2020-03-11', 'KOR', 4267.12);

Query OK, 3 rows affected (0.26 sec)
Records: 3  Duplicates: 0  Warnings: 0

While	range	partitioning	allows	for	a	maxvalue	partition	to	catch	any	rows
that	don’t	map	to	any	other	partition,	it’s	important	to	keep	in	mind	that
list	partitioning	doesn’t	provide	for	a	spillover	partition.	Thus,	any	time
you	need	to	add	another	column	value	(e.g.,	the	company	starts	selling
products	in	Australia),	you	will	need	to	modify	the	partitioning	definition
before	rows	with	the	new	value	can	be	added	to	the	table.

HASH	PARTITIONING

If	your	partition	key	column	doesn’t	lend	itself	to	range	or	list	partitioning,
there	is	a	third	option	that	endeavors	to	distribute	rows	evenly	across	a	set
of	partitions.	The	server	does	this	by	applying	a	hashing	function	to	the
column	value,	and	this	type	of	partitioning	is	(not	surprisingly)	called	hash
partitioning.	Unlike	list	partitioning,	where	the	column	chosen	as	the
partitioning	key	should	contain	only	a	small	number	of	values,	hash
partitioning	works	best	when	the	partitioning	key	column	contains	a	large
number	of	distinct	values.	Here’s	another	version	of	the	sales	table	but
with	four	hash	partitions	generated	by	hashing	the	values	in	the	cust_id
column:

mysql> CREATE TABLE sales
    ->  (sale_id INT NOT NULL,
    ->   cust_id INT NOT NULL,
    ->   store_id INT NOT NULL,
    ->   sale_date DATE NOT NULL,
    ->   amount DECIMAL(9,2)
    ->  )
    -> PARTITION BY HASH (cust_id)
    ->   PARTITIONS 4



    ->    (PARTITION H1,
    ->     PARTITION H2,
    ->     PARTITION H3,
    ->     PARTITION H4
    ->    );
Query OK, 0 rows affected (1.50 sec)

When	rows	are	added	to	the	sales	table,	they	will	be	evenly	distributed
across	the	four	partitions,	which	I	named	H1,	H2,	H3,	and	H4.	In	order	to
see	how	good	a	job	it	does,	let’s	add	16	rows,	each	with	a	different	value
for	the	cust_id	column:

mysql> INSERT INTO sales
    -> VALUES
    ->  (1, 1, 1, '2020-01-18', 1.1), (2, 3, 4, '2020-02-07', 1.2),
    ->  (3, 17, 5, '2020-01-19', 1.3), (4, 23, 2, '2020-02-08', 1.4),
    ->  (5, 56, 1, '2020-01-20', 1.6), (6, 77, 5, '2020-02-09', 1.7),
    ->  (7, 122, 4, '2020-01-21', 1.8), (8, 153, 1, '2020-02-10', 1.9),
    ->  (9, 179, 5, '2020-01-22', 2.0), (10, 244, 2, '2020-02-11', 2.1),
    ->  (11, 263, 1, '2020-01-23', 2.2), (12, 312, 4, '2020-02-12', 2.3),
    ->  (13, 346, 2, '2020-01-24', 2.4), (14, 389, 3, '2020-02-13', 2.5),
    ->  (15, 472, 1, '2020-01-25', 2.6), (16, 502, 1, '2020-02-14', 2.7);
Query OK, 16 rows affected (0.19 sec)
Records: 16  Duplicates: 0  Warnings: 0

If	the	hashing	function	does	a	good	job	of	distributing	the	rows	evenly,	we
should	ideally	see	four	rows	in	each	of	the	four	partitions:

mysql> SELECT concat('# of rows in H1 = ', count(*)) partition_rowcount
    -> FROM sales PARTITION (h1) UNION ALL
    -> SELECT concat('# of rows in H2 = ', count(*)) partition_rowcount
    -> FROM sales PARTITION (h2) UNION ALL
    -> SELECT concat('# of rows in H3 = ', count(*)) partition_rowcount
    -> FROM sales PARTITION (h3) UNION ALL
    -> SELECT concat('# of rows in H4 = ', count(*)) partition_rowcount
    -> FROM sales PARTITION (h4);
+---------------------+
| partition_rowcount  |
+---------------------+
| # of rows in H1 = 4 |
| # of rows in H2 = 5 |
| # of rows in H3 = 3 |
| # of rows in H4 = 4 |
+---------------------+



4 rows in set (0.00 sec)

Given	that	only	16	rows	were	inserted,	this	is	a	pretty	good	distribution,
and	as	the	number	of	rows	increases,	each	partition	should	contain	close	to
25%	of	the	rows	as	long	as	there	are	a	reasonably	large	number	of	distinct
values	for	the	cust_id	column.

COMPOSITE	PARTITIONING

If	you	need	finer-grained	control	of	how	data	is	allocated	to	your
partitions,	you	can	employ	composite	partitioning,	which	allows	you	to
use	two	different	types	of	partitioning	for	the	same	table.	With	composite
partitioning,	the	first	partitioning	method	defines	the	partitions,	and	the
second	partitioning	method	defines	the	subpartitions.	Here’s	an	example,
again	using	the	sales	table,	utilizing	both	range	and	hash	partitioning:

mysql> CREATE TABLE sales
    ->  (sale_id INT NOT NULL,
    ->   cust_id INT NOT NULL,
    ->   store_id INT NOT NULL,
    ->   sale_date DATE NOT NULL,
    ->   amount DECIMAL(9,2)
    ->  )
    -> PARTITION BY RANGE (yearweek(sale_date))
    -> SUBPARTITION BY HASH (cust_id)
    ->  (PARTITION s1 VALUES LESS THAN (202002)
    ->     (SUBPARTITION s1_h1,
    ->      SUBPARTITION s1_h2,
    ->      SUBPARTITION s1_h3,
    ->      SUBPARTITION s1_h4),
    ->   PARTITION s2 VALUES LESS THAN (202003)
    ->     (SUBPARTITION s2_h1,
    ->      SUBPARTITION s2_h2,
    ->      SUBPARTITION s2_h3,
    ->      SUBPARTITION s2_h4),
    ->   PARTITION s3 VALUES LESS THAN (202004)
    ->     (SUBPARTITION s3_h1,
    ->      SUBPARTITION s3_h2,
    ->      SUBPARTITION s3_h3,
    ->      SUBPARTITION s3_h4),
    ->   PARTITION s4 VALUES LESS THAN (202005)
    ->     (SUBPARTITION s4_h1,



    ->      SUBPARTITION s4_h2,
    ->      SUBPARTITION s4_h3,
    ->      SUBPARTITION s4_h4),
    ->   PARTITION s5 VALUES LESS THAN (202006)
    ->     (SUBPARTITION s5_h1,
    ->      SUBPARTITION s5_h2,
    ->      SUBPARTITION s5_h3,
    ->      SUBPARTITION s5_h4),
    ->   PARTITION s999 VALUES LESS THAN (MAXVALUE)
    ->     (SUBPARTITION s999_h1,
    ->      SUBPARTITION s999_h2,
    ->      SUBPARTITION s999_h3,
    ->      SUBPARTITION s999_h4)
    ->  );
Query OK, 0 rows affected (9.72 sec)

There	are	6	partitions,	each	having	4	subpartitions,	for	a	total	of	24
subpartitions.	Next,	let’s	reinsert	the	16	rows	from	the	earlier	example	for
hash	partitioning:

mysql> INSERT INTO sales
    -> VALUES
    ->  (1, 1, 1, '2020-01-18', 1.1), (2, 3, 4, '2020-02-07', 1.2),
    ->  (3, 17, 5, '2020-01-19', 1.3), (4, 23, 2, '2020-02-08', 1.4),
    ->  (5, 56, 1, '2020-01-20', 1.6), (6, 77, 5, '2020-02-09', 1.7),
    ->  (7, 122, 4, '2020-01-21', 1.8), (8, 153, 1, '2020-02-10', 1.9),
    ->  (9, 179, 5, '2020-01-22', 2.0), (10, 244, 2, '2020-02-11', 2.1),
    ->  (11, 263, 1, '2020-01-23', 2.2), (12, 312, 4, '2020-02-12', 2.3),
    ->  (13, 346, 2, '2020-01-24', 2.4), (14, 389, 3, '2020-02-13', 2.5),
    ->  (15, 472, 1, '2020-01-25', 2.6), (16, 502, 1, '2020-02-14', 2.7);
Query OK, 16 rows affected (0.22 sec)
Records: 16  Duplicates: 0  Warnings: 0

When	you	query	the	sales	table,	you	can	retrieve	data	from	one	of	the
partitions,	in	which	case	you	retrieve	data	from	the	four	subpartitions
associated	with	the	partition:

mysql> SELECT *
    -> FROM sales PARTITION	(s3);

+---------+---------+----------+------------+--------+
| sale_id | cust_id | store_id | sale_date  | amount |
+---------+---------+----------+------------+--------+
|       5 |      56 |        1 | 2020-01-20 |   1.60 |
|      15 |     472 |        1 | 2020-01-25 |   2.60 |



|       3 |      17 |        5 | 2020-01-19 |   1.30 |
|       7 |     122 |        4 | 2020-01-21 |   1.80 |
|      13 |     346 |        2 | 2020-01-24 |   2.40 |
|       9 |     179 |        5 | 2020-01-22 |   2.00 |
|      11 |     263 |        1 | 2020-01-23 |   2.20 |
+---------+---------+----------+------------+--------+
7 rows in set (0.00 sec)

Because	the	table	is	subpartitioned,	you	may	also	retrieve	data	from	a
single	subpartition:

mysql> SELECT *
    -> FROM sales PARTITION (s3_h3);

+---------+---------+----------+------------+--------+
| sale_id | cust_id | store_id | sale_date  | amount |
+---------+---------+----------+------------+--------+
|       7 |     122 |        4 | 2020-01-21 |   1.80 |
|      13 |     346 |        2 | 2020-01-24 |   2.40 |
+---------+---------+----------+------------+--------+
2 rows in set (0.00 sec)

This	query	retrieves	data	only	from	the	s3_h3	subpartition	of	the	s3
partition.

Partitioning	Benefits

One	major	advantage	to	partitioning	is	that	you	may	only	need	to	interact
with	as	few	as	one	partition,	rather	than	the	entire	table.	For	example,	if
your	table	is	range-partitioned	on	the	sales_date	column	and	you
execute	a	query	that	includes	a	filter	condition	such	as	WHERE sales_date
BETWEEN '2019-12-01' AND '2020-01-15',	the	server	will	check	the
table’s	metadata	to	determine	which	partitions	actually	need	to	be
included.	This	concept	is	called	partition	pruning,	and	it	is	one	of	the
biggest	advantages	of	table	partitioning.

Similarly,	if	you	execute	a	query	that	includes	a	join	to	a	partitioned	table
and	the	query	includes	a	condition	on	the	partitioning	column,	the	server



can	exclude	any	partitions	that	do	not	contain	data	pertinent	to	the	query.
This	is	known	as	partition-wise	joins,	and	it	is	similar	to	partition	pruning
in	that	only	those	partitions	that	contain	data	needed	by	the	query	will	be
included.

From	an	administrative	standpoint,	one	of	the	main	benefits	to	partitioning
is	the	ability	to	quickly	delete	data	that	is	no	longer	needed.	For	example,
financial	data	may	need	to	be	kept	online	for	seven	years;	if	a	table	has
been	partitioned	based	on	transaction	dates,	any	partitions	holding	data
greater	than	seven	years	old	can	be	dropped.	Another	administrative
advantage	to	partitioned	tables	is	the	ability	to	perform	updates	on
multiple	partitions	simultaneously,	which	can	greatly	reduce	the	time
needed	to	touch	every	row	in	a	table.

Clustering
With	enough	storage	combined	with	a	reasonable	partitioning	strategy,
you	can	store	a	great	deal	of	data	in	a	single	relational	database.	But	what
happens	if	you	need	to	handle	thousands	of	concurrent	users	or	generate
tens	of	thousands	of	reports	during	a	nightly	cycle?	Even	if	you	have
sufficient	data	storage,	you	may	not	have	enough	CPU,	memory,	or
network	bandwidth	within	a	single	server.	One	potential	answer	is
clustering,	which	allows	multiple	servers	to	act	as	a	single	database.

Although	there	are	several	different	clustering	architectures,	for	the
purposes	of	this	discussion	I	am	referring	to	shared-disk/shared-cache
configurations,	where	every	server	in	the	cluster	has	access	to	all	disks,
and	data	cached	in	one	server	can	be	accessed	by	any	other	server	in	the
cluster.	With	this	type	of	architecture,	an	application	server	could	attach	to
any	one	of	the	database	servers	in	the	cluster,	with	connections



automatically	failing	over	to	another	server	in	the	cluster	in	case	of	failure.
With	an	eight-server	cluster,	you	should	be	able	to	handle	a	very	large
number	of	concurrent	users	and	associated	queries/reports/jobs.

Of	the	commercial	database	vendors,	Oracle	is	the	leader	in	this	space,
with	many	of	the	world’s	biggest	companies	using	the	Oracle	Exadata
platform	to	host	extremely	large	databases	accessed	by	thousands	of
concurrent	users.	However,	even	this	platform	fails	to	meet	the	needs	of
the	biggest	companies,	which	led	Google,	Facebook,	Amazon,	and	other
companies	to	blaze	new	trails.

Sharding
Let’s	say	you	have	been	hired	as	the	data	architect	for	a	new	social	media
company.	You	are	told	to	expect	approximately	one	billion	users,	each	of
whom	will	generate	3.7	messages	per	day	on	average,	and	the	data	must
be	available	indefinitely.	After	performing	a	few	calculations,	you
determine	that	you	would	exhaust	the	biggest	available	relational	database
platform	in	less	than	a	year.	One	possibility	would	be	to	partition	not	just
individual	tables	but	the	entire	database.	Known	as	sharding,	this
approach	partitions	the	data	across	multiple	databases	(called	shards),	so	it
is	similar	to	table	partitioning	but	on	a	larger	scale	and	with	far	more
complexity.	If	you	were	to	employ	this	strategy	for	the	social	media
company,	you	might	decide	to	implement	100	separate	databases,	each
one	hosting	the	data	for	approximately	10	million	users.

Sharding	is	a	complex	topic,	and	since	this	is	an	introductory	book,	I	will
refrain	from	going	into	detail,	but	here	are	a	few	of	the	issues	that	would
need	to	be	addressed:



You	will	need	to	choose	a	sharding	key,	which	is	the	value	used
to	determine	to	which	database	to	connect.

While	large	tables	will	be	divided	into	pieces,	with	individual
rows	assigned	to	a	single	shard,	smaller	reference	tables	may
need	to	be	replicated	to	all	shards,	and	a	strategy	needs	to	be
defined	for	how	reference	data	can	be	modified	and	changes
propagated	to	all	shards.

If	individual	shards	become	too	large	(e.g.,	the	social	media
company	now	has	two	billion	users),	you	will	need	a	plan	for
adding	more	shards	and	redistributing	data	across	the	shards.

When	you	need	to	make	schema	changes,	you	will	need	to	have	a
strategy	for	deploying	the	changes	across	all	of	the	shards	so	that
all	schemas	stay	in	sync.

If	application	logic	needs	to	access	data	stored	in	two	or	more
shards,	you	need	to	have	a	strategy	for	how	to	query	across
multiple	databases	and	also	how	to	implement	transactions	across
multiple	databases.

If	this	seems	complicated,	that’s	because	it	is,	and	by	the	late	2000s	many
companies	began	looking	for	new	approaches.	The	next	section	looks	at
other	strategies	for	handling	very	large	data	sets	completely	outside	the
realm	of	relational	databases.

Big	Data
After	spending	some	time	weighing	the	pros	and	cons	of	sharding,	let’s
say	that	you	(the	data	architect	of	the	social	media	company)	decide	to
investigate	other	approaches.	Rather	than	attempting	to	forge	your	own
path,	you	might	benefit	from	reviewing	the	work	done	by	other	companies
that	deal	with	massive	amounts	of	data:	companies	like	Amazon,	Google,
Facebook,	and	Twitter.	Together,	the	set	of	technologies	pioneered	by



these	companies	(and	others)	has	been	branded	as	big	data,	which	has
become	an	industry	buzzword	but	has	several	possible	definitions.	One
way	to	define	the	boundaries	of	big	data	is	with	the	“3	Vs”:

Volume
In	this	context,	volume	generally	means	billions	or	trillions	of	data
points.

Velocity
This	is	a	measure	of	how	quickly	data	arrives.

Variety
This	means	that	data	is	not	always	structured	(as	in	rows	and	columns
in	a	relational	database)	but	can	also	be	unstructured	(e.g.,	emails,
videos,	photos,	audio	files,	etc.).

So,	one	way	to	characterize	big	data	is	any	system	designed	to	handle	a
huge	amount	of	data	of	various	formats	arriving	at	a	rapid	pace.	The
following	sections	offer	a	quick	description	of	some	of	the	big	data
technologies	that	have	evolved	over	the	past	15	years	or	so.

Hadoop

Hadoop	is	best	described	as	an	ecosystem,	or	a	set	of	technologies	and
tools	that	work	together.	Some	of	the	major	components	of	Hadoop
include:

Hadoop	Distributed	File	System	(HDFS)
Like	the	name	implies,	HDFS	enables	file	management	across	a	large
number	of	servers.

MapReduce
This	technology	processes	large	amounts	of	structured	and
unstructured	data	by	breaking	a	task	into	many	small	pieces	that	can	be
run	in	parallel	across	many	servers.



YARN
This	is	a	resource	manager	and	job	scheduler	for	HDFS.

Together,	these	technologies	allow	for	the	storage	and	processing	of	files
across	hundreds	or	even	thousands	of	servers	acting	as	a	single	logical
system.	While	Hadoop	is	widely	used,	querying	the	data	using
MapReduce	generally	requires	a	programmer,	which	has	led	to	the
development	of	several	SQL	interfaces,	including	Hive,	Impala,	and	Drill.

NoSQL	and	Document	Databases

In	a	relational	database,	data	must	generally	conform	to	a	predefined
schema	consisting	of	tables	made	up	of	columns	holding	numbers,	strings,
dates,	etc.	What	happens,	however,	if	the	structure	of	the	data	isn’t	known
beforehand	or	if	the	structure	is	known	but	changes	frequently?	The
answer	for	many	companies	is	to	combine	both	the	data	and	schema
definition	into	documents	using	a	format	such	as	XML	or	JSON	and	then
store	the	documents	in	a	database.	By	doing	so,	various	types	of	data	can
be	stored	in	the	same	database	without	the	need	to	make	schema
modifications,	which	makes	storage	easier	but	puts	the	burden	on	query
and	analytic	tools	to	make	sense	of	the	data	stored	in	the	documents.

Document	databases	are	a	subset	of	what	are	called	NoSQL	databases,
which	typically	store	data	using	a	simple	key-value	mechanism.	For
example,	using	a	document	database	such	as	MongoDB,	you	could	utilize
the	customer	ID	as	the	key	to	store	a	JSON	document	containing	all	of	the
customer’s	data,	and	other	users	can	read	the	schema	stored	within	the
document	to	make	sense	of	the	data	stored	within.

Cloud	Computing

Prior	to	the	advent	of	big	data,	most	companies	had	to	build	their	own	data



centers	to	house	the	database,	web,	and	application	servers	used	across	the
enterprise.	With	the	advent	of	cloud	computing,	you	can	choose	to
essentially	outsource	your	data	center	to	platforms	such	as	Amazon	Web
Services	(AWS),	Microsoft	Azure,	or	Google	Cloud.	One	of	the	biggest
benefits	to	hosting	your	services	in	the	cloud	is	instant	scalability,	which
allows	you	to	quickly	dial	up	or	down	the	amount	of	computing	power
needed	to	run	your	services.	Startups	love	these	platforms	because	they
can	start	writing	code	without	spending	any	money	up	front	for	servers,
storage,	networks,	or	software	licenses.

As	far	as	databases	are	concerned,	a	quick	look	at	AWS’s	database	and
analytics	offerings	yields	the	following	options:

Relational	databases	(MySQL,	Aurora,	PostgreSQL,	MariaDB,
Oracle,	and	SQL	Server)

In-memory	database	(ElastiCache)

Data	warehousing	database	(Redshift)

NoSQL	database	(DynamoDB)

Document	database	(DocumentDB)

Graph	database	(Neptune)

Time-series	database	(TimeStream)

Hadoop	(EMR)

Data	lakes	(Lake	Formation)

While	relational	databases	dominated	the	landscape	up	until	the	mid-
2000s,	it’s	pretty	easy	to	see	that	companies	are	now	mixing	and	matching
various	platforms	and	that	relational	databases	may	become	less	popular
over	time.



Conclusion
Databases	are	getting	larger,	but	at	the	same	time	storage,	clustering,	and
partitioning	technologies	are	becoming	more	robust.	Working	with	huge
amounts	of	data	can	be	quite	challenging,	regardless	of	the	technology
stack.	Whether	you	use	relational	databases,	big	data	platforms,	or	a
variety	of	database	servers,	SQL	is	evolving	to	facilitate	data	retrieval
from	various	technologies.	This	will	be	the	subject	of	the	last	chapter	in
this	book,	where	I	will	demonstrate	the	use	of	a	SQL	engine	to	query	data
stored	in	multiple	formats.



Chapter	18.	SQL	and	Big	Data

While	most	of	the	content	in	this	book	covers	the	various	features	of	the
SQL	language	when	using	a	relational	database	such	as	MySQL,	the	data
landscape	has	changed	quite	a	bit	over	the	past	decade,	and	SQL	is
changing	to	meet	the	needs	of	today’s	rapidly	evolving	environments.
Many	organizations	that	had	used	relational	databases	exclusively	just	a
few	years	ago	are	now	also	housing	data	in	Hadoop	clusters,	data	lakes,
and	NoSQL	databases.	At	the	same	time,	companies	are	struggling	to	find
ways	to	gain	insights	from	the	ever-growing	volumes	of	data,	and	the	fact
that	this	data	is	now	spread	across	multiple	data	stores,	perhaps	both	on-
site	and	in	the	cloud,	makes	this	a	daunting	task.

Because	SQL	is	used	by	millions	of	people	and	has	been	integrated	into
thousands	of	applications,	it	makes	sense	to	leverage	SQL	to	harness	this
data	and	make	it	actionable.	Over	the	past	several	years,	a	new	breed	of
tools	has	emerged	to	enable	SQL	access	to	structured,	semi-structured,	and
unstructured	data:	tools	such	as	Presto,	Apache	Drill,	and	Toad	Data	Point.
This	chapter	explores	one	of	these	tools,	Apache	Drill,	to	demonstrate	how
data	in	different	formats	and	stored	on	different	servers	can	be	brought
together	for	reporting	and	analysis.

Introduction	to	Apache	Drill
There	have	been	numerous	tools	and	interfaces	developed	to	allow	SQL
access	to	data	stored	in	Hadoop,	NoSQL,	Spark,	and	cloud-based
distributed	filesystems.	Examples	include	Hive,	which	was	one	of	the	first



attempts	to	allow	users	to	query	data	stored	in	Hadoop,	and	Spark	SQL,
which	is	a	library	used	to	query	data	stored	in	various	formats	from	within
Spark.	One	relative	newcomer	is	the	open	source	Apache	Drill,	which	first
hit	the	scene	in	2015	and	has	the	following	compelling	features:

Facilitates	queries	across	multiple	data	formats,	including
delimited	data,	JSON,	Parquet,	and	log	files

Connects	to	relational	databases,	Hadoop,	NoSQL,	HBase,	and
Kafka,	as	well	as	specialized	data	formats	such	as	PCAP,
BlockChain,	and	others

Allows	creation	of	custom	plug-ins	to	connect	to	most	any	other
data	store

Requires	no	up-front	schema	definitions

Supports	the	SQL:2003	standard

Works	with	popular	business	intelligence	(BI)	tools	like	Tableau
and	Apache	Superset

Using	Drill,	you	can	connect	to	any	number	of	data	sources	and	begin
querying,	without	the	need	to	first	set	up	a	metadata	repository.	While	it	is
beyond	the	scope	of	this	book	to	discuss	the	installation	and	configuration
options	for	Apache	Drill,	if	you	are	interested	in	learning	more,	I	highly
recommend	Learning	Apache	Drill	by	Charles	Givre	and	Paul	Rogers
(O’Reilly).

Querying	Files	Using	Drill
Let’s	start	by	using	Drill	to	query	data	in	a	file.	Drill	understands	how	to
read	several	different	file	formats,	including	packet	capture	(PCAP)	files,
which	are	in	binary	format	and	contain	information	about	packets
traveling	over	a	network.	All	I	have	to	do	when	I	want	to	query	a	PCAP

https://learning.oreilly.com/library/view/learning-apache-drill/9781492032786/


file	is	to	configure	Drill’s	dfs	(distributed	filesystem)	plug-in	to	include
the	path	to	the	directory	containing	my	files,	and	I’m	ready	to	write
queries.

The	first	thing	I’d	like	to	do	is	find	out	what	columns	are	available	in	the
file	I	will	be	querying.	Drill	includes	partial	support	for
information_schema	(covered	in	Chapter	15),	so	you	can	find	out	high-
level	information	about	the	data	files	in	your	workspace:

apache drill> SELECT file_name, is_directory, is_file, permission
. . . . . . > FROM information_schema.`files`

. . . . . . > WHERE schema_name = 'dfs.data';
+-------------------+--------------+---------+------------+
|     file_name     | is_directory | is_file | permission |
+-------------------+--------------+---------+------------+
| attack-trace.pcap | false        | true    | rwxrwx---  |

+-------------------+--------------+---------+------------+
1 row selected (0.238 seconds)

The	results	show	that	I	have	a	single	file	named	attack-trace.pcap	in	my
data	workspace,	which	is	useful	information,	but	I	can’t	query
information_schema.columns	to	find	out	what	columns	are	available	in
the	file.	However,	executing	a	query	that	returns	no	rows	against	the	file
will	show	the	set	of	available	columns:

apache drill> SELECT * FROM dfs.data.`attack-trace.pcap`
. . . . . . > WHERE	1=2;

+------+---------+-----------+-----------------+--------+--------+
| type | network | timestamp | timestamp_micro | src_ip | dst_ip | 
+------+---------+-----------+-----------------+--------+--------+
   ​----------+----------+-----------------+-----------------+-------------+
 ​   src_port | dst_port | src_mac_address | dst_mac_address | tcp_session |
​   ----------+----------+-----------------+-----------------+-------------+
   ​---------+-----------+--------------+---------------+----------------+
​    tcp_ack | tcp_flags | tcp_flags_ns | tcp_flags_cwr | tcp_flags_ece  |
   ---------+-----------+--------------+---------------+----------------+
   ---------------------------+--------------------------------------+
​    tcp_flags_ece_ecn_capable | tcp_flags_ece_congestion_experienced |
   ---------------------------+--------------------------------------+
​   ---------------+---------------+---------------+---------------+

1



​    tcp_flags_urg | tcp_flags_ack | tcp_flags_psh | tcp_flags_rst | 
​   ---------------+---------------+---------------+---------------+
​   ---------------+---------------+------------------+---------------+
    tcp_flags_syn | tcp_flags_fin | tcp_parsed_flags | packet_length |
​   ---------------+---------------+------------------+---------------+
   ​------------+------+
    is_corrupt | data |
​   ------------+------+

No rows selected (0.285 seconds)

Now	that	I	know	the	names	of	the	columns	in	a	PCAP	file,	I’m	ready	to
write	queries.	Here’s	a	query	that	counts	the	number	of	packets	sent	from
each	IP	address	to	each	destination	port:

apache drill> SELECT src_ip, dst_port,
. . . . . . >   count(*) AS packet_count
. . . . . . > FROM dfs.data.`attack-trace.pcap`
. . . . . . > GROUP BY src_ip, dst_port;
+----------------+----------+--------------+
|     src_ip     | dst_port | packet_count |
+----------------+----------+--------------+
| 98.114.205.102 | 445      | 18           |
| 192.150.11.111 | 1821     | 3            |
| 192.150.11.111 | 1828     | 17           |
| 98.114.205.102 | 1957     | 6            |
| 192.150.11.111 | 1924     | 6            |
| 192.150.11.111 | 8884     | 15           |
| 98.114.205.102 | 36296    | 12           |
| 98.114.205.102 | 1080     | 159          |
| 192.150.11.111 | 2152     | 112          |
+----------------+----------+--------------+
9 rows selected (0.254 seconds)

Here’s	another	query	that	aggregates	packet	information	for	each	second:

apache drill> SELECT trunc(extract(second from `timestamp`)) as packet_time,
. . . . . . >   count(*) AS num_packets,
. . . . . . >   sum(packet_length) AS tot_volume
. . . . . . > FROM dfs.data.`attack-trace.pcap`
. . . . . . > GROUP BY trunc(extract(second from `timestamp`));
+-------------+-------------+------------+
| packet_time | num_packets | tot_volume |
+-------------+-------------+------------+
| 28.0        | 15          | 1260       |



| 29.0        | 12          | 1809       |
| 30.0        | 13          | 4292       |
| 31.0        | 3           | 286        |
| 32.0        | 2           | 118        |
| 33.0        | 15          | 1054       |
| 34.0        | 35          | 14446      |
| 35.0        | 29          | 16926      |
| 36.0        | 25          | 16710      |
| 37.0        | 25          | 16710      |
| 38.0        | 26          | 17788      |
| 39.0        | 23          | 15578      |
| 40.0        | 25          | 16710      |
| 41.0        | 23          | 15578      |
| 42.0        | 30          | 20052      |
| 43.0        | 25          | 16710      |
| 44.0        | 22          | 7484       |
+-------------+-------------+------------+
17 rows selected (0.422 seconds)

In	this	query,	I	needed	to	put	backticks	(`)	around	timestamp	because	it	is
a	reserved	word.

You	can	query	files	stored	locally,	on	your	network,	in	a	distributed
filesystem,	or	in	the	cloud.	Drill	has	built-in	support	for	many	file	types,
but	you	can	also	build	your	own	plug-in	to	allow	Drill	to	query	any	type	of
file.	The	next	two	sections	will	explore	querying	data	stored	in	a	database.

Querying	MySQL	Using	Drill
Drill	can	connect	to	any	relational	database	via	a	JDBC	driver,	so	the	next
logical	step	is	to	show	how	Drill	can	query	the	Sakila	sample	database
used	for	the	examples	in	this	book.	All	you	need	to	do	to	get	started	is	to
load	the	JDBC	driver	for	MySQL	and	configure	Drill	to	connect	to	the
MySQL	database.

NOTE
At	this	point,	you	may	be	wondering,	“Why	would	I	use	Drill	to	query	MySQL?”	One	reason	is



that	(as	you	will	see	at	the	end	of	this	chapter)	you	can	write	queries	using	Drill	that	combine
data	from	different	sources,	so	you	might	write	a	query	that	joins	data	from	MySQL,	Hadoop,
and	comma-delimited	files,	for	example.

The	first	step	is	to	choose	a	database:

apache drill (information_schema)> use	mysql.sakila;

+------+------------------------------------------+
|  ok  |                 summary                  |
+------+------------------------------------------+
| true | Default schema changed to [mysql.sakila] |
+------+------------------------------------------+
1 row selected (0.062 seconds)

After	choosing	the	database,	you	can	issue	the	show tables	command	to
see	all	of	the	tables	available	in	the	chosen	schema:

apache drill (mysql.sakila)> show	tables;

+--------------+----------------------------+
| TABLE_SCHEMA |         TABLE_NAME         |
+--------------+----------------------------+
| mysql.sakila | actor                      |
| mysql.sakila | address                    |
| mysql.sakila | category                   |
| mysql.sakila | city                       |
| mysql.sakila | country                    |
| mysql.sakila | customer                   |
| mysql.sakila | film                       |
| mysql.sakila | film_actor                 |
| mysql.sakila | film_category              |
| mysql.sakila | film_text                  |
| mysql.sakila | inventory                  |
| mysql.sakila | language                   |
| mysql.sakila | payment                    |
| mysql.sakila | rental                     |
| mysql.sakila | sales                      |
| mysql.sakila | staff                      |
| mysql.sakila | store                      |
| mysql.sakila | actor_info                 |
| mysql.sakila | customer_list              |
| mysql.sakila | film_list                  |
| mysql.sakila | nicer_but_slower_film_list |
| mysql.sakila | sales_by_film_category     |



| mysql.sakila | sales_by_store             |
| mysql.sakila | staff_list                 |
+--------------+----------------------------+
24 rows selected (0.147 seconds)

I	will	start	by	executing	a	few	queries	demonstrated	in	earlier	chapters.
Here’s	a	simple	two-table	join	from	Chapter	5:

apache drill (mysql.sakila)> SELECT a.address_id, a.address, ct.city
. . . . . . . . . . . . . )> FROM address a
. . . . . . . . . . . . . )>   INNER JOIN city ct
. . . . . . . . . . . . . )>   ON a.city_id = ct.city_id
. . . . . . . . . . . . . )> WHERE a.district = 'California';
+------------+------------------------+----------------+
| address_id |        address         |      city      |
+------------+------------------------+----------------+
| 6          | 1121 Loja Avenue       | San Bernardino |
| 18         | 770 Bydgoszcz Avenue   | Citrus Heights |
| 55         | 1135 Izumisano Parkway | Fontana        |
| 116        | 793 Cam Ranh Avenue    | Lancaster      |
| 186        | 533 al-Ayn Boulevard   | Compton        |
| 218        | 226 Brest Manor        | Sunnyvale      |
| 274        | 920 Kumbakonam Loop    | Salinas        |
| 425        | 1866 al-Qatif Avenue   | El Monte       |
| 599        | 1895 Zhezqazghan Drive | Garden Grove   |
+------------+------------------------+----------------+
9 rows selected (3.523 seconds)

The	next	query	comes	from	Chapter	8	and	includes	both	a	group by
clause	and	a	having	clause:

apache drill (mysql.sakila)> SELECT fa.actor_id, f.rating, 
. . . . . . . . . . . . . )>   count(*) num_films
. . . . . . . . . . . . . )> FROM film_actor fa
. . . . . . . . . . . . . )>   INNER JOIN film f
. . . . . . . . . . . . . )>   ON fa.film_id = f.film_id
. . . . . . . . . . . . . )> WHERE f.rating IN ('G','PG')
. . . . . . . . . . . . . )> GROUP	BY	fa.actor_id,	f.rating

. . . . . . . . . . . . . )> HAVING	count(*)	>	9;

+----------+--------+-----------+
| actor_id | rating | num_films |
+----------+--------+-----------+
| 137      | PG     | 10        |
| 37       | PG     | 12        |
| 180      | PG     | 12        |



| 7        | G      | 10        |
| 83       | G      | 14        |
| 129      | G      | 12        |
| 111      | PG     | 15        |
| 44       | PG     | 12        |
| 26       | PG     | 11        |
| 92       | PG     | 12        |
| 17       | G      | 12        |
| 158      | PG     | 10        |
| 147      | PG     | 10        |
| 14       | G      | 10        |
| 102      | PG     | 11        |
| 133      | PG     | 10        |
+----------+--------+-----------+
16 rows selected (0.277 seconds)

Finally,	here	is	a	query	from	Chapter	16	that	includes	three	different
ranking	functions:

apache drill (mysql.sakila)> SELECT customer_id, count(*) num_rentals,
. . . . . . . . . . . . . )>   row_number() 

. . . . . . . . . . . . . )>     over (order by count(*) desc) 

. . . . . . . . . . . . . )>       row_number_rnk,

. . . . . . . . . . . . . )>   rank() 

. . . . . . . . . . . . . )>     over (order by count(*) desc) rank_rnk,

. . . . . . . . . . . . . )>   dense_rank() 

. . . . . . . . . . . . . )>     over (order by count(*) desc)

. . . . . . . . . . . . . )>       dense_rank_rnk

. . . . . . . . . . . . . )> FROM rental

. . . . . . . . . . . . . )> GROUP BY customer_id

. . . . . . . . . . . . . )> ORDER BY 2 desc;
+-------------+-------------+----------------+----------+----------------+
| customer_id | num_rentals | row_number_rnk | rank_rnk | dense_rank_rnk |
+-------------+-------------+----------------+----------+----------------+
| 148         | 46          | 1              | 1        | 1              |
| 526         | 45          | 2              | 2        | 2              |
| 144         | 42          | 3              | 3        | 3              |
| 236         | 42          | 4              | 3        | 3              |
| 75          | 41          | 5              | 5        | 4              |
| 197         | 40          | 6              | 6        | 5              |
...
| 248         | 15          | 595            | 594      | 30             |
| 61          | 14          | 596            | 596      | 31             |
| 110         | 14          | 597            | 596      | 31             |
| 281         | 14          | 598            | 596      | 31             |
| 318         | 12          | 599            | 599      | 32             |
+-------------+-------------+----------------+----------+----------------+



599 rows selected (1.827 seconds)

These	few	examples	demonstrate	Drill’s	ability	to	execute	reasonably
complex	queries	against	MySQL,	but	you	will	need	to	keep	in	mind	that
Drill	works	with	many	relational	databases,	not	just	MySQL,	so	some
features	of	the	language	may	differ	(e.g.,	data	conversion	functions).	For
more	information,	read	Drill’s	documentation	about	their	SQL
implementation.

Querying	MongoDB	Using	Drill
After	using	Drill	to	query	the	sample	Sakila	data	in	MySQL,	the	next
logical	step	is	to	convert	the	Sakila	data	to	another	commonly	used	format,
store	it	in	a	nonrelational	database,	and	use	Drill	to	query	the	data.	I
decided	to	convert	the	data	to	JSON	and	store	it	in	MongoDB,	which	is
one	of	the	more	popular	NoSQL	platforms	for	document	storage.	Drill
includes	a	plug-in	for	MongoDB	and	also	understands	how	to	read	JSON
documents,	so	it	was	relatively	easy	to	load	the	JSON	files	into	Mongo
and	begin	writing	queries.

Before	diving	into	the	queries,	let’s	take	a	look	at	the	structure	of	the
JSON	files,	since	they	aren’t	in	normalized	form.	The	first	of	the	two
JSON	files	is	films.json:

{"_id":1,
 "Actors":[
   {"First name":"PENELOPE","Last name":"GUINESS","actorId":1},
   {"First name":"CHRISTIAN","Last name":"GABLE","actorId":10},
   {"First name":"LUCILLE","Last name":"TRACY","actorId":20},
   {"First name":"SANDRA","Last name":"PECK","actorId":30},
   {"First name":"JOHNNY","Last name":"CAGE","actorId":40},
   {"First name":"MENA","Last name":"TEMPLE","actorId":53},
   {"First name":"WARREN","Last name":"NOLTE","actorId":108},
   {"First name":"OPRAH","Last name":"KILMER","actorId":162},
   {"First name":"ROCK","Last name":"DUKAKIS","actorId":188},

https://oreil.ly/d2JSe


   {"First name":"MARY","Last name":"KEITEL","actorId":198}],
 "Category":"Documentary",
 "Description":"A Epic Drama of a Feminist And a Mad Scientist
    who must Battle a Teacher in The Canadian Rockies",
 "Length":"86",
 "Rating":"PG",
 "Rental Duration":"6",
 "Replacement Cost":"20.99",
 "Special Features":"Deleted Scenes,Behind the Scenes",
 "Title":"ACADEMY DINOSAUR"},
{"_id":2,
 "Actors":[
   {"First name":"BOB","Last name":"FAWCETT","actorId":19},
   {"First name":"MINNIE","Last name":"ZELLWEGER","actorId":85},
   {"First name":"SEAN","Last name":"GUINESS","actorId":90},
   {"First name":"CHRIS","Last name":"DEPP","actorId":160}],
 "Category":"Horror",
 "Description":"A Astounding Epistle of a Database Administrator
    And a Explorer who must Find a Car in Ancient China",
 "Length":"48",
 "Rating":"G",
 "Rental Duration":"3",
 "Replacement Cost":"12.99",
 "Special Features":"Trailers,Deleted Scenes",
 "Title":"ACE GOLDFINGER"},
...
{"_id":999,
 "Actors":[
   {"First name":"CARMEN","Last name":"HUNT","actorId":52},
   {"First name":"MARY","Last name":"TANDY","actorId":66},
   {"First name":"PENELOPE","Last name":"CRONYN","actorId":104},
   {"First name":"WHOOPI","Last name":"HURT","actorId":140},
   {"First name":"JADA","Last name":"RYDER","actorId":142}],
 "Category":"Children",
 "Description":"A Fateful Reflection of a Waitress And a Boat
    who must Discover a Sumo Wrestler in Ancient China",
 "Length":"101",
 "Rating":"R",
 "Rental Duration":"5",
 "Replacement Cost":"28.99",
 "Special Features":"Trailers,Deleted Scenes",
 "Title":"ZOOLANDER FICTION"}
{"_id":1000,
 "Actors":[
   {"First name":"IAN","Last name":"TANDY","actorId":155},
   {"First name":"NICK","Last name":"DEGENERES","actorId":166},
   {"First name":"LISA","Last name":"MONROE","actorId":178}],
 "Category":"Comedy",
 "Description":"A Intrepid Panorama of a Mad Scientist And a Boy
    who must Redeem a Boy in A Monastery",



 "Length":"50",
 "Rating":"NC-17",
 "Rental Duration":"3",
 "Replacement Cost":"18.99",
 "Special Features":
 "Trailers,Commentaries,Behind the Scenes",
 "Title":"ZORRO ARK"}

There	are	1,000	documents	in	this	collection,	and	each	document	contains
a	number	of	scalar	attributes	(Title,	Rating,	_id)	but	also	includes	a	list
called	Actors,	which	contains	1	to	N	elements	consisting	of	the	actor	ID,
first	name,	and	last	name	attributes	for	every	actor	appearing	in	the	film.
Therefore,	this	file	contains	all	of	the	data	found	in	the	actor,	film,	and
film_actor	tables	within	the	MySQL	Sakila	database.

The	second	file	is	customer.json,	which	combines	data	from	the
customer,	address,	city,	country,	rental,	and	payment	tables	from	the
MySQL	Sakila	database:

{"_id":1,
 "Address":"1913 Hanoi Way",
 "City":"Sasebo",
 "Country":"Japan",
 "District":"Nagasaki",
 "First Name":"MARY",
 "Last Name":"SMITH",
 "Phone":"28303384290",
 "Rentals":[
   {"rentalId":1185,
    "filmId":611,
    "staffId":2,
    "Film Title":"MUSKETEERS WAIT",
    "Payments":[
      {"Payment Id":3,"Amount":5.99,"Payment Date":"2005-06-15 00:54:12"}],
    "Rental Date":"2005-06-15 00:54:12.0",
    "Return Date":"2005-06-23 02:42:12.0"},
   {"rentalId":1476,
    "filmId":308,
    "staffId":1,
    "Film Title":"FERRIS MOTHER",
    "Payments":[
      {"Payment Id":5,"Amount":9.99,"Payment Date":"2005-06-15 21:08:46"}],



    "Rental Date":"2005-06-15 21:08:46.0",
    "Return Date":"2005-06-25 02:26:46.0"},
...
   {"rentalId":14825,
    "filmId":317,
    "staffId":2,
    "Film Title":"FIREBALL PHILADELPHIA",
    "Payments":[
      {"Payment Id":30,"Amount":1.99,"Payment Date":"2005-08-22 01:27:57"}],
    "Rental Date":"2005-08-22 01:27:57.0",
    "Return Date":"2005-08-27 07:01:57.0"}
  ]
}

This	file	contains	599	entries	(only	one	was	shown	here),	which	are	loaded
into	Mongo	as	599	documents	in	the	customers	collection.	Each
document	contains	the	information	about	a	single	customer,	along	with	all
of	the	rentals	and	associated	payments	made	by	that	customer.
Furthermore,	the	documents	contain	nested	lists,	since	each	rental	in	the
Rentals	list	also	contains	a	list	of	Payments.

After	the	JSON	files	have	been	loaded,	the	Mongo	database	contains	two
collections	(films	and	customers),	and	the	data	in	these	collections	spans
nine	different	tables	from	the	MySQL	Sakila	database.	This	is	a	fairly
typical	scenario,	since	application	programmers	typically	work	with
collections	and	generally	prefer	not	to	deconstruct	their	data	for	storage
into	normalized	relational	tables.	The	challenge	from	an	SQL	perspective
is	to	determine	how	to	flatten	this	data	so	that	it	behaves	as	if	it	were
stored	in	multiple	tables.

To	illustrate,	let’s	construct	the	following	query	against	the	films
collection:	find	all	actors	who	have	appeared	in	10	or	more	films	rated
either	G	or	PG.	Here’s	what	the	raw	data	looks	like:

apache drill (mongo.sakila)> SELECT Rating, Actors
. . . . . . . . . . . . . )> FROM films
. . . . . . . . . . . . . )> WHERE Rating IN ('G','PG');



+--------+----------------------------------------------------------------+
| Rating |                                      Actors                    |
+--------+----------------------------------------------------------------+
| PG     |[{"First name":"PENELOPE","Last name":"GUINESS","actorId":"1"},
           {"First name":"FRANCES","Last name":"DAY-LEWIS","actorId":"48"},
           {"First name":"ANNE","Last name":"CRONYN","actorId":"49"},
           {"First name":"RAY","Last name":"JOHANSSON","actorId":"64"},
           {"First name":"PENELOPE","Last name":"CRONYN","actorId":"104"},
           {"First name":"HARRISON","Last name":"BALE","actorId":"115"},
           {"First name":"JEFF","Last name":"SILVERSTONE","actorId":"180"},
           {"First name":"ROCK","Last name":"DUKAKIS","actorId":"188"}] |
| PG     |[{"First name":"UMA","Last name":"WOOD","actorId":"13"},
           {"First name":"HELEN","Last name":"VOIGHT","actorId":"17"},
           {"First name":"CAMERON","Last name":"STREEP","actorId":"24"},
           {"First name":"CARMEN","Last name":"HUNT","actorId":"52"},
           {"First name":"JANE","Last name":"JACKMAN","actorId":"131"},
           {"First name":"BELA","Last name":"WALKEN","actorId":"196"}] |
...
| G      |[{"First name":"ED","Last name":"CHASE","actorId":"3"},
           {"First name":"JULIA","Last name":"MCQUEEN","actorId":"27"},
           {"First name":"JAMES","Last name":"PITT","actorId":"84"},
           {"First name":"CHRISTOPHER","Last name":"WEST","actorId":"163"},
           {"First name":"MENA","Last name":"HOPPER","actorId":"170"}] |
+--------+----------------------------------------------------------------+
372 rows selected (0.432 seconds)

The	Actors	field	is	a	list	of	one	or	more	actor	documents.	In	order	to
interact	with	this	data	as	if	it	were	a	table,	the	flatten	command	can	be
used	to	turn	the	list	into	a	nested	table	containing	three	fields:

apache drill (mongo.sakila)> SELECT f.Rating, flatten(Actors) actor_list

. . . . . . . . . . . . . )>   FROM films f

. . . . . . . . . . . . . )>   WHERE f.Rating IN ('G','PG');
+--------+----------------------------------------------------------------+
| Rating |                             actor_list                         |
+--------+----------------------------------------------------------------+
| PG     | {"First name":"PENELOPE","Last name":"GUINESS","actorId":"1"}  |
| PG     | {"First name":"FRANCES","Last name":"DAY-LEWIS","actorId":"48"}|
| PG     | {"First name":"ANNE","Last name":"CRONYN","actorId":"49"}      |
| PG     | {"First name":"RAY","Last name":"JOHANSSON","actorId":"64"}    |
| PG     | {"First name":"PENELOPE","Last name":"CRONYN","actorId":"104"} |
| PG     | {"First name":"HARRISON","Last name":"BALE","actorId":"115"}   |
| PG     | {"First name":"JEFF","Last name":"SILVERSTONE","actorId":"180"}|
| PG     | {"First name":"ROCK","Last name":"DUKAKIS","actorId":"188"}    |
| PG     | {"First name":"UMA","Last name":"WOOD","actorId":"13"}         |
| PG     | {"First name":"HELEN","Last name":"VOIGHT","actorId":"17"}     |
| PG     | {"First name":"CAMERON","Last name":"STREEP","actorId":"24"}   |



| PG     | {"First name":"CARMEN","Last name":"HUNT","actorId":"52"}      |
| PG     | {"First name":"JANE","Last name":"JACKMAN","actorId":"131"}    |
| PG     | {"First name":"BELA","Last name":"WALKEN","actorId":"196"}     |
...
| G      | {"First name":"ED","Last name":"CHASE","actorId":"3"}          |
| G      | {"First name":"JULIA","Last name":"MCQUEEN","actorId":"27"}    |
| G      | {"First name":"JAMES","Last name":"PITT","actorId":"84"}       |
| G      | {"First name":"CHRISTOPHER","Last name":"WEST","actorId":"163"}|
| G      | {"First name":"MENA","Last name":"HOPPER","actorId":"170"}     |
+--------+----------------------------------------------------------------+
2,119 rows selected (0.718 seconds)      |

This	query	returns	2,119	rows,	rather	than	the	372	rows	returned	by	the
previous	query,	which	indicates	that	on	average	5.7	actors	appear	in	each
G	or	PG	film.	This	query	can	then	be	wrapped	in	a	subquery	and	used	to
group	the	data	by	rating	and	actor,	as	in:

apache drill (mongo.sakila)> SELECT g_pg_films.Rating,
. . . . . . . . . . . . . )>   g_pg_films.actor_list.`First name` first_name,
. . . . . . . . . . . . . )>   g_pg_films.actor_list.`Last name` last_name,
. . . . . . . . . . . . . )>   count(*) num_films
. . . . . . . . . . . . . )> FROM
. . . . . . . . . . . . . )>  (SELECT f.Rating, flatten(Actors) actor_list
. . . . . . . . . . . . . )>   FROM films f
. . . . . . . . . . . . . )>   WHERE f.Rating IN ('G','PG')
. . . . . . . . . . . . . )>  ) g_pg_films
. . . . . . . . . . . . . )> GROUP BY g_pg_films.Rating,
. . . . . . . . . . . . . )>   g_pg_films.actor_list.`First name`,
. . . . . . . . . . . . . )>   g_pg_films.actor_list.`Last name`
. . . . . . . . . . . . . )> HAVING count(*) > 9;
+--------+------------+-------------+-----------+
| Rating | first_name |  last_name  | num_films |
+--------+------------+-------------+-----------+
| PG     | JEFF       | SILVERSTONE | 12        |
| G      | GRACE      | MOSTEL      | 10        |
| PG     | WALTER     | TORN        | 11        |
| PG     | SUSAN      | DAVIS       | 10        |
| PG     | CAMERON    | ZELLWEGER   | 15        |
| PG     | RIP        | CRAWFORD    | 11        |
| PG     | RICHARD    | PENN        | 10        |
| G      | SUSAN      | DAVIS       | 13        |
| PG     | VAL        | BOLGER      | 12        |
| PG     | KIRSTEN    | AKROYD      | 12        |
| G      | VIVIEN     | BERGEN      | 10        |
| G      | BEN        | WILLIS      | 14        |
| G      | HELEN      | VOIGHT      | 12        |



| PG     | VIVIEN     | BASINGER    | 10        |
| PG     | NICK       | STALLONE    | 12        |
| G      | DARYL      | CRAWFORD    | 12        |
| PG     | MORGAN     | WILLIAMS    | 10        |
| PG     | FAY        | WINSLET     | 10        |
+--------+------------+-------------+-----------+
18 rows selected (0.466 seconds)

The	inner	query	uses	the	flatten	command	to	create	one	row	for	every
actor	who	has	appeared	in	a	G	or	PG	movie,	and	the	outer	query	simply
performs	a	grouping	on	this	data	set.

Next,	let’s	write	a	query	against	the	customers	collection	in	Mongo.	This
is	a	bit	more	challenging	since	each	document	contains	a	list	of	film
rentals,	each	of	which	contains	a	list	of	payments.	To	make	it	a	little	more
interesting,	let’s	also	join	to	the	films	collection	in	order	to	see	how	Drill
handles	joins.	The	query	should	return	all	customers	who	have	spent	more
than	$80	to	rent	films	rated	either	G	or	PG.	Here’s	what	it	looks	like:

apache drill (mongo.sakila)> SELECT first_name, last_name,
. . . . . . . . . . . . . )>   sum(cast(cust_payments.payment_data.Amount
. . . . . . . . . . . . . )>         as decimal(4,2))) tot_payments
. . . . . . . . . . . . . )> FROM
. . . . . . . . . . . . . )>  (SELECT cust_data.first_name,
. . . . . . . . . . . . . )>     cust_data.last_name,
. . . . . . . . . . . . . )>     f.Rating,
. . . . . . . . . . . . . )>     flatten(cust_data.rental_data.Payments)
. . . . . . . . . . . . . )>       payment_data
. . . . . . . . . . . . . )>   FROM films f
. . . . . . . . . . . . . )>     INNER JOIN
. . . . . . . . . . . . . )>    (SELECT c.`First Name` first_name,
. . . . . . . . . . . . . )>       c.`Last Name` last_name,
. . . . . . . . . . . . . )>       flatten(c.Rentals) rental_data
. . . . . . . . . . . . . )>     FROM customers c
. . . . . . . . . . . . . )>    ) cust_data
. . . . . . . . . . . . . )>     ON f._id = cust_data.rental_data.filmID
. . . . . . . . . . . . . )>   WHERE f.Rating IN ('G','PG')
. . . . . . . . . . . . . )>  ) cust_payments
. . . . . . . . . . . . . )> GROUP BY first_name, last_name
. . . . . . . . . . . . . )> HAVING
. . . . . . . . . . . . . )>   sum(cast(cust_payments.payment_data.Amount
. . . . . . . . . . . . . )>         as decimal(4,2))) > 80;



+------------+-----------+--------------+
| first_name | last_name | tot_payments |
+------------+-----------+--------------+
| ELEANOR    | HUNT      | 85.80        |
| GORDON     | ALLARD    | 85.86        |
| CLARA      | SHAW      | 86.83        |
| JACQUELINE | LONG      | 86.82        |
| KARL       | SEAL      | 89.83        |
| PRISCILLA  | LOWE      | 95.80        |
| MONICA     | HICKS     | 85.82        |
| LOUIS      | LEONE     | 95.82        |
| JUNE       | CARROLL   | 88.83        |
| ALICE      | STEWART   | 81.82        |
+------------+-----------+--------------+
10 rows selected (1.658 seconds)

The	innermost	query,	which	I	named	cust_data,	flattens	the	Rentals	list
so	that	the	cust_payments	query	can	join	to	the	films	collection	and	also
flatten	the	Payments	list.	The	outermost	query	groups	the	data	by
customer	name	and	applies	a	having	clause	to	filter	out	customers	who
spent	$80	or	less	on	films	rated	G	or	PG.

Drill	with	Multiple	Data	Sources
So	far,	I	have	used	Drill	to	join	multiple	tables	stored	in	the	same
database,	but	what	if	the	data	is	stored	in	different	databases?	For
example,	let’s	say	the	customer/rental/payment	data	is	stored	in	MongoDB
but	the	catalog	of	film/actor	data	is	stored	in	MySQL.	As	long	as	Drill	is
configured	to	connect	to	both	databases,	you	just	need	to	describe	where
to	find	the	data.	Here’s	the	query	from	the	previous	section,	but	instead	of
joining	to	the	films	collection	stored	in	MongoDB,	the	join	specifies	the
film	table	stored	in	MySQL:

apache drill (mongo.sakila)> SELECT first_name, last_name,
. . . . . . . . . . . . . )>   sum(cast(cust_payments.payment_data.Amount
. . . . . . . . . . . . . )>         as decimal(4,2))) tot_payments
. . . . . . . . . . . . . )> FROM
. . . . . . . . . . . . . )>  (SELECT cust_data.first_name,



. . . . . . . . . . . . . )>     cust_data.last_name,

. . . . . . . . . . . . . )>     f.Rating,

. . . . . . . . . . . . . )>     flatten(cust_data.rental_data.Payments)

. . . . . . . . . . . . . )>       payment_data

. . . . . . . . . . . . . )>   FROM mysql.sakila.film f

. . . . . . . . . . . . . )>     INNER JOIN

. . . . . . . . . . . . . )>    (SELECT c.`First Name` first_name,

. . . . . . . . . . . . . )>       c.`Last Name` last_name,

. . . . . . . . . . . . . )>       flatten(c.Rentals) rental_data

. . . . . . . . . . . . . )>     FROM mongo.sakila.customers c

. . . . . . . . . . . . . )>    ) cust_data

. . . . . . . . . . . . . )>     ON f.film_id =

. . . . . . . . . . . . . )>       cast(cust_data.rental_data.filmID as 
integer)
. . . . . . . . . . . . . )>   WHERE f.rating IN ('G','PG')
. . . . . . . . . . . . . )>  ) cust_payments
. . . . . . . . . . . . . )> GROUP BY first_name, last_name
. . . . . . . . . . . . . )> HAVING
. . . . . . . . . . . . . )>   sum(cast(cust_payments.payment_data.Amount
. . . . . . . . . . . . . )>         as decimal(4,2))) > 80;
+------------+-----------+--------------+
| first_name | last_name | tot_payments |
+------------+-----------+--------------+
| LOUIS      | LEONE     | 95.82        |
| JACQUELINE | LONG      | 86.82        |
| CLARA      | SHAW      | 86.83        |
| ELEANOR    | HUNT      | 85.80        |
| JUNE       | CARROLL   | 88.83        |
| PRISCILLA  | LOWE      | 95.80        |
| ALICE      | STEWART   | 81.82        |
| MONICA     | HICKS     | 85.82        |
| GORDON     | ALLARD    | 85.86        |
| KARL       | SEAL      | 89.83        |
+------------+-----------+--------------+
10 rows selected (1.874 seconds)

Since	I’m	using	multiple	databases	in	the	same	query,	I	specified	the	full
path	to	each	table/collection	to	make	it	clear	as	to	where	the	data	is	being
sourced.	This	is	where	Drill	really	shines,	since	I	can	combine	data	from
multiple	sources	in	the	same	query	without	having	to	transform	and	load
the	data	from	one	source	to	another.

Future	of	SQL



The	future	of	relational	databases	is	somewhat	unclear.	It	is	possible	that
the	big	data	technologies	of	the	past	decade	will	continue	to	mature	and
gain	market	share.	It’s	also	possible	that	a	new	set	of	technologies	will
emerge,	overtaking	Hadoop	and	NoSQL,	and	taking	additional	market
share	from	relational	databases.	However,	most	companies	still	run	their
core	business	functions	using	relational	databases,	and	it	should	take	a
long	time	for	this	to	change.

The	future	of	SQL	seems	a	bit	clearer,	however.	While	the	SQL	language
started	out	as	a	mechanism	for	interacting	with	data	in	relational
databases,	tools	like	Apache	Drill	act	more	like	an	abstraction	layer,
facilitating	the	analysis	of	data	across	various	database	platforms.	In	this
author’s	opinion,	this	trend	will	continue,	and	SQL	will	remain	a	critical
tool	for	data	analysis	and	reporting	for	many	years.

1 	These	results	show	the	columns	in	the	file	based	on	Drill’s	understanding	of	the	PCAP	file
structure.	If	you	query	a	file	whose	format	is	not	known	to	Drill,	the	result	set	will	contain	an
array	of	strings	with	a	single	column	named	columns.



Appendix	A.	ER	Diagram	for
Example	Database

Figure	A-1	is	an	entity-relationship	(ER)	diagram	for	the	example
database	used	in	this	book.	As	the	name	suggests,	the	diagram	depicts	the
entities,	or	tables,	in	the	database	along	with	the	foreign-key	relationships
between	the	tables.	Here	are	a	few	tips	to	help	you	understand	the
notation:

Each	rectangle	represents	a	table,	with	the	table	name	above	the
upper-left	corner	of	the	rectangle.	The	primary-key	column(s)	are
listed	first,	followed	by	nonkey	columns.

Lines	between	tables	represent	foreign	key	relationships.	The
markings	at	either	end	of	the	lines	represent	the	allowable
quantity,	which	can	be	zero	(0),	one	(1),	or	many	(<).	For
example,	if	you	look	at	the	relationship	between	the	customer
and	rental	tables,	you	would	say	that	a	rental	is	associated	with
exactly	one	customer,	but	a	customer	may	have	zero,	one,	or
many	rentals.

For	more	information	on	entity-relationship	modeling,	please	see	the
Wikipedia	entry	on	this	topic.

https://oreil.ly/hLEeq




Figure	A-1.	ER	diagram



Appendix	B.	Solutions	to
Exercises



Chapter	3

Exercise	3-1

Retrieve	the	actor	ID,	first	name,	and	last	name	for	all	actors.	Sort	by	last
name	and	then	by	first	name.

mysql> SELECT actor_id, first_name, last_name
    -> FROM actor
    -> ORDER BY 3,2;
+----------+-------------+--------------+
| actor_id | first_name  | last_name    |
+----------+-------------+--------------+
|       58 | CHRISTIAN   | AKROYD       |
|      182 | DEBBIE      | AKROYD       |
|       92 | KIRSTEN     | AKROYD       |
|      118 | CUBA        | ALLEN        |
|      145 | KIM         | ALLEN        |
|      194 | MERYL       | ALLEN        |
...
|       13 | UMA         | WOOD         |
|       63 | CAMERON     | WRAY         |
|      111 | CAMERON     | ZELLWEGER    |
|      186 | JULIA       | ZELLWEGER    |
|       85 | MINNIE      | ZELLWEGER    |
+----------+-------------+--------------+
200 rows in set (0.02 sec)

Exercise	3-2

Retrieve	the	actor	ID,	first	name,	and	last	name	for	all	actors	whose	last
name	equals	'WILLIAMS'	or	'DAVIS'.

mysql> SELECT actor_id, first_name, last_name
    -> FROM actor
    -> WHERE last_name IN ('WILLIAMS','DAVIS');
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
|        4 | JENNIFER   | DAVIS     |



|      101 | SUSAN      | DAVIS     |
|      110 | SUSAN      | DAVIS     |
|       72 | SEAN       | WILLIAMS  |
|      137 | MORGAN     | WILLIAMS  |
|      172 | GROUCHO    | WILLIAMS  |
+----------+------------+-----------+
6 rows in set (0.03 sec)

Exercise	3-3

Write	a	query	against	the	rental	table	that	returns	the	IDs	of	the
customers	who	rented	a	film	on	July	5,	2005	(use	the
rental.rental_date	column,	and	you	can	use	the	date()	function	to
ignore	the	time	component).	Include	a	single	row	for	each	distinct
customer	ID.

mysql> SELECT DISTINCT customer_id
    -> FROM rental
    -> WHERE date(rental_date) = '2005-07-05';
+-------------+
| customer_id |
+-------------+
|           8 |
|          37 |
|          60 |
|         111 |
|         114 |
|         138 |
|         142 |
|         169 |
|         242 |
|         295 |
|         296 |
|         298 |
|         322 |
|         348 |
|         349 |
|         369 |
|         382 |
|         397 |
|         421 |
|         476 |
|         490 |
|         520 |
|         536 |



|         553 |
|         565 |
|         586 |
|         594 |
+-------------+
27 rows in set (0.22 sec)

Exercise	3-4

Fill	in	the	blanks	(denoted	by	<#>)	for	this	multitable	query	to	achieve	the
following	results:

mysql> SELECT c.email, r.return_date
    -> FROM customer c
    ->   INNER JOIN rental <1>

    ->   ON c.customer_id = <2>

    -> WHERE date(r.rental_date) = '2005-06-14'
    -> ORDER BY <3>	<4>;

+---------------------------------------+---------------------+
| email                                 | return_date         |
+---------------------------------------+---------------------+
| DANIEL.CABRAL@sakilacustomer.org      | 2005-06-23 22:00:38 |
| TERRANCE.ROUSH@sakilacustomer.org     | 2005-06-23 21:53:46 |
| MIRIAM.MCKINNEY@sakilacustomer.org    | 2005-06-21 17:12:08 |
| GWENDOLYN.MAY@sakilacustomer.org      | 2005-06-20 02:40:27 |
| JEANETTE.GREENE@sakilacustomer.org    | 2005-06-19 23:26:46 |
| HERMAN.DEVORE@sakilacustomer.org      | 2005-06-19 03:20:09 |
| JEFFERY.PINSON@sakilacustomer.org     | 2005-06-18 21:37:33 |
| MATTHEW.MAHAN@sakilacustomer.org      | 2005-06-18 05:18:58 |
| MINNIE.ROMERO@sakilacustomer.org      | 2005-06-18 01:58:34 |
| SONIA.GREGORY@sakilacustomer.org      | 2005-06-17 21:44:11 |
| TERRENCE.GUNDERSON@sakilacustomer.org | 2005-06-17 05:28:35 |
| ELMER.NOE@sakilacustomer.org          | 2005-06-17 02:11:13 |
| JOYCE.EDWARDS@sakilacustomer.org      | 2005-06-16 21:00:26 |
| AMBER.DIXON@sakilacustomer.org        | 2005-06-16 04:02:56 |
| CHARLES.KOWALSKI@sakilacustomer.org   | 2005-06-16 02:26:34 |
| CATHERINE.CAMPBELL@sakilacustomer.org | 2005-06-15 20:43:03 |
+---------------------------------------+---------------------+
16 rows in set (0.03 sec)

<1>	is	replaced	by	r.

<2>	is	replaced	by	r.customer_id.



<3>	is	replaced	by	2.

<4>	is	replaced	by	desc.



Chapter	4
The	following	subset	of	rows	from	the	payment	table	are	used	as	an
example	for	the	first	two	exercises:

+------------+-------------+--------+--------------------+
| payment_id | customer_id | amount | date(payment_date) |
+------------+-------------+--------+--------------------+
|        101 |           4 |   8.99 | 2005-08-18         |
|        102 |           4 |   1.99 | 2005-08-19         |
|        103 |           4 |   2.99 | 2005-08-20         |
|        104 |           4 |   6.99 | 2005-08-20         |
|        105 |           4 |   4.99 | 2005-08-21         |
|        106 |           4 |   2.99 | 2005-08-22         |
|        107 |           4 |   1.99 | 2005-08-23         |
|        108 |           5 |   0.99 | 2005-05-29         |
|        109 |           5 |   6.99 | 2005-05-31         |
|        110 |           5 |   1.99 | 2005-05-31         |
|        111 |           5 |   3.99 | 2005-06-15         |
|        112 |           5 |   2.99 | 2005-06-16         |
|        113 |           5 |   4.99 | 2005-06-17         |
|        114 |           5 |   2.99 | 2005-06-19         |
|        115 |           5 |   4.99 | 2005-06-20         |
|        116 |           5 |   4.99 | 2005-07-06         |
|        117 |           5 |   2.99 | 2005-07-08         |
|        118 |           5 |   4.99 | 2005-07-09         |
|        119 |           5 |   5.99 | 2005-07-09         |
|        120 |           5 |   1.99 | 2005-07-09         |
+------------+-------------+--------+--------------------+

Exercise	4-1

Which	of	the	payment	IDs	would	be	returned	by	the	following	filter
conditions?

customer_id <> 5 AND (amount > 8 OR date(payment_date) = '2005-08-23')

Payment	IDs	101	and	107.

Exercise	4-2



Exercise	4-2

Which	of	the	payment	IDs	would	be	returned	by	the	following	filter
conditions?

customer_id = 5 AND NOT (amount > 6 OR date(payment_date) = '2005-06-19')

Payment	IDs	108,	110,	111,	112,	113,	115,	116,	117,	118,	119,	and	120.

Exercise	4-3

Construct	a	query	that	retrieves	all	rows	from	the	payment	table	where	the
amount	is	either	1.98,	7.98,	or	9.98.

mysql> SELECT amount
    -> FROM payment
    -> WHERE amount IN (1.98, 7.98, 9.98);
+--------+
| amount |
+--------+
|   7.98 |
|   9.98 |
|   1.98 |
|   7.98 |
|   7.98 |
|   7.98 |
|   7.98 |
+--------+
7 rows in set (0.01 sec)

Exercise	4-4

Construct	a	query	that	finds	all	customers	whose	last	name	contains	an	A
in	the	second	position	and	a	W	anywhere	after	the	A.

mysql> SELECT first_name, last_name
    -> FROM customer
    -> WHERE last_name LIKE '_A%W%';
+------------+------------+
| first_name | last_name  |
+------------+------------+
| KAY        | CALDWELL   |



| JOHN       | FARNSWORTH |
| JILL       | HAWKINS    |
| LEE        | HAWKS      |
| LAURIE     | LAWRENCE   |
| JEANNE     | LAWSON     |
| LAWRENCE   | LAWTON     |
| SAMUEL     | MARLOW     |
| ERICA      | MATTHEWS   |
+------------+------------+
9 rows in set (0.02 sec)



Chapter	5

Exercise	5-1

Fill	in	the	blanks	(denoted	by	<#>)	for	the	following	query	to	obtain	the
results	that	follow:

mysql> SELECT c.first_name, c.last_name, a.address, ct.city
    -> FROM customer c
    ->   INNER JOIN address <1>
    ->   ON c.address_id = a.address_id
    ->   INNER JOIN city ct
    ->   ON a.city_id = <2>
    -> WHERE a.district = 'California';
+------------+-----------+------------------------+----------------+
| first_name | last_name | address                | city           |
+------------+-----------+------------------------+----------------+
| PATRICIA   | JOHNSON   | 1121 Loja Avenue       | San Bernardino |
| BETTY      | WHITE     | 770 Bydgoszcz Avenue   | Citrus Heights |
| ALICE      | STEWART   | 1135 Izumisano Parkway | Fontana        |
| ROSA       | REYNOLDS  | 793 Cam Ranh Avenue    | Lancaster      |
| RENEE      | LANE      | 533 al-Ayn Boulevard   | Compton        |
| KRISTIN    | JOHNSTON  | 226 Brest Manor        | Sunnyvale      |
| CASSANDRA  | WALTERS   | 920 Kumbakonam Loop    | Salinas        |
| JACOB      | LANCE     | 1866 al-Qatif Avenue   | El Monte       |
| RENE       | MCALISTER | 1895 Zhezqazghan Drive | Garden Grove   |
+------------+-----------+------------------------+----------------+
9 rows in set (0.00 sec)

<1>	is	replaced	by	a.

<2>	is	replaced	by	ct.city_id.

Exercise	5-2

Write	a	query	that	returns	the	title	of	every	film	in	which	an	actor	with	the
first	name	JOHN	appeared.



mysql> SELECT f.title
    -> FROM film f
    ->   INNER JOIN film_actor fa
    ->   ON f.film_id = fa.film_id
    ->   INNER JOIN actor a
    ->   ON fa.actor_id = a.actor_id
    -> WHERE a.first_name = 'JOHN';
+---------------------------+
| title                     |
+---------------------------+
| ALLEY EVOLUTION           |
| BEVERLY OUTLAW            |
| CANDLES GRAPES            |
| CLEOPATRA DEVIL           |
| COLOR PHILADELPHIA        |
| CONQUERER NUTS            |
| DAUGHTER MADIGAN          |
| GLEAMING JAWBREAKER       |
| GOLDMINE TYCOON           |
| HOME PITY                 |
| INTERVIEW LIAISONS        |
| ISHTAR ROCKETEER          |
| JAPANESE RUN              |
| JERSEY SASSY              |
| LUKE MUMMY                |
| MILLION ACE               |
| MONSTER SPARTACUS         |
| NAME DETECTIVE            |
| NECKLACE OUTBREAK         |
| NEWSIES STORY             |
| PET HAUNTING              |
| PIANIST OUTFIELD          |
| PINOCCHIO SIMON           |
| PITTSBURGH HUNCHBACK      |
| QUILLS BULL               |
| RAGING AIRPLANE           |
| ROXANNE REBEL             |
| SATISFACTION CONFIDENTIAL |
| SONG HEDWIG               |
+---------------------------+
29 rows in set (0.07 sec)

Exercise	5-3

Construct	a	query	that	returns	all	addresses	that	are	in	the	same	city.	You
will	need	to	join	the	address	table	to	itself,	and	each	row	should	include
two	different	addresses.



mysql> SELECT a1.address addr1, a2.address addr2, a1.city_id
    -> FROM address a1
    ->   INNER JOIN address a2
    -> WHERE a1.city_id = a2.city_id
    ->   AND a1.address_id <> a2.address_id;
+----------------------+----------------------+---------+
| addr1                | addr2                | city_id |
+----------------------+----------------------+---------+
| 47 MySakila Drive    | 23 Workhaven Lane    |     300 |
| 28 MySQL Boulevard   | 1411 Lillydale Drive |     576 |
| 23 Workhaven Lane    | 47 MySakila Drive    |     300 |
| 1411 Lillydale Drive | 28 MySQL Boulevard   |     576 |
| 1497 Yuzhou Drive    | 548 Uruapan Street   |     312 |
| 587 Benguela Manor   | 43 Vilnius Manor     |      42 |
| 548 Uruapan Street   | 1497 Yuzhou Drive    |     312 |
| 43 Vilnius Manor     | 587 Benguela Manor   |      42 |
+----------------------+----------------------+---------+
8 rows in set (0.00 sec)



Chapter	6

Exercise	6-1

If	set	A	=	{L	M	N	O	P}	and	set	B	=	{P	Q	R	S	T},	what	sets	are	generated
by	the	following	operations?

A union B

A union all B

A intersect B

A except B

1.	 A union B	=	{L	M	N	O	P	Q	R	S	T}

2.	 A union all B	=	{L	M	N	O	P	P	Q	R	S	T}

3.	 A intersect B	=	{P}

4.	 A except B	=	{L	M	N	O}

Exercise	6-2

Write	a	compound	query	that	finds	the	first	and	last	names	of	all	actors
and	customers	whose	last	name	starts	with	L.

mysql> SELECT first_name, last_name
    -> FROM actor
    -> WHERE last_name LIKE 'L%'
    -> UNION
    -> SELECT first_name, last_name
    -> FROM customer
    -> WHERE last_name LIKE 'L%';
+------------+--------------+
| first_name | last_name    |
+------------+--------------+



| MATTHEW    | LEIGH        |
| JOHNNY     | LOLLOBRIGIDA |
| MISTY      | LAMBERT      |
| JACOB      | LANCE        |
| RENEE      | LANE         |
| HEIDI      | LARSON       |
| DARYL      | LARUE        |
| LAURIE     | LAWRENCE     |
| JEANNE     | LAWSON       |
| LAWRENCE   | LAWTON       |
| KIMBERLY   | LEE          |
| LOUIS      | LEONE        |
| SARAH      | LEWIS        |
| GEORGE     | LINTON       |
| MAUREEN    | LITTLE       |
| DWIGHT     | LOMBARDI     |
| JACQUELINE | LONG         |
| AMY        | LOPEZ        |
| BARRY      | LOVELACE     |
| PRISCILLA  | LOWE         |
| VELMA      | LUCAS        |
| WILLARD    | LUMPKIN      |
| LEWIS      | LYMAN        |
| JACKIE     | LYNCH        |
+------------+--------------+
24 rows in set (0.01 sec)

Exercise	6-3

Sort	the	results	from	Exercise	6-2	by	the	last_name	column.

mysql> SELECT first_name, last_name
    -> FROM actor
    -> WHERE last_name LIKE 'L%'
    -> UNION
    -> SELECT first_name, last_name
    -> FROM customer
    -> WHERE last_name LIKE 'L%'
    -> ORDER BY last_name;
+------------+--------------+
| first_name | last_name    |
+------------+--------------+
| MISTY      | LAMBERT      |
| JACOB      | LANCE        |
| RENEE      | LANE         |
| HEIDI      | LARSON       |
| DARYL      | LARUE        |



| LAURIE     | LAWRENCE     |
| JEANNE     | LAWSON       |
| LAWRENCE   | LAWTON       |
| KIMBERLY   | LEE          |
| MATTHEW    | LEIGH        |
| LOUIS      | LEONE        |
| SARAH      | LEWIS        |
| GEORGE     | LINTON       |
| MAUREEN    | LITTLE       |
| JOHNNY     | LOLLOBRIGIDA |
| DWIGHT     | LOMBARDI     |
| JACQUELINE | LONG         |
| AMY        | LOPEZ        |
| BARRY      | LOVELACE     |
| PRISCILLA  | LOWE         |
| VELMA      | LUCAS        |
| WILLARD    | LUMPKIN      |
| LEWIS      | LYMAN        |
| JACKIE     | LYNCH        |
+------------+--------------+
24 rows in set (0.00 sec)



Chapter	7

Exercise	7-1

Write	a	query	that	returns	the	17th	through	25th	characters	of	the	string
'Please find the substring in this string'.

mysql> SELECT	SUBSTRING('Please	find	the	substring	in	this	

string',17,9);

+------------------------------------------------------------+
| SUBSTRING('Please find the substring in this string',17,9) |
+------------------------------------------------------------+
| substring                                                  |
+------------------------------------------------------------+
1 row in set (0.00 sec)

Exercise	7-2

Write	a	query	that	returns	the	absolute	value	and	sign	(−1,	0,	or	1)	of	the
number	−25.76823.	Also	return	the	number	rounded	to	the	nearest
hundredth.

mysql> SELECT	ABS(-25.76823),	SIGN(-25.76823),	ROUND(-25.76823,	

2);

+----------------+-----------------+---------------------+
| ABS(-25.76823) | SIGN(-25.76823) | ROUND(-25.76823, 2) |
+----------------+-----------------+---------------------+
|       25.76823 |              −1 |              −25.77 |
+----------------+-----------------+---------------------+
1 row in set (0.00 sec)

Exercise	7-3

Write	a	query	to	return	just	the	month	portion	of	the	current	date.

mysql> SELECT	EXTRACT(MONTH	FROM	CURRENT_DATE());

+----------------------------------+



| EXTRACT(MONTH FROM CURRENT_DATE) |
+----------------------------------+
|                               12 |
+----------------------------------+
1 row in set (0.02 sec)

(Your	result	will	most	likely	be	different,	unless	it	happens	to	be
December	when	you	try	this	exercise.)



Chapter	8

Exercise	8-1

Construct	a	query	that	counts	the	number	of	rows	in	the	payment	table.

mysql> SELECT count(*) FROM payment;
+----------+
| count(*) |
+----------+
|    16049 |
+----------+
1 row in set (0.02 sec)

Exercise	8-2

Modify	your	query	from	Exercise	8-1	to	count	the	number	of	payments
made	by	each	customer.	Show	the	customer	ID	and	the	total	amount	paid
for	each	customer.

mysql>	SELECT	customer_id,	count(*),	sum(amount)
				->	FROM	payment
				->	GROUP	BY	customer_id;
+-------------+----------+-------------+
|	customer_id	|	count(*)	|	sum(amount)	|
+-------------+----------+-------------+
|											1	|							32	|						118.68	|
|											2	|							27	|						128.73	|
|											3	|							26	|						135.74	|
|											4	|							22	|							81.78	|
|											5	|							38	|						144.62	|
...
|									595	|							30	|						117.70	|
|									596	|							28	|							96.72	|
|									597	|							25	|							99.75	|



|									598	|							22	|							83.78	|
|									599	|							19	|							83.81	|
+-------------+----------+-------------+
599	rows	in	set	(0.03	sec)

Exercise	8-3

Modify	your	query	from	Exercise	8-2	to	include	only	those	customers	who
have	made	at	least	40	payments.

mysql> SELECT customer_id, count(*), sum(amount)
    -> FROM payment
    -> GROUP BY customer_id
    -> HAVING count(*) >= 40;
+-------------+----------+-------------+
| customer_id | count(*) | sum(amount) |
+-------------+----------+-------------+
|          75 |       41 |      155.59 |
|         144 |       42 |      195.58 |
|         148 |       46 |      216.54 |
|         197 |       40 |      154.60 |
|         236 |       42 |      175.58 |
|         469 |       40 |      177.60 |
|         526 |       45 |      221.55 |
+-------------+----------+-------------+
7 rows in set (0.03 sec)



Chapter	9

Exercise	9-1

Construct	a	query	against	the	film	table	that	uses	a	filter	condition	with	a
noncorrelated	subquery	against	the	category	table	to	find	all	action	films
(category.name = 'Action').

mysql> SELECT title
    -> FROM film
    -> WHERE film_id IN
    ->  (SELECT fc.film_id
    ->   FROM film_category fc INNER JOIN category c
    ->     ON fc.category_id = c.category_id
    ->   WHERE c.name = 'Action');
+-------------------------+
| title                   |
+-------------------------+
| AMADEUS HOLY            |
| AMERICAN CIRCUS         |
| ANTITRUST TOMATOES      |
| ARK RIDGEMONT           |
| BAREFOOT MANCHURIAN     |
| BERETS AGENT            |
| BRIDE INTRIGUE          |
| BULL SHAWSHANK          |
| CADDYSHACK JEDI         |
| CAMPUS REMEMBER         |
| CASUALTIES ENCINO       |
| CELEBRITY HORN          |
| CLUELESS BUCKET         |
| CROW GREASE             |
| DANCES NONE             |
| DARKO DORADO            |
| DARN FORRESTER          |
| DEVIL DESIRE            |
| DRAGON SQUAD            |
| DREAM PICKUP            |
| DRIFTER COMMANDMENTS    |
| EASY GLADIATOR          |
| ENTRAPMENT SATISFACTION |
| EXCITEMENT EVE          |



| FANTASY TROOPERS        |
| FIREHOUSE VIETNAM       |
| FOOL MOCKINGBIRD        |
| FORREST SONS            |
| GLASS DYING             |
| GOSFORD DONNIE          |
| GRAIL FRANKENSTEIN      |
| HANDICAP BOONDOCK       |
| HILLS NEIGHBORS         |
| KISSING DOLLS           |
| LAWRENCE LOVE           |
| LORD ARIZONA            |
| LUST LOCK               |
| MAGNOLIA FORRESTER      |
| MIDNIGHT WESTWARD       |
| MINDS TRUMAN            |
| MOCKINGBIRD HOLLYWOOD   |
| MONTEZUMA COMMAND       |
| PARK CITIZEN            |
| PATRIOT ROMAN           |
| PRIMARY GLASS           |
| QUEST MUSSOLINI         |
| REAR TRADING            |
| RINGS HEARTBREAKERS     |
| RUGRATS SHAKESPEARE     |
| SHRUNK DIVINE           |
| SIDE ARK                |
| SKY MIRACLE             |
| SOUTH WAIT              |
| SPEAKEASY DATE          |
| STAGECOACH ARMAGEDDON   |
| STORY SIDE              |
| SUSPECTS QUILLS         |
| TRIP NEWTON             |
| TRUMAN CRAZY            |
| UPRISING UPTOWN         |
| WATERFRONT DELIVERANCE  |
| WEREWOLF LOLA           |
| WOMEN DORADO            |
| WORST BANGER            |
+-------------------------+
64 rows in set (0.06 sec)

Exercise	9-2

Rework	the	query	from	Exercise	9-1	using	a	correlated	subquery	against
the	category	and	film_category	tables	to	achieve	the	same	results.



mysql> SELECT f.title
    -> FROM film f
    -> WHERE EXISTS
    ->  (SELECT 1
    ->   FROM film_category fc INNER JOIN category c
    ->     ON fc.category_id = c.category_id
    ->   WHERE c.name = 'Action'
    ->     AND fc.film_id = f.film_id);
+-------------------------+
| title                   |
+-------------------------+
| AMADEUS HOLY            |
| AMERICAN CIRCUS         |
| ANTITRUST TOMATOES      |
| ARK RIDGEMONT           |
| BAREFOOT MANCHURIAN     |
| BERETS AGENT            |
| BRIDE INTRIGUE          |
| BULL SHAWSHANK          |
| CADDYSHACK JEDI         |
| CAMPUS REMEMBER         |
| CASUALTIES ENCINO       |
| CELEBRITY HORN          |
| CLUELESS BUCKET         |
| CROW GREASE             |
| DANCES NONE             |
| DARKO DORADO            |
| DARN FORRESTER          |
| DEVIL DESIRE            |
| DRAGON SQUAD            |
| DREAM PICKUP            |
| DRIFTER COMMANDMENTS    |
| EASY GLADIATOR          |
| ENTRAPMENT SATISFACTION |
| EXCITEMENT EVE          |
| FANTASY TROOPERS        |
| FIREHOUSE VIETNAM       |
| FOOL MOCKINGBIRD        |
| FORREST SONS            |
| GLASS DYING             |
| GOSFORD DONNIE          |
| GRAIL FRANKENSTEIN      |
| HANDICAP BOONDOCK       |
| HILLS NEIGHBORS         |
| KISSING DOLLS           |
| LAWRENCE LOVE           |
| LORD ARIZONA            |
| LUST LOCK               |
| MAGNOLIA FORRESTER      |
| MIDNIGHT WESTWARD       |



| MINDS TRUMAN            |
| MOCKINGBIRD HOLLYWOOD   |
| MONTEZUMA COMMAND       |
| PARK CITIZEN            |
| PATRIOT ROMAN           |
| PRIMARY GLASS           |
| QUEST MUSSOLINI         |
| REAR TRADING            |
| RINGS HEARTBREAKERS     |
| RUGRATS SHAKESPEARE     |
| SHRUNK DIVINE           |
| SIDE ARK                |
| SKY MIRACLE             |
| SOUTH WAIT              |
| SPEAKEASY DATE          |
| STAGECOACH ARMAGEDDON   |
| STORY SIDE              |
| SUSPECTS QUILLS         |
| TRIP NEWTON             |
| TRUMAN CRAZY            |
| UPRISING UPTOWN         |
| WATERFRONT DELIVERANCE  |
| WEREWOLF LOLA           |
| WOMEN DORADO            |
| WORST BANGER            |
+-------------------------+
64 rows in set (0.02 sec)

Exercise	9-3

Join	the	following	query	to	a	subquery	against	the	film_actor	table	to
show	the	level	of	each	actor:

SELECT 'Hollywood Star' level, 30 min_roles, 99999 max_roles
UNION ALL
SELECT 'Prolific Actor' level, 20 min_roles, 29 max_roles
UNION ALL
SELECT 'Newcomer' level, 1 min_roles, 19 max_roles

The	subquery	against	the	film_actor	table	should	count	the	number	of
rows	for	each	actor	using	group by actor_id,	and	the	count	should	be
compared	to	the	min_roles/max_roles	columns	to	determine	which	level
each	actor	belongs	to.



mysql> SELECT actr.actor_id, grps.level
    -> FROM
    ->  (SELECT actor_id, count(*) num_roles
    ->   FROM film_actor
    ->   GROUP BY actor_id
    ->  ) actr
    ->   INNER JOIN
    ->  (SELECT 'Hollywood Star' level, 30 min_roles, 99999 max_roles
    ->   UNION ALL
    ->   SELECT 'Prolific Actor' level, 20 min_roles, 29 max_roles
    ->   UNION ALL
    ->   SELECT 'Newcomer' level, 1 min_roles, 19 max_roles
    ->  ) grps
    ->   ON actr.num_roles BETWEEN grps.min_roles AND grps.max_roles;
+----------+----------------+
| actor_id | level          |
+----------+----------------+
|        1 | Newcomer       |
|        2 | Prolific Actor |
|        3 | Prolific Actor |
|        4 | Prolific Actor |
|        5 | Prolific Actor |
|        6 | Prolific Actor |
|        7 | Hollywood Star |
...
|      195 | Prolific Actor |
|      196 | Hollywood Star |
|      197 | Hollywood Star |
|      198 | Hollywood Star |
|      199 | Newcomer       |
|      200 | Prolific Actor |
+----------+----------------+
200 rows in set (0.03 sec)



Chapter	10

Exercise	10-1

Using	the	following	table	definitions	and	data,	write	a	query	that	returns
each	customer	name	along	with	their	total	payments:

   Customer:
Customer_id   Name
-----------   ---------------
1  John Smith
2  Kathy Jones
3  Greg Oliver
 
   Payment:
Payment_id Customer_id Amount
---------- ----------- --------
101  1  8.99
102  3  4.99
103  1  7.99

Include	all	customers,	even	if	no	payment	records	exist	for	that	customer.

mysql> SELECT c.name, sum(p.amount)
    -> FROM customer c LEFT OUTER JOIN payment p
    ->   ON c.customer_id = p.customer_id
    -> GROUP BY c.name;
+-------------+---------------+
| name        | sum(p.amount) |
+-------------+---------------+
| John Smith  |         16.98 |
| Kathy Jones |          NULL |
| Greg Oliver |          4.99 |
+-------------+---------------+
3 rows in set (0.00 sec)

Exercise	10-2

Reformulate	your	query	from	Exercise	10-1	to	use	the	other	outer	join



type	(e.g.,	if	you	used	a	left	outer	join	in	Exercise	10-1,	use	a	right	outer
join	this	time)	such	that	the	results	are	identical	to	Exercise	10-1.

MySQL> SELECT c.name, sum(p.amount)
    -> FROM payment p RIGHT OUTER JOIN customer c
    ->   ON c.customer_id = p.customer_id
    -> GROUP BY c.name;
+-------------+---------------+
| name        | sum(p.amount) |
+-------------+---------------+
| John Smith  |         16.98 |
| Kathy Jones |          NULL |
| Greg Oliver |          4.99 |
+-------------+---------------+
3 rows in set (0.00 sec)

Exercise	10-3	(Extra	Credit)

Devise	a	query	that	will	generate	the	set	{1,	2,	3,	...,	99,	100}.	(Hint:	use	a
cross	join	with	at	least	two	from	clause	subqueries.)

SELECT ones.x + tens.x + 1
FROM
 (SELECT 0 x UNION ALL
  SELECT 1 x UNION ALL
  SELECT 2 x UNION ALL
  SELECT 3 x UNION ALL
  SELECT 4 x UNION ALL
  SELECT 5 x UNION ALL
  SELECT 6 x UNION ALL
  SELECT 7 x UNION ALL
  SELECT 8 x UNION ALL
  SELECT 9 x
 ) ones
  CROSS JOIN
 (SELECT 0 x UNION ALL
  SELECT 10 x UNION ALL
  SELECT 20 x UNION ALL
  SELECT 30 x UNION ALL
  SELECT 40 x UNION ALL
  SELECT 50 x UNION ALL
  SELECT 60 x UNION ALL
  SELECT 70 x UNION ALL
  SELECT 80 x UNION ALL
  SELECT 90 x



 ) tens;



Chapter	11

Exercise	11-1

Rewrite	the	following	query,	which	uses	a	simple	case	expression,	so	that
the	same	results	are	achieved	using	a	searched	case	expression.	Try	to	use
as	few	when	clauses	as	possible.

SELECT name,
  CASE name
    WHEN 'English' THEN 'latin1'
    WHEN 'Italian' THEN 'latin1'
    WHEN 'French' THEN 'latin1'
    WHEN 'German' THEN 'latin1'
    WHEN 'Japanese' THEN 'utf8'
    WHEN 'Mandarin' THEN 'utf8'
    ELSE 'Unknown'
  END character_set
FROM language;

SELECT name,
  CASE
    WHEN name IN ('English','Italian','French','German')
      THEN 'latin1'
    WHEN name IN ('Japanese','Mandarin')
      THEN 'utf8'
    ELSE 'Unknown'
  END character_set
FROM language;

Exercise	11-2

Rewrite	the	following	query	so	that	the	result	set	contains	a	single	row
with	five	columns	(one	for	each	rating).	Name	the	five	columns	G,	PG,
PG_13,	R,	and	NC_17.

mysql> SELECT rating, count(*)
    -> FROM film



    -> GROUP BY rating;
+--------+----------+
| rating | count(*) |
+--------+----------+
| PG     |      194 |
| G      |      178 |
| NC-17  |      210 |
| PG-13  |      223 |
| R      |      195 |
+--------+----------+
5 rows in set (0.00 sec)

mysql> SELECT
    ->   sum(CASE WHEN rating = 'G' THEN 1 ELSE 0 END) g,
    ->   sum(CASE WHEN rating = 'PG' THEN 1 ELSE 0 END) pg,
    ->   sum(CASE WHEN rating = 'PG-13' THEN 1 ELSE 0 END) pg_13,
    ->   sum(CASE WHEN rating = 'R' THEN 1 ELSE 0 END) r,
    ->   sum(CASE WHEN rating = 'NC-17' THEN 1 ELSE 0 END) nc_17
    -> FROM film;
+------+------+-------+------+-------+
| g    | pg   | pg_13 | r    | nc_17 |
+------+------+-------+------+-------+
|  178 |  194 |   223 |  195 |   210 |
+------+------+-------+------+-------+
1 row in set (0.00 sec)



Chapter	12

Exercise	12-1

Generate	a	unit	of	work	to	transfer	$50	from	account	123	to	account	789.
You	will	need	to	insert	two	rows	into	the	transaction	table	and	update
two	rows	in	the	account	table.	Use	the	following	table	definitions/data:

   Account:
account_id avail_balance last_activity_date
---------- ------------- ------------------
123  500  2019-07-10 20:53:27
789  75  2019-06-22 15:18:35
 
   Transaction:
txn_id  txn_date account_id txn_type_cd amount
--------- ------------ ----------- ----------- --------
1001  2019-05-15 123  C  500
1002  2019-06-01 789  C  75
 

Use	txn_type_cd = 'C'	to	indicate	a	credit	(addition),	and	use
txn_type_cd = 'D'	to	indicate	a	debit	(subtraction).

START TRANSACTION;

INSERT INTO transaction 
 (txn_id, txn_date, account_id, txn_type_cd, amount)
VALUES
 (1003, now(), 123, 'D', 50);

INSERT INTO transaction
 (txn_id, txn_date, account_id, txn_type_cd, amount)
VALUES
 (1004, now(), 789, 'C', 50);

UPDATE account
SET avail_balance = available_balance - 50,
  last_activity_date = now()
WHERE account_id = 123;



UPDATE account
SET avail_balance = available_balance + 50,
​  last_activity_date = now()
WHERE account_id = 789;

COMMIT;



Chapter	13

Exercise	13-1

Generate	an	alter table	statement	for	the	rental	table	so	that	an	error
will	be	raised	if	a	row	having	a	value	found	in	the	rental.customer_id
column	is	deleted	from	the	customer	table.

ALTER TABLE rental
ADD CONSTRAINT fk_rental_customer_id FOREIGN KEY (customer_id)
REFERENCES customer (customer_id) ON DELETE RESTRICT;

Exercise	13-2

Generate	a	multicolumn	index	on	the	payment	table	that	could	be	used	by
both	of	the	following	queries:

SELECT customer_id, payment_date, amount
FROM payment
WHERE payment_date > cast('2019-12-31 23:59:59' as datetime);

SELECT customer_id, payment_date, amount
FROM payment
​WHERE payment_date > cast('2019-12-31 23:59:59' as datetime)
  AND amount < 5;

CREATE INDEX idx_payment01
ON payment (payment_date, amount);



Chapter	14

Exercise	14-1

Create	a	view	definition	that	can	be	used	by	the	following	query	to
generate	the	given	results:

SELECT title, category_name, first_name, last_name
FROM film_ctgry_actor

WHERE last_name = 'FAWCETT'; 

+---------------------+---------------+------------+-----------+
| title               | category_name | first_name | last_name |
+---------------------+---------------+------------+-----------+
| ACE GOLDFINGER      | Horror        | BOB        | FAWCETT   |
| ADAPTATION HOLES    | Documentary   | BOB        | FAWCETT   |
| CHINATOWN GLADIATOR | New           | BOB        | FAWCETT   |
| CIRCUS YOUTH        | Children      | BOB        | FAWCETT   |
| CONTROL ANTHEM      | Comedy        | BOB        | FAWCETT   |
| DARES PLUTO         | Animation     | BOB        | FAWCETT   |
| DARN FORRESTER      | Action        | BOB        | FAWCETT   |
| DAZED PUNK          | Games         | BOB        | FAWCETT   |
| DYNAMITE TARZAN     | Classics      | BOB        | FAWCETT   |
| HATE HANDICAP       | Comedy        | BOB        | FAWCETT   |
| HOMICIDE PEACH      | Family        | BOB        | FAWCETT   |
| JACKET FRISCO       | Drama         | BOB        | FAWCETT   |
| JUMANJI BLADE       | New           | BOB        | FAWCETT   |
| LAWLESS VISION      | Animation     | BOB        | FAWCETT   |
| LEATHERNECKS DWARFS | Travel        | BOB        | FAWCETT   |
| OSCAR GOLD          | Animation     | BOB        | FAWCETT   |
| PELICAN COMFORTS    | Documentary   | BOB        | FAWCETT   |
| PERSONAL LADYBUGS   | Music         | BOB        | FAWCETT   |
| RAGING AIRPLANE     | Sci-Fi        | BOB        | FAWCETT   |
| RUN PACIFIC         | New           | BOB        | FAWCETT   |
| RUNNER MADIGAN      | Music         | BOB        | FAWCETT   |
| SADDLE ANTITRUST    | Comedy        | BOB        | FAWCETT   |
| SCORPION APOLLO     | Drama         | BOB        | FAWCETT   |
| SHAWSHANK BUBBLE    | Travel        | BOB        | FAWCETT   |
| TAXI KICK           | Music         | BOB        | FAWCETT   |
| BERETS AGENT        | Action        | JULIA      | FAWCETT   |
| BOILED DARES        | Travel        | JULIA      | FAWCETT   |
| CHISUM BEHAVIOR     | Family        | JULIA      | FAWCETT   |



| CLOSER BANG         | Comedy        | JULIA      | FAWCETT   |
| DAY UNFAITHFUL      | New           | JULIA      | FAWCETT   |
| HOPE TOOTSIE        | Classics      | JULIA      | FAWCETT   |
| LUKE MUMMY          | Animation     | JULIA      | FAWCETT   |
| MULAN MOON          | Comedy        | JULIA      | FAWCETT   |
| OPUS ICE            | Foreign       | JULIA      | FAWCETT   |
| POLLOCK DELIVERANCE | Foreign       | JULIA      | FAWCETT   |
| RIDGEMONT SUBMARINE | New           | JULIA      | FAWCETT   |
| SHANGHAI TYCOON     | Travel        | JULIA      | FAWCETT   |
| SHAWSHANK BUBBLE    | Travel        | JULIA      | FAWCETT   |
| THEORY MERMAID      | Animation     | JULIA      | FAWCETT   |
| WAIT CIDER          | Animation     | JULIA      | FAWCETT   |
+---------------------+---------------+------------+-----------+
40 rows in set (0.00 sec)

CREATE VIEW film_ctgry_actor
AS
SELECT f.title,
  c.name category_name,
  a.first_name,
  a.last_name
FROM film f
  INNER JOIN film_category fc
  ON f.film_id = fc.film_id
  INNER JOIN category c
  ON fc.category_id = c.category_id
  INNER JOIN film_actor fa
  ON fa.film_id = f.film_id
  INNER JOIN actor a
  ON fa.actor_id = a.actor_id;

Exercise	14-2

The	film	rental	company	manager	would	like	to	have	a	report	that	includes
the	name	of	every	country,	along	with	the	total	payments	for	all	customers
who	live	in	each	country.	Generate	a	view	definition	that	queries	the
country	table	and	uses	a	scalar	subquery	to	calculate	a	value	for	a	column
named	tot_payments.

CREATE VIEW country_payments
AS
SELECT c.country,
 (SELECT sum(p.amount)



  FROM city ct
    INNER JOIN address a
    ON ct.city_id = a.city_id
    INNER JOIN customer cst
    ON a.address_id = cst.address_id
    INNER JOIN payment p
    ON cst.customer_id = p.customer_id
  WHERE ct.country_id = c.country_id
 ) tot_payments
FROM country c



Chapter	15

Exercise	15-1

Write	a	query	that	lists	all	of	the	indexes	in	the	Sakila	schema.	Include	the
table	names.

mysql> SELECT DISTINCT table_name, index_name
    -> FROM information_schema.statistics
    -> WHERE table_schema = 'sakila';
+---------------+-----------------------------+
| TABLE_NAME    | INDEX_NAME                  |
+---------------+-----------------------------+
| actor         | PRIMARY                     |
| actor         | idx_actor_last_name         |
| address       | PRIMARY                     |
| address       | idx_fk_city_id              |
| address       | idx_location                |
| category      | PRIMARY                     |
| city          | PRIMARY                     |
| city          | idx_fk_country_id           |
| country       | PRIMARY                     |
| film          | PRIMARY                     |
| film          | idx_title                   |
| film          | idx_fk_language_id          |
| film          | idx_fk_original_language_id |
| film_actor    | PRIMARY                     |
| film_actor    | idx_fk_film_id              |
| film_category | PRIMARY                     |
| film_category | fk_film_category_category   |
| film_text     | PRIMARY                     |
| film_text     | idx_title_description       |
| inventory     | PRIMARY                     |
| inventory     | idx_fk_film_id              |
| inventory     | idx_store_id_film_id        |
| language      | PRIMARY                     |
| staff         | PRIMARY                     |
| staff         | idx_fk_store_id             |
| staff         | idx_fk_address_id           |
| store         | PRIMARY                     |
| store         | idx_unique_manager          |
| store         | idx_fk_address_id           |



| customer      | PRIMARY                     |
| customer      | idx_email                   |
| customer      | idx_fk_store_id             |
| customer      | idx_fk_address_id           |
| customer      | idx_last_name               |
| customer      | idx_full_name               |
| rental        | PRIMARY                     |
| rental        | rental_date                 |
| rental        | idx_fk_inventory_id         |
| rental        | idx_fk_customer_id          |
| rental        | idx_fk_staff_id             |
| payment       | PRIMARY                     |
| payment       | idx_fk_staff_id             |
| payment       | idx_fk_customer_id          |
| payment       | fk_payment_rental           |
| payment       | idx_payment01               |
+---------------+-----------------------------+
45 rows in set (0.00 sec)

Exercise	15-2

Write	a	query	that	generates	output	that	can	be	used	to	create	all	of	the
indexes	on	the	sakila.customer	table.	Output	should	be	of	the	form:

"ALTER TABLE <table_name> ADD INDEX <index_name> (<column_list>)"

Here’s	one	solution	utilizing	a	with	clause:

mysql> WITH idx_info AS
    ->  (SELECT s1.table_name, s1.index_name, 
    ->     s1.column_name, s1.seq_in_index,
    ->     (SELECT max(s2.seq_in_index) 
    ->      FROM information_schema.statistics s2
    ->      WHERE s2.table_schema = s1.table_schema
    ->        AND s2.table_name = s1.table_name
    ->        AND s2.index_name = s1.index_name) num_columns
    ->   FROM information_schema.statistics s1
    ->   WHERE s1.table_schema = 'sakila'
    ->     AND s1.table_name = 'customer'
    ->  )
    -> SELECT concat(
    ->   CASE
    ->     WHEN seq_in_index = 1 THEN
    ->       concat('ALTER TABLE ', table_name, ' ADD INDEX ', 
    ->              index_name, ' (', column_name)



    ->     ELSE concat('  , ', column_name)
    ->   END,
    ->   CASE
    ->     WHEN seq_in_index = num_columns THEN ');'
    ->     ELSE ''
    ->   END
    ->  ) index_creation_statement
    -> FROM idx_info
    -> ORDER BY index_name, seq_in_index;
+----------------------------------------------------------------+
| index_creation_statement                                       |
+----------------------------------------------------------------+
| ALTER TABLE customer ADD INDEX idx_email (email);              |
| ALTER TABLE customer ADD INDEX idx_fk_address_id (address_id); |
| ALTER TABLE customer ADD INDEX idx_fk_store_id (store_id);     |
| ALTER TABLE customer ADD INDEX idx_full_name (last_name        |
|   , first_name);                                               |
| ALTER TABLE customer ADD INDEX idx_last_name (last_name);      |
| ALTER TABLE customer ADD INDEX PRIMARY (customer_id);          |
+----------------------------------------------------------------+
7 rows in set (0.00 sec)

After	reading	Chapter	16,	however,	you	could	use	the	following:

mysql> SELECT concat('ALTER TABLE ', table_name, ' ADD INDEX ', 
    ->   index_name, ' (',
    ->   group_concat(column_name order by seq_in_index separator ', '),
    ->   ');'
    ->  ) index_creation_statement
    -> FROM information_schema.statistics
    -> WHERE table_schema = 'sakila'
    ->   AND table_name = 'customer'
    -> GROUP BY table_name, index_name;
+-----------------------------------------------------------------------+
| index_creation_statement                                              |
+-----------------------------------------------------------------------+
| ALTER TABLE customer ADD INDEX idx_email (email);                     |
| ALTER TABLE customer ADD INDEX idx_fk_address_id (address_id);        |
| ALTER TABLE customer ADD INDEX idx_fk_store_id (store_id);            |
| ALTER TABLE customer ADD INDEX idx_full_name (last_name, first_name); |
| ALTER TABLE customer ADD INDEX idx_last_name (last_name);             |
| ALTER TABLE customer ADD INDEX PRIMARY (customer_id);                 |
+-----------------------------------------------------------------------+
6 rows in set (0.00 sec)



Chapter	16
For	all	exercises	in	this	section,	use	the	following	data	set	from	the
Sales_Fact	table:

Sales_Fact
+---------+----------+-----------+
| year_no | month_no | tot_sales |
+---------+----------+-----------+
|    2019 |        1 |     19228 |
|    2019 |        2 |     18554 |
|    2019 |        3 |     17325 |
|    2019 |        4 |     13221 |
|    2019 |        5 |      9964 |
|    2019 |        6 |     12658 |
|    2019 |        7 |     14233 |
|    2019 |        8 |     17342 |
|    2019 |        9 |     16853 |
|    2019 |       10 |     17121 |
|    2019 |       11 |     19095 |
|    2019 |       12 |     21436 |
|    2020 |        1 |     20347 |
|    2020 |        2 |     17434 |
|    2020 |        3 |     16225 |
|    2020 |        4 |     13853 |
|    2020 |        5 |     14589 |
|    2020 |        6 |     13248 |
|    2020 |        7 |      8728 |
|    2020 |        8 |      9378 |
|    2020 |        9 |     11467 |
|    2020 |       10 |     13842 |
|    2020 |       11 |     15742 |
|    2020 |       12 |     18636 |
+---------+----------+-----------+
24 rows in set (0.00 sec)

Exercise	16-1

Write	a	query	that	retrieves	every	row	from	Sales_Fact,	and	add	a
column	to	generate	a	ranking	based	on	the	tot_sales	column	values.	The
highest	value	should	receive	a	ranking	of	1,	and	the	lowest	a	ranking	of



24.

mysql> SELECT year_no, month_no, tot_sales,
    ->   rank() over (order by tot_sales desc) sales_rank
    -> FROM sales_fact;
+---------+----------+-----------+------------+
| year_no | month_no | tot_sales | sales_rank |
+---------+----------+-----------+------------+
|    2019 |       12 |     21436 |          1 |
|    2020 |        1 |     20347 |          2 |
|    2019 |        1 |     19228 |          3 |
|    2019 |       11 |     19095 |          4 |
|    2020 |       12 |     18636 |          5 |
|    2019 |        2 |     18554 |          6 |
|    2020 |        2 |     17434 |          7 |
|    2019 |        8 |     17342 |          8 |
|    2019 |        3 |     17325 |          9 |
|    2019 |       10 |     17121 |         10 |
|    2019 |        9 |     16853 |         11 |
|    2020 |        3 |     16225 |         12 |
|    2020 |       11 |     15742 |         13 |
|    2020 |        5 |     14589 |         14 |
|    2019 |        7 |     14233 |         15 |
|    2020 |        4 |     13853 |         16 |
|    2020 |       10 |     13842 |         17 |
|    2020 |        6 |     13248 |         18 |
|    2019 |        4 |     13221 |         19 |
|    2019 |        6 |     12658 |         20 |
|    2020 |        9 |     11467 |         21 |
|    2019 |        5 |      9964 |         22 |
|    2020 |        8 |      9378 |         23 |
|    2020 |        7 |      8728 |         24 |
+---------+----------+-----------+------------+
24 rows in set (0.02 sec)

Exercise	16-2

Modify	the	query	from	the	previous	exercise	to	generate	two	sets	of
rankings	from	1	to	12,	one	for	2019	data	and	one	for	2020.

mysql>	SELECT	year_no,	month_no,	tot_sales,
				->			rank()	over	(partition	by	year_no
				->																order	by	tot_sales	desc)	sales_rank
				->	FROM	sales_fact;



+---------+----------+-----------+------------+
|	year_no	|	month_no	|	tot_sales	|	sales_rank	|
+---------+----------+-----------+------------+
|				2019	|							12	|					21436	|										1	|
|				2019	|								1	|					19228	|										2	|
|				2019	|							11	|					19095	|										3	|
|				2019	|								2	|					18554	|										4	|
|				2019	|								8	|					17342	|										5	|
|				2019	|								3	|					17325	|										6	|
|				2019	|							10	|					17121	|										7	|
|				2019	|								9	|					16853	|										8	|
|				2019	|								7	|					14233	|										9	|
|				2019	|								4	|					13221	|									10	|
|				2019	|								6	|					12658	|									11	|
|				2019	|								5	|						9964	|									12	|
|				2020	|								1	|					20347	|										1	|
|				2020	|							12	|					18636	|										2	|
|				2020	|								2	|					17434	|										3	|
|				2020	|								3	|					16225	|										4	|
|				2020	|							11	|					15742	|										5	|
|				2020	|								5	|					14589	|										6	|
|				2020	|								4	|					13853	|										7	|
|				2020	|							10	|					13842	|										8	|
|				2020	|								6	|					13248	|										9	|
|				2020	|								9	|					11467	|									10	|
|				2020	|								8	|						9378	|									11	|
|				2020	|								7	|						8728	|									12	|
+---------+----------+-----------+------------+
24	rows	in	set	(0.00	sec)

Exercise	16-3

Write	a	query	that	retrieves	all	2020	data,	and	include	a	column	that	will
contain	the	tot_sales	value	from	the	previous	month.

mysql> SELECT year_no, month_no, tot_sales,
    ->   lag(tot_sales) over (order by month_no) prev_month_sales
    -> FROM sales_fact
    -> WHERE year_no = 2020;



+---------+----------+-----------+------------------+
| year_no | month_no | tot_sales | prev_month_sales |
+---------+----------+-----------+------------------+
|    2020 |        1 |     20347 |             NULL |
|    2020 |        2 |     17434 |            20347 |
|    2020 |        3 |     16225 |            17434 |
|    2020 |        4 |     13853 |            16225 |
|    2020 |        5 |     14589 |            13853 |
|    2020 |        6 |     13248 |            14589 |
|    2020 |        7 |      8728 |            13248 |
|    2020 |        8 |      9378 |             8728 |
|    2020 |        9 |     11467 |             9378 |
|    2020 |       10 |     13842 |            11467 |
|    2020 |       11 |     15742 |            13842 |
|    2020 |       12 |     18636 |            15742 |
+---------+----------+-----------+------------------+
12 rows in set (0.00 sec)



Index

SYMBOLS

*	(asterisk)

in	aggregate	functions,	Grouping	Concepts,	How	Nulls	Are	Handled

in	select	clause,	The	select	Clause

\	(backslash),	as	escape	character,	Including	single	quotes

(	)	(parentheses)

enclosing	subqueries,	Derived	(subquery-generated)	tables

grouping	arithmetic	operations,	Working	with	Numeric	Data

grouping	compound	queries,	Set	Operation	Precedence

grouping	filter	conditions,	The	where	Clause,	Using	Parentheses

%	(percent	sign),	modulo	operator,	Performing	Arithmetic	Functions

+	(plus	sign),	concatenation	operator,	SQL	Server,	Including	special
characters

(see	also	arithmetic	operators)

'	'	(quotes,	single)

enclosing	strings,	String	Generation

escape	sequence	for,	Including	single	quotes-Including	single	quotes

||	(vertical	bar,	double),	concatenation	operator,	Oracle,	Including	special
characters

A



abs()	function,	Handling	Signed	Data

acos()	function,	Performing	Arithmetic	Functions

add	constraint	keywords,	Constraint	Creation

add	index	keywords,	Index	Creation

add	unique	keywords,	Unique	indexes

add_months()	function,	Temporal	functions	that	return	dates

ADO.NET,	SQL:	A	Nonprocedural	Language

aggregate	functions,	Grouping	Concepts-How	Nulls	Are	Handled,
Reporting	Functions-Window	Frames

expressions	in,	Using	Expressions

filtering	based	on,	Grouping	Concepts-Grouping	Concepts

list	of,	Aggregate	Functions-Aggregate	Functions

null	values	with,	How	Nulls	Are	Handled-How	Nulls	Are	Handled

aggregated	data,	views	for,	Data	Aggregation

aliases

for	columns,	Column	Aliases

for	tables,	Using	the	Same	Table	Twice,	Self-Joins

all	keyword,	Removing	Duplicates

all	operator,	The	all	operator-The	all	operator

alter	table	statement,	Generating	numeric	key	data

adding	constraints	in,	Constraint	Creation

adding	indexes	in,	Index	Creation,	Unique	indexes

removing	constraints	in,	Constraint	Creation



removing	indexes	in,	Index	Creation

specifying	storage	engine,	Transaction	Savepoints

Amazon	Web	Services	(AWS),	Cloud	Computing

analytic	functions,	Analytic	Function	Concepts-Localized	Sorting

column	value	concatenation	with,	Column	Value	Concatenation

data	windows	used	by,	Data	Windows-Data	Windows,	Generating
Multiple	Rankings,	Reporting	Functions,	Window	Frames

localized	sorting	using,	Localized	Sorting-Localized	Sorting

ranking	functions,	Ranking-Generating	Multiple	Rankings

reporting	functions,	Reporting	Functions-Column	Value
Concatenation

and	operator,	The	where	Clause,	Condition	Evaluation

ANSI	mode,	String	Generation

ANSI	SQL92	join	syntax,	The	ANSI	Join	Syntax-The	ANSI	Join	Syntax

any	operator,	The	any	operator-The	any	operator

Apache	Drill,	SQL	Unplugged,	SQL	and	Big	Data-Introduction	to	Apache
Drill

df	(distributed	filesystem)	plug-in,	Querying	Files	Using	Drill

querying	files,	Querying	Files	Using	Drill-Querying	Files	Using	Drill

querying	MongoDB,	Querying	MongoDB	Using	Drill-Querying
MongoDB	Using	Drill

querying	multiple	databases,	Drill	with	Multiple	Data	Sources-Drill
with	Multiple	Data	Sources

querying	MySQL,	Querying	MySQL	Using	Drill-Querying	MySQL
Using	Drill



Archive	storage	engine,	Transaction	Savepoints

arithmetic	functions,	Performing	Arithmetic	Functions-Performing
Arithmetic	Functions

arithmetic	operators,	Building	a	Condition,	Working	with	Numeric	Data

as	keyword,	Column	Aliases,	Defining	Table	Aliases

asc	keyword,	Ascending	Versus	Descending	Sort	Order

ascii()	function,	Including	special	characters

asin()	function,	Performing	Arithmetic	Functions

asterisk	(*)

in	aggregate	functions,	Grouping	Concepts,	How	Nulls	Are	Handled

in	select	clause,	The	select	Clause

atan()	function,	Performing	Arithmetic	Functions

atomicity,	What	Is	a	Transaction?

autocommit	mode,	Starting	a	Transaction

auto_increment	keyword,	Generating	numeric	key	data

avg()	function,	Aggregate	Functions,	Reporting	Functions-Window
Frames

AWS	(Amazon	Web	Services),	Cloud	Computing

B

B-tree	(balanced-tree)	indexes,	B-tree	indexes

backslash	(\),	as	escape	character,	Including	single	quotes

begin	transaction	command,	Starting	a	Transaction

between	operator,	The	between	operator-The	between	operator,	Correlated
Subqueries



big	data,	Big	Data-Cloud	Computing

Apache	Drill	for,	SQL	and	Big	Data-Introduction	to	Apache	Drill

(see	also	Apache	Drill)

cloud	computing,	Cloud	Computing-Cloud	Computing

future	of,	Future	of	SQL

Hadoop,	SQL	Unplugged,	Hadoop,	Introduction	to	Apache	Drill

NoSQL	and	document	databases,	SQL	Unplugged,	NoSQL	and
Document	Databases,	Introduction	to	Apache	Drill

bigint	type,	Numeric	Data

bitmap	indexes,	Bitmap	indexes

books	and	publications

Database	in	Depth	(O’Reilly),	What’s	in	Store

The	Database	Relational	Model	(Addison-Wesley),	What’s	in	Store

High	Performance	MySQL	(O’Reilly),	Query	Mechanics

An	Introduction	to	Database	Systems	(Addison-Wesley),	What’s	in
Store

Learning	Apache	Drill	(O’Reilly),	Introduction	to	Apache	Drill

Mastering	Regular	Expressions	(O’Reilly),	Using	regular	expressions

“A	Relational	Model	of	Data	for	Large	Shared	Data	Banks”	(Codd),
The	Relational	Model

SQL	in	a	Nutshell	(O’Reilly),	String	functions	that	return	strings

Unicode	Explained	(O’Reilly),	Character	sets

branch	nodes,	B-tree	indexes

C



C

C#,	SQL	integration	toolkit	for,	SQL:	A	Nonprocedural	Language

Cartesian	product,	Cartesian	Product-Cartesian	Product,	Cross	Joins-Cross
Joins

(see	also	cross	joins)

case	expressions,	What	Is	Conditional	Logic?-The	case	Expression

conditional	updates	using,	Conditional	Updates-Conditional	Updates

division-by-zero	checks	using,	Division-by-Zero	Errors-Division-by-
Zero	Errors

existence	checks	using,	Checking	for	Existence-Checking	for
Existence

handling	null	values	using,	Handling	Null	Values-Handling	Null
Values

result	set	transformations	using,	Result	Set	Transformations-Result
Set	Transformations

searched	case	expressions,	Searched	case	Expressions-Searched	case
Expressions

simple	case	expressions,	Simple	case	Expressions-Simple	case
Expressions

subqueries	in,	Searched	case	Expressions-Searched	case	Expressions,
Conditional	Updates

cast()	function,	String-to-date	conversions-String-to-date	conversions,
Conversion	Functions-Conversion	Functions

ceil()	function,	Controlling	Number	Precision

char	type,	Character	Data,	Working	with	String	Data

char()	function,	Including	special	characters



character	data	(see	strings;	text	types)

character	sets,	Character	sets-Character	sets,	Including	special	characters

charindx()	function,	String	functions	that	return	numbers

check	constraints,	Step	3:	Building	SQL	Schema	Statements,	Column
Value	Violations,	Constraints

chr()	function,	Including	special	characters

clob	type,	Text	data,	Working	with	String	Data

cloud	computing,	Cloud	Computing-Cloud	Computing

clustering,	Clustering

coalesce()	function,	The	case	Expression

Codd,	E.	F.	(author),	“A	Relational	Model	of	Data	for	Large	Shared	Data
Banks”,	The	Relational	Model

code	examples	(see	examples)

columns,	The	Relational	Model,	What	Is	SQL?

aliases	for,	in	select	clause,	Column	Aliases

concatenating	values	of,	Column	Value	Concatenation

numeric	placeholders	for,	Sorting	via	Numeric	Placeholders

viewing	information	about,	information_schema

commit	command,	Ending	a	Transaction

common	table	expressions	(CTEs),	Common	table	expressions-Common
table	expressions

comparison	operators,	Building	a	Condition

(see	also	conditions)

composite	partitioning,	Composite	partitioning-Composite	partitioning



compound	keys,	The	Relational	Model

compound	queries,	Set	Theory	in	Practice,	Set	Operation	Precedence

(see	also	sets)

concat()	function,	Including	special	characters-Including	special
characters,	String	functions	that	return	strings-String	functions	that	return
strings

concatenation	operator

||	(for	Oracle	Database),	Including	special	characters,	String	functions
that	return	strings

+	(for	SQL	Server),	Including	special	characters,	String	functions	that
return	strings

conditional	logic,	What	Is	Conditional	Logic?-What	Is	Conditional	Logic?

(see	also	case	expressions)

conditions,	Building	a	Condition

(see	also	operators)

equality	conditions,	Equality	Conditions-Data	modification	using
equality	conditions

evaluation	of,	Condition	Evaluation-Using	the	not	Operator

filter	conditions,	The	where	Clause,	Filtering

grouping	with	parentheses,	The	where	Clause,	Using	Parentheses

join	conditions,	Table	Links,	Equality	Conditions,	The	ANSI	Join
Syntax

matching	conditions,	Matching	Conditions-Using	regular
expressions,	String	functions	that	return	numbers

membership	conditions,	Membership	Conditions-Using	not	in,	The	in
and	not	in	operators-The	any	operator



with	multicolumn	subqueries,	Multicolumn	Subqueries-Multicolumn
Subqueries

multiple,	The	where	Clause,	Condition	Evaluation-Using	the	not
Operator

with	null	values,	Null:	That	Four-Letter	Word-Null:	That	Four-Letter
Word

range	conditions,	Range	Conditions-String	ranges,	Correlated
Subqueries

regular	expressions	in,	Using	regular	expressions-Using	regular
expressions

with	scalar	subqueries,	Noncorrelated	Subqueries-Noncorrelated
Subqueries

connection	ID,	Query	Mechanics

consistency,	Constraints

constraint	clause,	Step	3:	Building	SQL	Schema	Statements,	Step	3:
Building	SQL	Schema	Statements

constraints,	Constraints

check	constraints,	Step	3:	Building	SQL	Schema	Statements,	Column
Value	Violations

creating,	Constraint	Creation-Constraint	Creation

foreign	key	constraints,	Step	3:	Building	SQL	Schema	Statements,
Nonexistent	Foreign	Key,	What	Is	a	Join?

on	subclauses	for,	Constraint	Creation-Constraint	Creation

primary	key	constraints,	Step	3:	Building	SQL	Schema	Statements

removing,	Constraint	Creation

types	of,	Constraints-Constraints



viewing	information	about,	information_schema

containing	query	or	statement,	Derived	(subquery-generated)	tables,	What
Is	a	Subquery?

conventions	used	in	this	book,	Conventions	Used	in	This	Book

conversion	functions,	Invalid	Date	Conversions,	String-to-date
conversions-Functions	for	generating	dates,	Conversion	Functions-
Conversion	Functions

convert()	function,	Functions	for	generating	dates

Coordinated	Universal	Time	(UTC),	Dealing	with	Time	Zones

correlated	subqueries,	Correlated	Subqueries-Data	Manipulation	Using
Correlated	Subqueries

cos()	function,	Performing	Arithmetic	Functions

cot()	function,	Performing	Arithmetic	Functions

count()	function,	Grouping	Concepts,	Aggregate	Functions,	Counting
Distinct	Values-Counting	Distinct	Values,	Outer	Joins,	Reporting
Functions

create	index	statement,	Index	Creation

create	table	statement,	Step	3:	Building	SQL	Schema	Statements-Step	3:
Building	SQL	Schema	Statements,	Constraint	Creation

create	view	statement,	Views,	What	Are	Views?

cross	joins,	Cartesian	Product,	Cross	Joins-Cross	Joins

CSV	storage	engine,	Transaction	Savepoints

CTEs	(common	table	expressions),	Common	table	expressions-Common
table	expressions

current_date()	function,	Functions	for	generating	dates

current_time()	function,	Functions	for	generating	dates



current_timestamp()	function,	Functions	for	generating	dates

D

data	dictionary,	SQL	Statement	Classes,	Data	About	Data

(see	also	metadata)

data	security	(see	security)

data	statements,	SQL	Statement	Classes,	SQL	Statement	Classes

(see	also	delete	statement;	insert	statement;	select	statement;	update
statement)

data	types,	MySQL	Data	Types-Temporal	Data

numeric,	Numeric	Data-Numeric	Data

strings,	Character	Data,	Working	with	String	Data-Working	with
String	Data

temporal,	Temporal	Data-Temporal	Data,	String	representations	of
temporal	data

text,	Text	data-Text	data

data	windows,	Data	Windows-Data	Windows,	Generating	Multiple
Rankings,	Reporting	Functions,	Window	Frames

database	connection,	Query	Mechanics

Database	in	Depth	(Date),	What’s	in	Store

The	Database	Relational	Model	(Date),	What’s	in	Store

database	servers,	What	Is	MySQL?-What	Is	MySQL?

(see	also	DB2	Universal	Database;	MySQL;	Oracle	Database;	SQL
Server)

database	systems,	Introduction	to	Databases



databases,	Introduction	to	Databases-The	Relational	Model

big	data,	Big	Data-Cloud	Computing,	SQL	and	Big	Data-Introduction
to	Apache	Drill,	Future	of	SQL

clustering,	Clustering

consistency	of,	Constraints

data	types	for,	MySQL	Data	Types-Temporal	Data

hierarchical,	Nonrelational	Database	Systems-Nonrelational	Database
Systems

history	of,	Introduction	to	Databases-The	Relational	Model

listing	in	MySQL,	Using	the	mysql	Command-Line	Tool

metadata	for	(see	metadata)

multiuser	(see	multiuser	databases)

network,	Nonrelational	Database	Systems-Nonrelational	Database
Systems

new	technologies	for,	SQL	Unplugged

partitioning	(see	partitioning	databases)

querying	(see	queries;	SQL)

relational	(see	relational	databases)

sharding,	Sharding-Sharding

specifying	in	MySQL,	Using	the	mysql	Command-Line	Tool

date	type,	Temporal	Data,	Generating	Temporal	Data,	String
representations	of	temporal	data

Date,	C.	J.	(author)

Database	in	Depth	(O’Reilly),	What’s	in	Store



The	Database	Relational	Model	(Addison-Wesley),	What’s	in	Store

An	Introduction	to	Database	Systems	(Addison-Wesley),	What’s	in
Store

dateadd()	function,	Temporal	functions	that	return	dates

datediff()	function,	Temporal	functions	that	return	numbers-Temporal
functions	that	return	numbers,	Using	Expressions

datepart()	function,	Temporal	functions	that	return	strings

dates	(see	temporal	data)

datetime	type,	Temporal	Data,	Generating	Temporal	Data,	String
representations	of	temporal	data

date_add()	function,	Temporal	functions	that	return	dates-Temporal
functions	that	return	dates

daylight	saving	time,	Dealing	with	Time	Zones

dayname()	function,	Temporal	functions	that	return	strings

DB2	Universal	Database,	What	Is	MySQL?

clob	type,	Text	data

except	all	implemented,	The	except	Operator

intersect	all	implemented,	The	intersect	Operator

deadlock	detection,	Ending	a	Transaction

deallocate	statement,	Dynamic	SQL	Generation

decode()	function,	The	case	Expression

delete	statement,	Deleting	Data,	Data	Manipulation	Using	Correlated
Subqueries

dense_rank()	function,	Ranking	Functions-Ranking	Functions

deployment	verification,	Deployment	Verification



derived	tables,	Derived	(subquery-generated)	tables

desc	keyword,	Ascending	Versus	Descending	Sort	Order

describe	command,	Step	3:	Building	SQL	Schema	Statements,	The	Sakila
Database,	What	Are	Views?

distinct	keyword,	Removing	Duplicates,	Counting	Distinct	Values

division-by-zero	error	checking,	Division-by-Zero	Errors-Division-by-
Zero	Errors

document	databases,	NoSQL	and	Document	Databases

double	type,	Numeric	Data

drop	constraint	keywords,	Constraint	Creation

drop	index	keywords	(MySQL),	Index	Creation

drop	index	statement	(Oracle	Database	and	SQL	Server),	Index	Creation

drop	table	statement,	The	Sakila	Database

DSL/Alpha	language,	What	Is	SQL?

dual	table,	Using	the	mysql	Command-Line	Tool

durability,	What	Is	a	Transaction?

dynamic	SQL	execution,	Dynamic	SQL	Generation

dynamic	SQL	generation,	Dynamic	SQL	Generation-Dynamic	SQL
Generation

E

engine	keyword,	Transaction	Savepoints

(see	also	storage	engines)

entities,	What	Is	SQL?

enum	type,	Step	3:	Building	SQL	Schema	Statements



equality	conditions,	Equality	Conditions-Data	modification	using	equality
conditions

ER	(entity-relationship)	diagram	for	Sakila	database,	ER	Diagram	for
Example	Database

errors

column	value,	invalid,	Column	Value	Violations

date	value,	formatted	incorrectly,	Invalid	Date	Conversions

division-by-zero,	checking	for,	Division-by-Zero	Errors-Division-by-
Zero	Errors

foreign	key,	nonexistent,	Nonexistent	Foreign	Key

primary	key,	nonunique,	Nonunique	Primary	Key

examples

MySQL	used	for,	What	Is	MySQL?

Sakila	database	for,	Using	the	Examples	in	This	Book,	Creating	a
MySQL	Database,	Creating	a	MySQL	Database,	The	Sakila
Database-The	Sakila	Database

except	and	except	all	operators,	Set	Theory	Primer,	The	except	Operator-
The	except	Operator

execute	immediate	command,	Dynamic	SQL	Generation

execute	statement,	Dynamic	SQL	Generation

execution	plan,	Query	Mechanics

exists	operator,	The	exists	Operator-The	exists	Operator,	Checking	for
Existence-Checking	for	Existence

exit	command,	Using	the	mysql	Command-Line	Tool

exp()	function,	Performing	Arithmetic	Functions



explain	statement,	How	Indexes	Are	Used

explicit	groups,	Implicit	Versus	Explicit	Groups-Implicit	Versus	Explicit
Groups

exponentiation,	Performing	Arithmetic	Functions

expressions

arithmetic	(see	arithmetic	functions;	arithmetic	operators)

in	conditions,	Building	a	Condition

(see	also	conditions)

extract()	function,	Temporal	functions	that	return	strings

F

files

querying	with	Apache	Drill,	Querying	Files	Using	Drill-Querying
Files	Using	Drill

text	types	for,	Text	data-Text	data

filter	conditions,	The	where	Clause,	Filtering

(see	also	conditions;	having	clause;	where	clause)

fixed-length	strings,	Character	Data

float	type,	Numeric	Data

floating-point	numbers,	Numeric	Data,	Controlling	Number	Precision-
Controlling	Number	Precision

floor()	function,	Controlling	Number	Precision

for	xml	clause,	The	insert	statement

foreign	key	constraints,	Step	3:	Building	SQL	Schema	Statements,
Nonexistent	Foreign	Key,	What	Is	a	Join?,	Constraints



foreign	keys,	The	Relational	Model,	What	Is	SQL?

joins	using,	What	Is	a	Join?

nonexistant,	error	from,	Nonexistent	Foreign	Key

self-referencing,	Self-Joins

Friedl,	Jeffrey	E.	F.	(author),	Mastering	Regular	Expressions	(O’Reilly),
Using	regular	expressions

from	clause,	The	select	Clause,	The	from	Clause-Defining	Table	Aliases

older	join	syntax	in,	The	ANSI	Join	Syntax

omitting,	Using	the	mysql	Command-Line	Tool,	The	select	Clause

subqueries	in,	Subqueries	as	Data	Sources-Task-oriented	subqueries

table	aliases	in,	Defining	Table	Aliases

table	names	in,	Tables-Views

full-text	indexes,	Text	indexes

functions

aggregate	(see	aggregate	functions)

analytic	(see	analytic	functions)

arithmetic,	Performing	Arithmetic	Functions-Performing	Arithmetic
Functions

conversion,	Invalid	Date	Conversions,	String-to-date	conversions-
Functions	for	generating	dates,	Conversion	Functions-Conversion
Functions

string,	String	Manipulation-String	functions	that	return	strings

G

getutcdate()	function,	Dealing	with	Time	Zones



Givre,	Charles	(author),	Learning	Apache	Drill,	Introduction	to	Apache
Drill

global	index,	Index	Partitioning

global.time_zone	value,	Dealing	with	Time	Zones

GMT	(Greenwich	Mean	Time),	Dealing	with	Time	Zones

Go,	SQL	integration	toolkit	for,	SQL:	A	Nonprocedural	Language

group	by	clause,	The	group	by	and	having	Clauses-The	group	by	and
having	Clauses,	Grouping	Concepts,	Implicit	Versus	Explicit	Groups-
Implicit	Versus	Explicit	Groups

grouping,	Grouping	Concepts-Grouping	Concepts

(see	also	parentheses	((	)))

aggregate	functions	with,	Grouping	Concepts-How	Nulls	Are
Handled

based	on	expressions,	Grouping	via	Expressions-Grouping	via
Expressions

explicit	groups,	Implicit	Versus	Explicit	Groups-Implicit	Versus
Explicit	Groups

filtering	results	of,	Grouping	Concepts-Grouping	Concepts,	Group
Filter	Conditions-Group	Filter	Conditions

implicit	groups,	Implicit	Versus	Explicit	Groups

multicolumn	grouping,	Multicolumn	Grouping

rollups	with,	Generating	Rollups-Generating	Rollups

single-column	grouping,	Single-Column	Grouping

sorting	results	of,	Grouping	Concepts

group_concat()	function,	Column	Value	Concatenation

H



H

Hadoop,	SQL	Unplugged,	Hadoop,	Introduction	to	Apache	Drill

hash	partitioning,	Hash	partitioning-Hash	partitioning

hashing	function,	Hash	partitioning

having	clause,	The	group	by	and	having	Clauses-The	group	by	and	having
Clauses,	Grouping	Concepts,	Group	Filter	Conditions-Group	Filter
Conditions,	The	all	operator

(see	also	conditions)

HDFS	(Hadoop	Distributed	File	System),	Hadoop

hierarchical	database	systems,	Nonrelational	Database	Systems-
Nonrelational	Database	Systems

High	Performance	MySQL	(Schwartz,	et	al.),	Query	Mechanics

Hive,	Introduction	to	Apache	Drill

horizontal	partitioning,	Table	Partitioning

I

IBM	DB2	Universal	Database	(see	DB2	Universal	Database)

ID,	connection,	Query	Mechanics

if()	function,	The	case	Expression

implicit	groups,	Implicit	Versus	Explicit	Groups

in	operator,	Membership	Conditions-Using	subqueries,	The	in	and	not	in
operators-The	in	and	not	in	operators

index	partitioning,	Index	Partitioning

indexes,	Indexes-Indexes

B-tree	indexes,	B-tree	indexes



bitmap	indexes,	Bitmap	indexes

creating,	Index	Creation-Multicolumn	indexes

default	type	of,	B-tree	indexes

disadvantages	of,	The	Downside	of	Indexes-The	Downside	of
Indexes

displaying,	Index	Creation

ideal	number	of,	The	Downside	of	Indexes

multicolumn	indexes,	Multicolumn	indexes

query	optimizer	using,	Index	Creation,	How	Indexes	Are	Used-How
Indexes	Are	Used

removing,	Index	Creation

text	indexes,	Text	indexes

unique	indexes,	Unique	indexes-Unique	indexes

viewing	information	about,	information_schema

information_schema	database,	Data	About	Data-information_schema

(see	also	schema	statements)

Apache	Drill	access	to,	Querying	Files	Using	Drill

querying,	information_schema-information_schema

inner	join	keywords,	Table	Links-Table	Links,	Inner	Joins

inner	joins,	Inner	Joins-Inner	Joins

InnoDB	storage	engine,	Nonexistent	Foreign	Key,	Transaction	Savepoints,
Constraints

insert	statement,	The	insert	statement-The	insert	statement,	Subqueries	as
Expression	Generators



insert()	function,	String	functions	that	return	strings-String	functions	that
return	strings

instr()	function,	String	functions	that	return	numbers

int	type,	Numeric	Data

integers,	Numeric	Data

intersect	and	intersect	all	operators,	Set	Theory	Primer,	The	intersect
Operator-The	intersect	Operator

An	Introduction	to	Database	Systems	(Date),	What’s	in	Store

is	not	null	operator,	Null:	That	Four-Letter	Word

is	null	operator,	Null:	That	Four-Letter	Word-Null:	That	Four-Letter	Word

J

Java,	SQL	integration	toolkit	for,	SQL:	A	Nonprocedural	Language

JDBC	(Java	Database	Connectivity),	SQL:	A	Nonprocedural	Language

JDBC	driver	for	MySQL,	Querying	MySQL	Using	Drill

join	keyword,	Cartesian	Product,	Inner	Joins

(see	also	on	subclause;	using	subclause)

joins,	The	Relational	Model,	Table	Links-Table	Links,	Querying	Multiple
Tables-The	ANSI	Join	Syntax

ANSI	SQL92	syntax	for,	The	ANSI	Join	Syntax-The	ANSI	Join
Syntax

conditions	for,	Table	Links,	Equality	Conditions,	The	ANSI	Join
Syntax

cross	joins,	Cartesian	Product,	Cross	Joins-Cross	Joins

default	type	of,	Inner	Joins



inner	joins,	Inner	Joins-Inner	Joins

multiple,	constructing,	Joining	Three	or	More	Tables-Using	the	Same
Table	Twice

multiple,	order	of,	Joining	Three	or	More	Tables

natural	joins,	Natural	Joins-Natural	Joins

older	syntax	for,	The	ANSI	Join	Syntax

outer	joins,	Inner	Joins,	Outer	Joins-Three-Way	Outer	Joins

partition-wise	joins,	Partitioning	Benefits

same	table	joined	multiple	times	in,	Using	the	Same	Table	Twice-
Using	the	Same	Table	Twice

self-joins,	Self-Joins-Self-Joins

subqueries	as	tables	in,	Using	Subqueries	as	Tables-Using	Subqueries
as	Tables

views	using,	What	Are	Views?,	Joining	Partitioned	Data-Joining
Partitioned	Data

JSON	files

document	databases	using,	NoSQL	and	Document	Databases

loading	into	MongoDB,	Querying	MongoDB	Using	Drill-Querying
MongoDB	Using	Drill

K

keys	(see	foreign	keys;	primary	keys)

Korpela,	Jukka	(author),	Unicode	Explained	(O’Reilly),	Character	sets

L

lag()	function,	Lag	and	Lead-Lag	and	Lead



last_day()	function,	Temporal	functions	that	return	dates

lead()	function,	Lag	and	Lead-Lag	and	Lead

leaf	nodes,	B-tree	indexes

Learning	Apache	Drill	(O’Reilly),	Introduction	to	Apache	Drill

left	outer	joins,	Outer	Joins-Left	Versus	Right	Outer	Joins

len()	function,	String	functions	that	return	numbers

length()	function,	String	functions	that	return	numbers

like	operator,	Using	wildcards,	String	functions	that	return	numbers

list	partitioning,	List	partitioning-List	partitioning

ln()	function,	Performing	Arithmetic	Functions

local	index,	Index	Partitioning

locate()	function,	String	functions	that	return	numbers

locking,	Locking-Lock	Granularities

granularities	of,	Lock	Granularities-Lock	Granularities

read	lock,	Locking

storage	engine	determining,	Transaction	Savepoints-Transaction
Savepoints

versioning	approach,	Locking

write	lock,	Locking

logical	operators

and	operator,	The	where	Clause,	Condition	Evaluation

not	operator,	Using	the	not	Operator

or	operator,	The	where	Clause,	Condition	Evaluation



longtext	type,	Text	data

low-cardinality	data,	Bitmap	indexes

M

MapReduce,	Hadoop

Mastering	Regular	Expressions	(O’Reilly),	Using	regular	expressions

matching	conditions,	Matching	Conditions-Using	regular	expressions,
String	functions	that	return	numbers

max()	function,	Aggregate	Functions,	Reporting	Functions-Reporting
Functions

mediumint	type,	Numeric	Data

mediumtext	type,	Text	data

membership	conditions,	Membership	Conditions-Using	not	in,	The	in	and
not	in	operators-The	any	operator

MEMORY	storage	engine,	Transaction	Savepoints

Merge	storage	engine,	Transaction	Savepoints

metadata,	Data	About	Data-Data	About	Data

about	partitioned	tables,	Range	partitioning

Apache	Drill	access	to,	Querying	Files	Using	Drill

deployment	verification	using,	Deployment	Verification

dynamic	SQL	generation	using,	Dynamic	SQL	Generation-Dynamic
SQL	Generation

in	information_schema	database,	Data	About	Data-
information_schema

querying,	information_schema-information_schema



schema	generation	scripts	from,	Schema	Generation	Scripts-Schema
Generation	Scripts

Microsoft	SQL	Server	(see	SQL	Server)

min()	function,	Aggregate	Functions,	Reporting	Functions-Reporting
Functions

minus	operator,	The	except	Operator

mod()	function,	Performing	Arithmetic	Functions

MongoDB

document	databases	using,	NoSQL	and	Document	Databases

querying	with	Apache	Drill,	Querying	MongoDB	Using	Drill-
Querying	MongoDB	Using	Drill

multi-parent	hierarchy,	Nonrelational	Database	Systems

multibyte	character	sets,	Character	sets

multicolumn	grouping,	Multicolumn	Grouping

multicolumn	indexes,	Multicolumn	indexes

multicolumn	subqueries,	Multicolumn	Subqueries-Multicolumn
Subqueries

multiple-row,	single-column	subqueries,	Multiple-Row,	Single-Column
Subqueries-The	any	operator

multiuser	databases,	Multiuser	Databases

locking	for,	Locking-Lock	Granularities,	Transaction	Savepoints-
Transaction	Savepoints

transactions	for,	What	Is	a	Transaction?-Transaction	Savepoints

MyISAM	storage	engine,	Transaction	Savepoints

MySQL,	What	Is	MySQL?



auto_increment	keyword,	Generating	numeric	key	data

data	types,	MySQL	Data	Types-Temporal	Data

databases	in,	listing,	Using	the	mysql	Command-Line	Tool

databases	in,	specifying,	Using	the	mysql	Command-Line	Tool

date	formats,	Invalid	Date	Conversions

date	ranges	allowed,	Temporal	Data

default	index	type,	B-tree	indexes

dual	table	in,	Using	the	mysql	Command-Line	Tool

except	operator	not	implemented,	The	except	Operator

full-text	indexes,	Text	indexes

if()	function,	The	case	Expression

installing,	Creating	a	MySQL	Database

intersect	operator	not	implemented,	The	intersect	Operator

JDBC	driver	for,	Querying	MySQL	Using	Drill

locking	granularities,	Lock	Granularities

metadata	access,	Data	About	Data

parentheses	not	allowed	in	compound	queries,	Set	Operation
Precedence

query	execution	by,	Query	Mechanics-Query	Mechanics

querying	with	Apache	Drill,	Querying	MySQL	Using	Drill-Querying
MySQL	Using	Drill

silent	truncation	of	strings,	String	Generation-String	Generation

storage	engines,	Transaction	Savepoints-Transaction	Savepoints

transaction	approach,	Starting	a	Transaction



updatable	view	restrictions,	Updatable	Views

utc_timestamp()	function,	Dealing	with	Time	Zones

mysql	command,	SQL:	A	Nonprocedural	Language,	Using	the	mysql
Command-Line	Tool-Using	the	mysql	Command-Line	Tool

feedback	from,	SQL	Examples

query	execution	by,	Query	Mechanics-Query	Mechanics

--xml	option,	The	insert	statement

MySQL	stored	procedure	language,	SQL:	A	Nonprocedural	Language

MySQL	Workbench,	Schema	Generation	Scripts

N

natural	joins,	Natural	Joins-Natural	Joins

natural	keys,	The	Relational	Model

network	database	systems,	Nonrelational	Database	Systems-Nonrelational
Database	Systems

NewSQL,	SQL	Unplugged

noncorrelated	subqueries,	Noncorrelated	Subqueries-Multicolumn
Subqueries

nonprocedural	languages,	SQL:	A	Nonprocedural	Language

nonrelational	databases,	Nonrelational	Database	Systems-Nonrelational
Database	Systems

normalization,	The	Relational	Model,	Step	2:	Refinement-Step	2:
Refinement

NoSQL,	SQL	Unplugged,	NoSQL	and	Document	Databases,	Introduction
to	Apache	Drill



not	in	operator,	Using	not	in,	The	in	and	not	in	operators-The	in	and	not	in
operators

not	null	keywords,	Step	3:	Building	SQL	Schema	Statements

not	operator,	Using	the	not	Operator

now()	function,	Using	the	mysql	Command-Line	Tool

null	values,	Step	3:	Building	SQL	Schema	Statements

aggregate	functions	handling,	How	Nulls	Are	Handled-How	Nulls
Are	Handled

all	operator	handling,	The	all	operator

case	expressions	handling,	Handling	Null	Values-Handling	Null
Values

comparisons	with,	Null:	That	Four-Letter	Word-Null:	That	Four-
Letter	Word

disallowing	for	a	table	column,	Step	3:	Building	SQL	Schema
Statements

not	in	operator	handling,	The	all	operator

outer	joins	resulting	in,	Outer	Joins

numeric	data

arithmetic	functions	for,	Performing	Arithmetic	Functions-
Performing	Arithmetic	Functions

arithmetic	operators	for,	Building	a	Condition,	Working	with
Numeric	Data

precision	of,	controlling,	Controlling	Number	Precision-Controlling
Number	Precision

signed,	functions	for,	Handling	Signed	Data-Handling	Signed	Data

numeric	data	types,	Numeric	Data-Numeric	Data



O

on	delete	clause,	Constraint	Creation-Constraint	Creation

on	subclause,	Table	Links,	Equality	Conditions,	Inner	Joins

on	update	clause,	Constraint	Creation-Constraint	Creation

online	resources

Apache	Drill's	SQL	implementation,	Querying	MySQL	Using	Drill

database	management	systems,	What’s	in	Store

for	this	book,	How	to	Contact	Us

MySQL,	Creating	a	MySQL	Database

Oracle	Database	Reference	Guide,	information_schema

Sakila	database,	Using	the	Examples	in	This	Book,	Creating	a
MySQL	Database,	Creating	a	MySQL	Database

operators

between	conditions	(see	logical	operators)

for	null	values,	Null:	That	Four-Letter	Word-Null:	That	Four-Letter
Word

for	sets	(see	set	operators)

within	conditions	(see	arithmetic	operators;	comparison	operators)

optimizer,	SQL:	A	Nonprocedural	Language

optimizer	hints,	SQL:	A	Nonprocedural	Language

or	operator,	The	where	Clause,	Condition	Evaluation

Oracle	Database,	What	Is	MySQL?

add_months()	function,	Temporal	functions	that	return	dates



bitmap	indexes,	Bitmap	indexes

char,	varchar2	and	clob	sizes,	Text	data

chr()	function,	Including	special	characters

clob	type,	Text	data,	Working	with	String	Data

concatenation	operator	(||),	Including	special	characters,	String
functions	that	return	strings

create	index	statement,	Index	Creation

current	date	and	time	functions,	Functions	for	generating	dates

date	ranges	allowed,	Temporal	Data

decode()	function,	The	case	Expression

default	index	type,	B-tree	indexes

drop	index	statement,	Index	Creation

execute	immediate	command,	Dynamic	SQL	Generation

from	clause	required	in,	Using	the	mysql	Command-Line	Tool

instr()	function,	String	functions	that	return	numbers

locking	approach,	Locking

locking	granularities,	Lock	Granularities

metadata	access,	Data	About	Data,	information_schema

minus	operator,	The	except	Operator

pivot	clause,	Result	Set	Transformations

plan_table	table,	How	Indexes	Are	Used

replace()	function,	String	functions	that	return	strings

rollups,	generating,	Generating	Rollups



sequence	object,	Generating	numeric	key	data

session	time	zone	setting,	Dealing	with	Time	Zones

substr()	function,	String	functions	that	return	strings

subtracting	dates,	Temporal	functions	that	return	numbers

temporary	tables,	duration	of,	Temporary	tables

to_date()	function,	Functions	for	generating	dates

transaction	approach,	Starting	a	Transaction

unique	keyword,	Unique	indexes

updatable	view	restrictions,	Updating	Complex	Views

varchar2	data	type,	Character	Data

VPD	(Virtual	Private	Database),	Data	Security

Oracle	Exadata	platform,	Clustering

Oracle	SQL	Developer,	Schema	Generation	Scripts

Oracle	Text,	Text	indexes

order	by	clause,	The	order	by	Clause-Sorting	via	Numeric	Placeholders

in	compound	queries,	Sorting	Compound	Query	Results-Sorting
Compound	Query	Results

with	grouping,	Grouping	Concepts

localized,	Localized	Sorting-Localized	Sorting

subqueries	in,	Subqueries	as	Expression	Generators

outer	joins,	Inner	Joins,	Outer	Joins-Three-Way	Outer	Joins

left	outer	joins,	Outer	Joins-Left	Versus	Right	Outer	Joins

right	outer	joins,	Left	Versus	Right	Outer	Joins-Left	Versus	Right
Outer	Joins



three-way	outer	joins,	Three-Way	Outer	Joins-Three-Way	Outer
Joins

over	clause,	Data	Windows,	Generating	Multiple	Rankings,	Reporting
Functions

P

Package	database/sql,	SQL:	A	Nonprocedural	Language

packet	capture	(PCAP)	files,	Querying	Files	Using	Drill-Querying	Files
Using	Drill

page	locks,	Lock	Granularities

parentheses	((	))

enclosing	subqueries,	Derived	(subquery-generated)	tables

grouping	arithmetic	operations,	Working	with	Numeric	Data

grouping	compound	queries,	Set	Operation	Precedence

grouping	filter	conditions,	The	where	Clause,	Using	Parentheses

partition	by	clause,	Data	Windows,	Localized	Sorting,	Generating
Multiple	Rankings,	Reporting	Functions

partition	by	hash	keywords,	Hash	partitioning

partition	by	list	keywords,	List	partitioning

partition	by	range	keywords,	Range	partitioning

partition	function,	Table	Partitioning

partition	key,	Table	Partitioning

partition	pruning,	Partitioning	Benefits

partition-wise	joins,	Partitioning	Benefits

partitioning	databases,	Partitioning-Partitioning	Concepts



benefits	of,	Partitioning	Benefits

composite	partitioning,	Composite	partitioning-Composite
partitioning

hash	partitioning,	Hash	partitioning-Hash	partitioning

index	partitioning,	Index	Partitioning

list	partitioning,	List	partitioning-List	partitioning

metadata	regarding,	Range	partitioning

range	partitioning,	Range	partitioning-Range	partitioning

reasons	for,	Partitioning

reorganizing	partitions,	Range	partitioning

table	partitioning,	Table	Partitioning

PCAP	(packet	capture)	files,	Querying	Files	Using	Drill-Querying	Files
Using	Drill

percent	sign	(%),	modulo	operator,	Performing	Arithmetic	Functions

permissions,	Query	Mechanics,	Data	Security,	Querying	Files	Using	Drill

pivot	clause,	Result	Set	Transformations

PL/SQL	language,	SQL:	A	Nonprocedural	Language

plan_table	table,	How	Indexes	Are	Used

plus	sign	(+),	concatenation	operator,	SQL	Server,	Including	special
characters

(see	also	arithmetic	operators)

position()	function,	String	functions	that	return	numbers

PostgreSQL,	What	Is	MySQL?

pow()	function,	Performing	Arithmetic	Functions



precision	of	floating-point	types,	Numeric	Data

prepare	statement,	Dynamic	SQL	Generation

Presto,	SQL	and	Big	Data

primary	key	constraints,	Step	3:	Building	SQL	Schema	Statements,
Constraints

primary	keys,	The	Relational	Model,	What	Is	SQL?,	Step	3:	Building	SQL
Schema	Statements

generating	values	for,	Generating	numeric	key	data

nonunique,	error	from,	Nonunique	Primary	Key

private	tables,	Data	Security

procedural	languages,	SQL:	A	Nonprocedural	Language

programming	languages,	integrating	SQL	with,	SQL:	A	Nonprocedural
Language

Python	DB,	SQL:	A	Nonprocedural	Language

Python,	SQL	integration	toolkit	for,	SQL:	A	Nonprocedural	Language

Q

queries

aggregate	functions	in	(see	aggregate	functions)

analytic	functions	in	(see	analytic	functions)

with	Apache	Drill	(see	Apache	Drill)

case	expressions	in	(see	case	expressions)

clauses	in,	SQL	Examples,	Query	Clauses

(see	also	from	clause;	group	by	clause;	having	clause;	order	by
clause;	select	statement;	where	clause)



compound,	Set	Theory	in	Practice,	Set	Operation	Precedence

(see	also	sets)

execution	of,	by	MySQL,	Query	Mechanics-Query	Mechanics

on	multiple	databases,	Drill	with	Multiple	Data	Sources-Drill	with
Multiple	Data	Sources

on	multiple	tables	(see	joins)

permission	to	execute,	Query	Mechanics

subqueries	(see	subqueries)

tuning,	How	Indexes	Are	Used

XML	output	from,	The	insert	statement

query	optimizer,	Query	Mechanics,	Index	Creation,	How	Indexes	Are
Used-How	Indexes	Are	Used

quit	command,	Using	the	mysql	Command-Line	Tool

quote()	function,	Including	single	quotes

quotes,	single	('	')

enclosing	strings,	String	Generation

escape	sequence	for,	Including	single	quotes-Including	single	quotes

R

range	between	subclause,	Window	Frames

range	conditions,	Range	Conditions-String	ranges,	Correlated	Subqueries

range	partitioning,	Range	partitioning-Range	partitioning

rank()	function,	Ranking	Functions-Generating	Multiple	Rankings

ranking	functions,	Ranking-Generating	Multiple	Rankings



read	lock,	Locking

references	keyword,	Step	3:	Building	SQL	Schema	Statements,	Constraint
Creation

regexp	operator,	Using	regular	expressions,	String	functions	that	return
numbers

regular	expressions,	Using	regular	expressions-Using	regular	expressions

relational	databases,	The	Relational	Model-The	Relational	Model

future	of,	Future	of	SQL

history	of,	Preface,	The	Relational	Model

querying	(see	queries;	SQL)

relationship	to	SQL,	What	Is	SQL?

servers	using,	What	Is	MySQL?-What	Is	MySQL?

(see	also	specific	servers)

“A	Relational	Model	of	Data	for	Large	Shared	Data	Banks”	(Codd),	The
Relational	Model

reorganize	partition	keywords,	Range	partitioning

replace()	function,	String	functions	that	return	strings

reporting	functions,	Reporting	Functions-Column	Value	Concatenation

resources	(see	books	and	publications;	online	resources)

result	sets,	What	Is	SQL?,	What	Is	SQL?,	Query	Mechanics

analytic	functions	for	(see	analytic	functions)

duplicates	in,	including,	Removing	Duplicates,	The	intersect
Operator,	The	except	Operator

duplicates	in,	removing,	Removing	Duplicates,	The	union	Operator,
Counting	Distinct	Values



sorting,	The	order	by	Clause-Sorting	via	Numeric	Placeholders

(see	also	order	by	clause)

sorting,	for	compound	queries,	Sorting	Compound	Query	Results-
Sorting	Compound	Query	Results

transforming,	Result	Set	Transformations-Result	Set	Transformations

right	outer	joins,	Left	Versus	Right	Outer	Joins-Left	Versus	Right	Outer
Joins

Rogers,	Paul	(author),	Learning	Apache	Drill,	Introduction	to	Apache
Drill

rollback	command,	Ending	a	Transaction

rollback	to	savepoint	command,	Transaction	Savepoints

rollback	transaction	command,	Transaction	Savepoints

rollups,	generating,	Generating	Rollups-Generating	Rollups

round()	function,	Controlling	Number	Precision

row	locks,	Lock	Granularities

rows,	The	Relational	Model,	What	Is	SQL?

rows	between	subclause,	Window	Frames

rows	unbounded	preceding	subclause,	Window	Frames

row_number()	function,	Ranking	Functions-Ranking	Functions

Ruby	DBI,	SQL:	A	Nonprocedural	Language

Ruby,	SQL	integration	toolkit	for,	SQL:	A	Nonprocedural	Language

S

Sakila	database,	The	Sakila	Database-The	Sakila	Database

downloading,	Using	the	Examples	in	This	Book,	Creating	a	MySQL



Database,	Creating	a	MySQL	Database

ER	diagram	for,	ER	Diagram	for	Example	Database

save	transaction	command,	Transaction	Savepoints

savepoint	command,	Transaction	Savepoints

savepoints,	Transaction	Savepoints-Transaction	Savepoints

scalar	subqueries,	Noncorrelated	Subqueries-Noncorrelated	Subqueries

in	order	by	clause,	Subqueries	as	Expression	Generators

in	select	clause,	Subqueries	as	Expression	Generators

in	values	clause	of	insert	statement,	Subqueries	as	Expression
Generators

scale	of	floating-point	types,	Numeric	Data

schema	statements,	SQL	Statement	Classes

(see	also	alter	table	statement;	create	table	statement;	drop	table
statement)

metadata	from	(see	metadata)

scripts	generating,	Schema	Generation	Scripts-Schema	Generation
Scripts

transactions	not	used	for,	Ending	a	Transaction

Schwartz,	Baron	(author),	High	Performance	MySQL	(O’Reilly),	Query
Mechanics

search	expressions,	Using	wildcards

(see	also	matching	conditions)

searched	case	expressions,	Searched	case	Expressions-Searched	case
Expressions

security



permissions,	Query	Mechanics,	Data	Security,	Querying	Files	Using
Drill

views	for,	Data	Security

VPD	(Virtual	Private	Database),	Data	Security

select	statement,	The	select	Clause-Removing	Duplicates

(see	also	from	clause;	group	by	clause;	having	clause;	order	by
clause;	where	clause)

all	keyword	in,	Removing	Duplicates

column	aliases	in,	Column	Aliases

column	names	in,	The	select	Clause

distinct	keyword	in,	Removing	Duplicates,	Counting	Distinct	Values

expressions	in,	The	select	Clause

(see	also	expressions)

function	calls	in,	The	select	Clause

(see	also	functions)

literals	in,	The	select	Clause

subqueries	in,	Subqueries	as	Expression	Generators

(see	also	subqueries)

self-joins,	Self-Joins-Self-Joins

self-referencing	foreign	key,	Self-Joins

SEQUEL	language,	What	Is	SQL?

sequence	object,	Generating	numeric	key	data

servers,	What	Is	MySQL?-What	Is	MySQL?

(see	also	DB2	Universal	Database;	MySQL;	Oracle	Database;	SQL



Server)

session.time_zone	value,	Dealing	with	Time	Zones

set	autocommit	command,	Starting	a	Transaction

set	command,	String	Generation

set	implicit_transactions	command,	Starting	a	Transaction

set	operators,	Set	Theory	in	Practice-The	except	Operator

except	and	except	all,	Set	Theory	Primer,	The	except	Operator-The
except	Operator

intersect	and	intersect	all,	Set	Theory	Primer,	The	intersect	Operator-
The	intersect	Operator

precedence	of,	Set	Operation	Precedence-Set	Operation	Precedence

union	and	union	all,	Set	Theory	Primer,	The	union	Operator-The
union	Operator

set	showplan_text	on	statement,	How	Indexes	Are	Used

sets,	Set	Theory	Primer-Set	Theory	in	Practice

combining	operations	on,	Set	Theory	Primer

operation	precedence	for,	Set	Operation	Precedence-Set	Operation
Precedence

sorting	results	of,	Sorting	Compound	Query	Results-Sorting
Compound	Query	Results

table	requirements	for	operations,	Set	Theory	in	Practice

sharding,	Sharding-Sharding

shared-disk/shared-cache	clustering	configurations,	Clustering

show	character	set	command,	Character	sets

show	databases	command,	Using	the	mysql	Command-Line	Tool



show	index	command,	Index	Creation

show	table	command,	Transaction	Savepoints

show	tables	command,	The	Sakila	Database

sign()	function,	Handling	Signed	Data

simple	case	expressions,	Simple	case	Expressions-Simple	case
Expressions

sin()	function,	Performing	Arithmetic	Functions

single	quotes	('	')

enclosing	strings,	String	Generation

escape	sequence	for,	Including	single	quotes-Including	single	quotes

single-column	grouping,	Single-Column	Grouping

single-parent	hierarchy,	Nonrelational	Database	Systems

smallint	type,	Numeric	Data

sorting

localized,	with	analytic	functions,	Localized	Sorting-Localized
Sorting

query	results	(see	order	by	clause)

Spark,	SQL	Unplugged,	Introduction	to	Apache	Drill

Spark	SQL,	Introduction	to	Apache	Drill

special	characters	in	strings,	Including	special	characters-Including	special
characters

sp_executesql	procedure,	Dynamic	SQL	Generation

SQL,	What	Is	SQL?-SQL	Examples

as	nonprocedural,	SQL:	A	Nonprocedural	Language



conditions	in	(see	conditions;	expressions;	operators)

data	statements,	SQL	Statement	Classes,	SQL	Statement	Classes

(see	also	delete	statement;	insert	statement;	select	statement;
update	statement)

dynamic	execution	of,	Dynamic	SQL	Generation

dynamic	generation	of,	Dynamic	SQL	Generation-Dynamic	SQL
Generation

functions	in	(see	functions)

future	of,	Future	of	SQL

history	of,	Preface,	What	Is	SQL?

integrating	with	programming	languages,	SQL:	A	Nonprocedural
Language

interactive	execution	of,	SQL:	A	Nonprocedural	Language

new	technologies	using,	SQL	Unplugged

prevalence	of,	Why	Learn	SQL?

pronunciation	of,	What	Is	SQL?

relational	model	used	by,	What	Is	SQL?

schema	statements,	SQL	Statement	Classes

(see	also	alter	table	statement;	create	table	statement;	drop	table
statement)

sets	(see	sets)

statement	classes,	SQL	Statement	Classes-SQL	Statement	Classes

transaction	statements,	SQL	Statement	Classes,	What	Is	a
Transaction?

(see	also	commit	statement;	rollback	statement;	start	statement)



SQL	in	a	Nutshell	(O’Reilly),	String	functions	that	return	strings

SQL	integration	toolkits,	SQL:	A	Nonprocedural	Language

SQL	Server,	What	Is	MySQL?

begin	transaction	command,	Starting	a	Transaction

char	and	varchar	sizes,	Text	data

charindx()	function,	String	functions	that	return	numbers

coalesce()	function,	The	case	Expression

concatenation	operator	(+),	Including	special	characters,	String
functions	that	return	strings

convert()	function,	Functions	for	generating	dates

create	index	statement,	Index	Creation

current	date	and	time	functions,	Functions	for	generating	dates

date	ranges	allowed,	Temporal	Data

dateadd()	function,	Temporal	functions	that	return	dates

datediff()	function,	Temporal	functions	that	return	numbers

datepart()	function,	Temporal	functions	that	return	strings

default	index	type,	B-tree	indexes

drop	index	statement,	Index	Creation

for	xml	clause,	The	insert	statement

full-text	indexes,	Text	indexes

getutcdate()	function,	Dealing	with	Time	Zones

information_schema	schema,	Data	About	Data

len()	function,	String	functions	that	return	numbers



locking	approach,	Locking

locking	granularities,	Lock	Granularities

metadata	access,	Data	About	Data

modulo	operator	(%),	Performing	Arithmetic	Functions

pivot	clause,	Result	Set	Transformations

replace()	function,	String	functions	that	return	strings

round()	function,	Controlling	Number	Precision

save	transaction,	Transaction	Savepoints

set	implicit_transactions	command,	Starting	a	Transaction

set	showplan_text	on	statement,	How	Indexes	Are	Used

silent	truncation	of	strings,	String	Generation-String	Generation

sp_executesql	procedure,	Dynamic	SQL	Generation

transaction	approach,	Starting	a	Transaction

unique	keyword,	Unique	indexes

updatable	view	restrictions,	Updating	Complex	Views

sql_mode	variable,	String	Generation

sqrt()	function,	Performing	Arithmetic	Functions

SQUARE	language,	What	Is	SQL?

SQuirrel,	SQL:	A	Nonprocedural	Language

start	transaction	command,	Starting	a	Transaction

statement	scope,	What	Is	a	Subquery?

storage	engines

choosing,	Transaction	Savepoints-Transaction	Savepoints



InnoDB,	Nonexistent	Foreign	Key,	Constraints

straight_join	keyword,	Joining	Three	or	More	Tables

strcmp()	function,	String	functions	that	return	numbers-String	functions
that	return	numbers

string	functions,	String	Manipulation-String	functions	that	return	strings

string	literals,	String	Generation-Including	single	quotes

strings

appending	characters	to,	String	functions	that	return	strings

building	from	other	data,	String	functions	that	return	strings

character	sets	for,	Character	sets-Character	sets

comparing,	String	functions	that	return	numbers-String	functions	that
return	numbers

concatenating,	Including	special	characters-Including	special
characters

converting	to	temporal	values,	String-to-date	conversions-Functions
for	generating	dates

data	types	for,	Character	Data,	Working	with	String	Data-Working
with	String	Data

enum	type,	Step	3:	Building	SQL	Schema	Statements

escape	sequence	for,	Including	single	quotes-Including	single	quotes

extracting	substrings	from,	String	functions	that	return	strings-String
functions	that	return	strings

fixed-length,	Character	Data

generating,	String	Generation-Including	special	characters

length	of,	String	functions	that	return	numbers



silent	truncation	of,	String	Generation-String	Generation

special	characters	in,	Including	special	characters-Including	special
characters

substrings,	adding	or	replacing	in,	String	functions	that	return	strings-
String	functions	that	return	strings

substrings,	finding	in,	String	functions	that	return	numbers

temporal	data	represented	in,	String	representations	of	temporal	data-
String	representations	of	temporal	data

variable-length,	Character	Data

str_to_date()	function,	Functions	for	generating	dates-Functions	for
generating	dates

subpartition	by	keywords,	Composite	partitioning

subqueries,	Derived	(subquery-generated)	tables,	What	Is	a	Subquery?-
Data	Manipulation	Using	Correlated	Subqueries

all	operator	with,	The	all	operator-The	all	operator

any	operator	with,	The	any	operator-The	any	operator

between	operator	with,	Correlated	Subqueries

in	case	expressions,	Searched	case	Expressions-Searched	case
Expressions,	Conditional	Updates

containing	statement	or	query	for,	Derived	(subquery-generated)
tables,	What	Is	a	Subquery?

correlated,	Correlated	Subqueries-Data	Manipulation	Using
Correlated	Subqueries

data	manipulation	with,	Data	Manipulation	Using	Correlated
Subqueries-Data	Manipulation	Using	Correlated	Subqueries

equality	conditions	with,	Noncorrelated	Subqueries-Noncorrelated



Subqueries

exists	operator	with,	The	exists	Operator-The	exists	Operator

in	from	clause,	Subqueries	as	Data	Sources-Task-oriented	subqueries

in	having	clause,	The	all	operator

in	and	not	in	operators	with,	The	in	and	not	in	operators-The	in	and
not	in	operators

as	join	tables,	Using	Subqueries	as	Tables-Using	Subqueries	as
Tables

multicolumn,	Multicolumn	Subqueries-Multicolumn	Subqueries

multiple-row,	single-column,	Multiple-Row,	Single-Column
Subqueries-The	any	operator

named,	in	with	clause,	Common	table	expressions-Common	table
expressions

noncorrelated,	Noncorrelated	Subqueries-Multicolumn	Subqueries

null	values	handled	with,	The	all	operator

in	order	by	clause,	Subqueries	as	Expression	Generators

scalar,	Noncorrelated	Subqueries-Noncorrelated	Subqueries,
Subqueries	as	Expression	Generators-Subqueries	as	Expression
Generators

scope	of,	What	Is	a	Subquery?

in	select	clause,	Subqueries	as	Expression	Generators

in	values	clause	of	insert	statement,	Subqueries	as	Expression
Generators

substr()	function,	String	functions	that	return	strings

substring()	function,	String	functions	that	return	strings-String	functions
that	return	strings



sum()	function,	Aggregate	Functions,	Reporting	Functions-Window
Frames

surrogate	keys,	The	Relational	Model

system	catalog	(see	data	dictionary;	metadata)

T

table	aliases,	Defining	Table	Aliases

table	links,	Table	Links-Table	Links

(see	also	joins)

table	locks,	Lock	Granularities

table	partitioning,	Table	Partitioning

tables,	The	Relational	Model,	What	Is	SQL?

aliases	for,	Using	the	Same	Table	Twice,	Self-Joins

altering,	Generating	numeric	key	data

constraints	on	(see	constraints)

creating,	Table	Creation-Step	3:	Building	SQL	Schema	Statements

deleting,	The	Sakila	Database

deleting	rows	from,	Deleting	Data,	Data	Manipulation	Using
Correlated	Subqueries

designing,	Table	Creation-Step	2:	Refinement

indexes	for	(see	indexes)

inserting	data,	Inserting	Data-The	insert	statement

listing,	The	Sakila	Database

normalizing,	Step	2:	Refinement-Step	2:	Refinement



private,	Data	Security

schema	statements	for,	Step	3:	Building	SQL	Schema	Statements-
Step	3:	Building	SQL	Schema	Statements

temporary,	Temporary	tables

types	of,	Tables-Views

updating,	Updating	Data

(see	also	update	statement)

viewing	information	about,	Step	3:	Building	SQL	Schema
Statements,	The	Sakila	Database,	information_schema

tan()	function,	Performing	Arithmetic	Functions

temporal	data,	Working	with	Temporal	Data

adding	date	or	time	intervals	to,	Temporal	functions	that	return	dates-
Temporal	functions	that	return	dates

conversions	to	and	from,	Conversion	Functions-Conversion
Functions

converting	strings	to,	Invalid	Date	Conversions,	String-to-date
conversions-Functions	for	generating	dates

current	date	or	time,	generating,	Functions	for	generating	dates

data	types	for,	Temporal	Data-Temporal	Data,	String	representations
of	temporal	data

date	formats,	default,	Temporal	Data,	String	representations	of
temporal	data-String	representations	of	temporal	data

date	formats,	specifying	in	queries,	Invalid	Date	Conversions

date	formats,	specifying	in	str_to_date(),	Functions	for	generating
dates

date	ranges	allowed,	Temporal	Data,	Temporal	Data



generating,	Generating	Temporal	Data-Functions	for	generating	dates

interval	types	for,	Temporal	functions	that	return	dates

last	day	of	month,	finding,	Temporal	functions	that	return	dates

returning	number	of	intervals	from,	Temporal	functions	that	return
numbers-Temporal	functions	that	return	numbers

returning	strings	from,	Temporal	functions	that	return	strings

string	representations	of,	String	representations	of	temporal	data-
String	representations	of	temporal	data

time	zones,	Dealing	with	Time	Zones-Dealing	with	Time	Zones

temporary	keyword,	Temporary	tables

text	indexes,	Text	indexes

text	type,	Text	data,	Working	with	String	Data

text	types,	Text	data-Text	data

three-way	outer	joins,	Three-Way	Outer	Joins-Three-Way	Outer	Joins

time	type,	Temporal	Data,	Generating	Temporal	Data,	String
representations	of	temporal	data

time	zones,	Dealing	with	Time	Zones-Dealing	with	Time	Zones

times	(see	temporal	data)

timestamp	type,	Temporal	Data,	String	representations	of	temporal	data

tinyint	type,	Numeric	Data

tinytext	type,	Text	data

Toad	Data	Point,	SQL	and	Big	Data

Toad	development	tool,	Schema	Generation	Scripts

to_date()	function,	Functions	for	generating	dates



Transact-SQL	language,	SQL:	A	Nonprocedural	Language

transaction	statements,	SQL	Statement	Classes,	What	Is	a	Transaction?

(see	also	commit	statement;	rollback	statement;	start	statement)

transactions,	What	Is	a	Transaction?-What	Is	a	Transaction?

autocommit	mode	for,	Starting	a	Transaction

deadlock	detection	for,	Ending	a	Transaction

ending,	Ending	a	Transaction-Ending	a	Transaction

savepoints	for,	Transaction	Savepoints-Transaction	Savepoints

schema	statements	not	using,	Ending	a	Transaction

starting,	Starting	a	Transaction-Starting	a	Transaction

transforming	result	sets,	Result	Set	Transformations-Result	Set
Transformations

tree	structures	(see	B-tree	indexes;	hierarchical	database	systems)

truncate()	function,	Controlling	Number	Precision

tuning	queries,	How	Indexes	Are	Used

U

Unicode	Explained	(Korpela),	Character	sets

union	and	union	all	operators,	Set	Theory	Primer,	The	union	Operator-The
union	Operator

unique	constraints,	Constraints

unique	indexes,	Unique	indexes-Unique	indexes

unique	keyword,	Unique	indexes

Universal	Time,	Dealing	with	Time	Zones



unsigned	floating-point	types,	Numeric	Data

unsigned	integers,	Numeric	Data

updatable	views,	Updatable	Views-Updating	Complex	Views

update	statement,	Updating	Data

case	expressions	in,	Conditional	Updates-Conditional	Updates

date	formats,	specifying	in,	Invalid	Date	Conversions

subqueries	in,	Data	Manipulation	Using	Correlated	Subqueries

use	command,	Using	the	mysql	Command-Line	Tool

using	subclause,	Inner	Joins

UTC	(Coordinated	Universal	Time),	Dealing	with	Time	Zones

utc_timestamp()	function,	Dealing	with	Time	Zones

V

values	clause,	The	insert	statement-The	insert	statement,	Subqueries	as
Expression	Generators

varchar	type,	Character	Data,	Working	with	String	Data

varchar2	data	type,	Character	Data

variable-length	strings,	Character	Data

versioning,	Locking

vertical	bar,	double	(||),	concatenation	operator,	Oracle,	Including	special
characters

vertical	partitioning,	Table	Partitioning

views,	Views,	What	Are	Views?

complexity	hidden	by,	Hiding	Complexity



data	aggregation	from,	Data	Aggregation

data	security	from,	Data	Security

displaying	columns	in,	What	Are	Views?

in	information_schema,	list	of,	information_schema

(see	also	metadata)

joins	with,	What	Are	Views?,	Joining	Partitioned	Data-Joining
Partitioned	Data

reasons	to	use,	Why	Use	Views?-Joining	Partitioned	Data

updatable,	Updatable	Views-Updating	Complex	Views

viewing	information	about,	information_schema

virtual	tables,	Views

(see	also	views)

VPD	(Virtual	Private	Database),	Data	Security

W

website	resources	(see	online	resources)

where	clause,	The	where	Clause-The	where	Clause

(see	also	conditions)

filter	conditions	in,	Filtering

older	join	syntax	in,	The	ANSI	Join	Syntax

wildcards,	for	search	expressions,	Using	wildcards

windows,	Data	Windows-Data	Windows,	Generating	Multiple	Rankings,
Reporting	Functions,	Window	Frames

with	clause,	Common	table	expressions-Common	table	expressions



with	cube	keywords,	Generating	Rollups

with	rollup	keywords,	Generating	Rollups-Generating	Rollups

write	lock,	Locking

X

XML

document	databases	using,	NoSQL	and	Document	Databases

output	from	queries,	The	insert	statement

--xml	option,	mysql	command,	The	insert	statement

Y

YARN,	Hadoop

year	type,	Temporal	Data



About	the	Author

Alan	Beaulieu	has	been	designing	and	building	custom	databases	for	over
30	years.	He	runs	his	own	consulting	business	specializing	in	the	design,
development,	and	performance	tuning	of	very	large	databases,	mostly	in
the	Financial	Services	sector.	In	his	free	time,	Alan	enjoys	spending	time
with	his	family,	playing	drums	with	his	band,	strumming	his	tenor	ukulele,
or	finding	the	perfect	scenic	lunch	spot	while	hiking	with	his	wife.	He
holds	a	BS	in	Engineering	from	Cornell	University.



Colophon

The	animal	on	the	cover	of	Learning	SQL,	Third	Edition,	is	an	Andean
marsupial	tree	frog	(Gastrotheca	riobambae).	As	its	name	suggests,	this
crepuscular	and	nocturnal	frog	is	native	to	the	western	slopes	of	the	Andes
mountains	and	is	widely	distributed	from	the	Riobamba	basin	to	Ibarra	in
the	north.

During	courtship,	the	male	calls	(“wraaack-ack-ack”)	to	attract	a	female.	If
a	gravid	female	is	attracted	to	him,	he	climbs	onto	her	back	and	performs	a
common	frog	mating	hold	called	the	nuptial	amplexus.	As	the	eggs
emerge	from	the	female’s	cloaca,	the	male	catches	the	eggs	with	his	feet
and	fertilizes	them	while	maneuvering	them	into	a	pouch	on	the	female’s
back.	A	female	may	incubate	an	average	of	130	eggs,	and	development	in
the	pouch	lasts	between	60	and	120	days.	During	incubation,	swelling
becomes	visible,	and	lumps	appear	beneath	the	skin	on	the	female’s	back.
When	the	tadpoles	emerge	from	the	pouch,	the	female	tree	frog	deposits
them	into	the	water.	Within	two	or	three	months	the	tadpoles
metamorphose	into	froglets,	and	at	seven	months	they	are	ready	to	mate
(“wraaaack-ack-ack”).

Both	the	male	and	female	tree	frog	have	expanded	digital	discs	on	their
fingers	and	toes	that	help	them	climb	vertical	surfaces	such	as	trees.	Adult
males	are	two	inches	in	length,	while	females	reach	two	and	a	half	inches,
with	coloration	that	naturally	varies	between	shades	of	green	and	brown.
The	color	of	the	juveniles	may	change	from	brown	to	green	as	they	grow.

Populations	of	this	frog	have	declined,	and	it	is	now	classified	on	the
IUCN	Red	List	as	endangered.	It	is	under	threat	from	agriculture,	invasive
species	and	pathogens,	climate	change,	and	pollution.



The	color	illustration	on	the	cover	is	by	Karen	Montgomery,	based	on	a
black-and-white	engraving	from	The	Dover	Pictorial	Archive.	The	cover
fonts	are	Gilroy	Semibold	and	Guardian	Sans.	The	text	font	is	Adobe
Minion	Pro;	the	heading	font	is	Adobe	Myriad	Condensed;	and	the	code
font	is	Dalton	Maag’s	Ubuntu	Mono.


	Preface
	Why Learn SQL?
	Why Use This Book to Do It?
	Structure of This Book
	Conventions Used in This Book
	Using the Examples in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. A Little Background
	Introduction to Databases
	Nonrelational Database Systems
	The Relational Model
	Some Terminology

	What Is SQL?
	SQL Statement Classes
	SQL: A Nonprocedural Language
	SQL Examples

	What Is MySQL?
	SQL Unplugged
	What’s in Store

	2. Creating and Populating a Database
	Creating a MySQL Database
	Using the mysql Command-Line Tool
	MySQL Data Types
	Character Data
	Numeric Data
	Temporal Data

	Table Creation
	Step 1: Design
	Step 2: Refinement
	Step 3: Building SQL Schema Statements

	Populating and Modifying Tables
	Inserting Data
	Updating Data
	Deleting Data

	When Good Statements Go Bad
	Nonunique Primary Key
	Nonexistent Foreign Key
	Column Value Violations
	Invalid Date Conversions

	The Sakila Database

	3. Query Primer
	Query Mechanics
	Query Clauses
	The select Clause
	Column Aliases
	Removing Duplicates

	The from Clause
	Tables
	Table Links
	Defining Table Aliases

	The where Clause
	The group by and having Clauses
	The order by Clause
	Ascending Versus Descending Sort Order
	Sorting via Numeric Placeholders

	Test Your Knowledge
	Exercise 3-1
	Exercise 3-2
	Exercise 3-3
	Exercise 3-4


	4. Filtering
	Condition Evaluation
	Using Parentheses
	Using the not Operator

	Building a Condition
	Condition Types
	Equality Conditions
	Range Conditions
	Membership Conditions
	Matching Conditions

	Null: That Four-Letter Word
	Test Your Knowledge
	Exercise 4-1
	Exercise 4-2
	Exercise 4-3
	Exercise 4-4


	5. Querying Multiple Tables
	What Is a Join?
	Cartesian Product
	Inner Joins
	The ANSI Join Syntax

	Joining Three or More Tables
	Using Subqueries as Tables
	Using the Same Table Twice

	Self-Joins
	Test Your Knowledge
	Exercise 5-1
	Exercise 5-2
	Exercise 5-3


	6. Working with Sets
	Set Theory Primer
	Set Theory in Practice
	Set Operators
	The union Operator
	The intersect Operator
	The except Operator

	Set Operation Rules
	Sorting Compound Query Results
	Set Operation Precedence

	Test Your Knowledge
	Exercise 6-1
	Exercise 6-2
	Exercise 6-3


	7. Data Generation, Manipulation, and Conversion
	Working with String Data
	String Generation
	String Manipulation

	Working with Numeric Data
	Performing Arithmetic Functions
	Controlling Number Precision
	Handling Signed Data

	Working with Temporal Data
	Dealing with Time Zones
	Generating Temporal Data
	Manipulating Temporal Data

	Conversion Functions
	Test Your Knowledge
	Exercise 7-1
	Exercise 7-2
	Exercise 7-3


	8. Grouping and Aggregates
	Grouping Concepts
	Aggregate Functions
	Implicit Versus Explicit Groups
	Counting Distinct Values
	Using Expressions
	How Nulls Are Handled

	Generating Groups
	Single-Column Grouping
	Multicolumn Grouping
	Grouping via Expressions
	Generating Rollups

	Group Filter Conditions
	Test Your Knowledge
	Exercise 8-1
	Exercise 8-2
	Exercise 8-3


	9. Subqueries
	What Is a Subquery?
	Subquery Types
	Noncorrelated Subqueries
	Multiple-Row, Single-Column Subqueries
	Multicolumn Subqueries

	Correlated Subqueries
	The exists Operator
	Data Manipulation Using Correlated Subqueries

	When to Use Subqueries
	Subqueries as Data Sources
	Subqueries as Expression Generators

	Subquery Wrap-Up
	Test Your Knowledge
	Exercise 9-1
	Exercise 9-2
	Exercise 9-3


	10. Joins Revisited
	Outer Joins
	Left Versus Right Outer Joins
	Three-Way Outer Joins

	Cross Joins
	Natural Joins
	Test Your Knowledge
	Exercise 10-1
	Exercise 10-2
	Exercise 10-3 (Extra Credit)


	11. Conditional Logic
	What Is Conditional Logic?
	The case Expression
	Searched case Expressions
	Simple case Expressions

	Examples of case Expressions
	Result Set Transformations
	Checking for Existence
	Division-by-Zero Errors
	Conditional Updates
	Handling Null Values

	Test Your Knowledge
	Exercise 11-1
	Exercise 11-2


	12. Transactions
	Multiuser Databases
	Locking
	Lock Granularities

	What Is a Transaction?
	Starting a Transaction
	Ending a Transaction
	Transaction Savepoints

	Test Your Knowledge
	Exercise 12-1


	13. Indexes and Constraints
	Indexes
	Index Creation
	Types of Indexes
	How Indexes Are Used
	The Downside of Indexes

	Constraints
	Constraint Creation

	Test Your Knowledge
	Exercise 13-1
	Exercise 13-2


	14. Views
	What Are Views?
	Why Use Views?
	Data Security
	Data Aggregation
	Hiding Complexity
	Joining Partitioned Data

	Updatable Views
	Updating Simple Views
	Updating Complex Views

	Test Your Knowledge
	Exercise 14-1
	Exercise 14-2


	15. Metadata
	Data About Data
	information_schema
	Working with Metadata
	Schema Generation Scripts
	Deployment Verification
	Dynamic SQL Generation

	Test Your Knowledge
	Exercise 15-1
	Exercise 15-2


	16. Analytic Functions
	Analytic Function Concepts
	Data Windows
	Localized Sorting

	Ranking
	Ranking Functions
	Generating Multiple Rankings

	Reporting Functions
	Window Frames
	Lag and Lead
	Column Value Concatenation

	Test Your Knowledge
	Exercise 16-1
	Exercise 16-2
	Exercise 16-3


	17. Working with Large Databases
	Partitioning
	Partitioning Concepts
	Table Partitioning
	Index Partitioning
	Partitioning Methods
	Partitioning Benefits

	Clustering
	Sharding
	Big Data
	Hadoop
	NoSQL and Document Databases
	Cloud Computing
	Conclusion


	18. SQL and Big Data
	Introduction to Apache Drill
	Querying Files Using Drill
	Querying MySQL Using Drill
	Querying MongoDB Using Drill
	Drill with Multiple Data Sources
	Future of SQL

	A. ER Diagram for Example Database
	B. Solutions to Exercises
	Chapter 3
	Exercise 3-1
	Exercise 3-2
	Exercise 3-3
	Exercise 3-4

	Chapter 4
	Exercise 4-1
	Exercise 4-2
	Exercise 4-3
	Exercise 4-4

	Chapter 5
	Exercise 5-1
	Exercise 5-2
	Exercise 5-3

	Chapter 6
	Exercise 6-1
	Exercise 6-2
	Exercise 6-3

	Chapter 7
	Exercise 7-1
	Exercise 7-2
	Exercise 7-3

	Chapter 8
	Exercise 8-1
	Exercise 8-2
	Exercise 8-3

	Chapter 9
	Exercise 9-1
	Exercise 9-2
	Exercise 9-3

	Chapter 10
	Exercise 10-1
	Exercise 10-2
	Exercise 10-3 (Extra Credit)

	Chapter 11
	Exercise 11-1
	Exercise 11-2

	Chapter 12
	Exercise 12-1

	Chapter 13
	Exercise 13-1
	Exercise 13-2

	Chapter 14
	Exercise 14-1
	Exercise 14-2

	Chapter 15
	Exercise 15-1
	Exercise 15-2

	Chapter 16
	Exercise 16-1
	Exercise 16-2
	Exercise 16-3


	Index

