

SQL

The	Simplified	Beginner’s	Guide	to
SQL

Contents

ACCESS	YOUR	FREE	DIGITAL	ASSETS
OVERVIEW

Sample	Database

INTRODUCTION
What	is	SQL?

Syntax	&	Structure

|	1	|	RETRIEVING	DATA	WITH	SQL
The	SELECT	Statement

The	FROM	Clause

Limiting	Data	by	Specifying	Columns

SQL	Predicates

Returning	DISTINCT	Rows

TOP

The	WHERE	Clause

Comparison	Operators

Logical	Operators

Dealing	with	Ranges	&	Wildcards

Operator	Precedence

The	ORDER	BY	Clause

Using	Aliases	with	the	AS	Clause

Selecting	Records	from	Multiple	Tables

Including	Excluded	Data	with	OUTER	JOIN

NULL	Values

COUNT

|	2	|	BUILT-IN	FUNCTIONS	&	CALCULATIONS
SUM

Other	Functions

Grouping	Data	with	the	GROUP	BY	Clause

Limiting	Group	Results	with	HAVING

|	3	|	ENTERING	&	MODIFYING	DATA

INSERT	Information	INTO	the	Database

Updating	Data

Deleting	Data	from	Tables

|	4	|	DEFINING	DATABASES
Creating/Deleting	a	Database

Data	Types

Characters

Numerical	Data

Date	&	Time

Defining	Tables

CONCLUSION
GLOSSARY
ABOUT	CLYDEBANK	TECHNOLOGY

Terms	displayed	in	bold	italic	can	be	found	defined	in	the	glossary,

BEFORE	YOU	START	READING,

DOWNLOAD	YOUR	FREE	DIGITAL	ASSETS!

Visit	the	URL	below	to	access	your	free	Digital	Asset	files	that	are	included	with	the

purchase	of	this	book.

DOWNLOAD	YOURS	HERE:

www.clydebankmedia.com/sql-assets

https://www.clydebankmedia.com/sql-assets

Overview

A	database	 is	 a	 collection	 of	 data	 consisting	 of	 a	 physical	 file	 residing	 on	 a
computer.	The	collection	of	data	 in	 that	 file	 is	 stored	 in	different	 tables	where
each	row	in	the	table	is	considered	as	a	record.	Every	record	is	broken	down	into
fields	that	represent	single	items	of	data	describing	a	specific	thing.	For	example,
you	 can	 store	 information	 about	 a	 collection	 of	 book	 data	 inside	 a	 database.
Information	pertaining	 to	 the	books	 themselves	 can	be	 stored	 in	 a	 table	 called
Books.	Each	book	record	can	be	stored	in	one	table	row	with	each	specific	piece
of	data	such	as	book	title,	author,	or	price,	stored	into	a	separate	field.

More	 technically,	a	database	can	also	be	defined	as	an	organized	structured
object	stored	on	a	computer	consisting	of	data	and	metadata.	Data,	as	previously
explained,	is	the	actual	information	stored	in	the	database,	while	metadata	is	data
about	the	data.	Metadata	describes	the	structure	of	the	data	itself,	such	as	field
length	or	datatype.	For	example,	in	a	company	database	the	value	6.95	stored	in
a	field	is	data	about	the	price	of	a	specific	product.	The	information	that	this	is	a
number	data	stored	to	two	decimal	places	and	valued	in	dollars	is	metadata.

Databases	are	usually	associated	with	software	that	allows	for	the	data	to	be
updated	 and	 queried.	 The	 software	 that	 manages	 the	 database	 is	 called	 a
Relational	 Database	 Management	 System	 (RDBMS).	 These	 systems	 make
storing	data	and	returning	results	easier	and	more	efficient	by	allowing	different
questions	and	commands	to	be	posed	to	the	database.	Popular	RDBMS	software
includes	 Oracle	 Database,	 Microsoft	 SQL	 Server,	 MySQL,	 and	 IBM	 DB2.
Commonly,	 the	 RDBMS	 software	 itself	 is	 referred	 to	 as	 a	 database,	 although
theoretically	this	would	be	a	slight	misnomer.	When	working	with	databases	we
will	 participate	 in	 the	 design,	maintenance	 and	 administration	 of	 the	 database
that	supplies	data	to	our	website	or	application.	In	order	to	do	this,	however,we
will	need	to	access	that	data	and	also	automate	the	process	to	allow	other	users
to	 retrieve	 and	 perhaps	 even	 modify	 data	 without	 technical	 knowledge.	 To
achieve	this	we	will	need	to	communicate	with	the	database	in	a	language	it	can
interpret.	 Structured	 Query	 Language	 (SQL)	 will	 allow	 us	 to	 directly
communicate	with	databases	and	is	thus	the	subject	of	this	book.	In	this	book	we
will	learn	the	basics	of	SQL.	SQL	is	composed	of	commands	that	enable	users	to
create	database	and	table	structures,	perform	various	types	of	data	manipulation
and	 data	 administration	 and	 query	 the	 database	 in	 order	 to	 extract	 useful
information.

Sample	Database
The	examples	in	this	book	use	the	Northwind	Traders	Access	database,	which

is	a	sample	database	that	comes	with	the	Microsoft	Office	suite.	The	Northwind

database	contains	sales	data	for	a	fictitious	company	called	Northwind	Traders,
which	imports	and	exports	specialty	foods	from	around	the	world.	Depending	on
your	Office	version,	 the	Northwind	database	might	 look	slightly	different,	as	 it
has	 evolved	 over	 time.	 Nevertheless,	 the	 examples	 use	 only	 those	 tables	 that
have	remained	unchanged	in	each	iteration.

fg.	1	:	Database	schema	of	the	Northwind	Traders	database

You	can	download	the	Northwind	database	from	the	following	link:
www.bit.ly/northwind-db-sql

http://www.bit.ly/northwind-db-sql

Introduction

What	Is	SQL?
Ideally,	 a	database	 language	must	 enable	us	 to	 create	 structures,	 to	perform

data	 management	 chores	 (add,	 delete,	 modify)	 and	 to	 perform	 complex
operations	 that	 transform	 the	 raw	 data	 into	 information.	 SQL,	 sometimes
pronounced	 “sequel”,	 is	 a	 support	 language	 for	 communicating	with	 relational
databases.	SQL	is	also	the	language	of	choice	for	almost	every	RDBMS	in	use
today	because	it	provides	a	standardized	method	for	storing	and	retrieving	data.
The	 SQL	 standard	 is	 maintained	 by	 both	 the	 American	 National	 Standards
Institute	(ANSI)	and	the	International	Standards	Organization	(ISO).	The	latest
released	 version	 of	 the	 standard	 is	 SQL:2008	 under	 ISO/IEC	 9075.	 However,
even	with	a	standard	in	place	there	are	numerous	SQL	dialects	(PL/SQL,	T-SQL,
SQL-PL,	MySQL)	 among	 the	 various	 vendors,	 evolving	 from	 requirements	 of
the	 specific	 user	 community.	 This	 means	 that	 different	 RDBMS	 products
implement	SQL	in	slightly	different	ways.

The	SQL	statements	in	this	book	run	on	Microsoft	SQL	Server	and	Microsoft	Access.	Running	the	SQL
statements	in	a	different	RDBMS	might	require	slight	adjustments	in	some	specific	cases.	Please	refer
to	the	documentation	of	the	RDBMS	of	your	personal	choice.

SQL	 is	 a	 text-oriented	 language	 requiring	 only	 a	 text	 processor	 as	 it	 was
developed	long	before	graphical	user	interfaces.	While	todays’	RDBMS	products
provide	 graphic	 tools	 for	 performing	many	 SQL	 tasks,	 not	 everything	 can	 be
done	 without	 delving	 into	 code.	 Additionally,	 SQL	 is	 quite	 different	 from
procedural	languages	such	as	C++,	Visual	Basic	and	other	languages	where	the
programmer	 has	 to	write	 step-by-step	 instructions	 to	 the	 computer	 in	 order	 to
exactly	define	how	 to	achieve	a	 specified	goal.	SQL	 is	a	declarative	 language,
which	means	that	instead	of	using	the	language	to	tell	the	database	what	to	do;
you	use	it	to	tell	the	database	what	you	want.	With	SQL	you	specify	the	results

you	want	and	the	language	itself	determines	the	rest.
As	discussed	previously,	a	relational	database	is	composed	of	tables	that	store

data	 in	 a	 column/row	 format.	 At	 first	 glance,	 a	 database	 table	 resembles	 a
spreadsheet	with	rows	being	your	records	and	columns	containing	the	fields	for
the	records.

Each	database	management	system	tracks	these	tables	by	indexing	them	in	a
sort	 of	 data	 dictionary	 or	 catalog	 that	 contains	 a	 list	 of	 all	 the	 tables	 in	 the
database.	The	list	also	stores	pointers	to	each	table’s	location.	The	dictionary	can
store	additional	metadata	information	as	well,	such	as	table	definitions	and	even
data	specific	to	the	database	itself.	When	we	send	a	request	to	the	database	using
SQL,	 the	 database	 locates	 the	 requested	 table	 in	 the	 dictionary-without	 any
additional	 instructions	from	our	side.	All	we	need	to	do	is	specify	 the	name	of
the	 table,	and	 the	database	will	do	 the	rest	as	SQL	works	 independently	of	 the
internal	structure	of	the	database.	The	database	then	processes	the	request,	called
a	query.	 For	 us	 a	 query	 is	 simply	 a	 question	 posed	 to	 the	 database.	 For	 the
RDBMS	a	query	is	a	SQL	statement	that	must	be	executed.

SQL	queries	are	the	most	common	use	of	SQL.	A	query	is	a	question	we	pose
to	the	database,	and	the	database	then	provides	the	data	that	answers	our	query.
As	databases	 store	only	 raw	data,	 just	 the	 facts	without	 intelligence,	we	query
the	 database	 with	 the	 purpose	 of	 processing	 the	 returned	 data	 and	 obtaining
meaningful	information.	The	broader	definition	of	a	query	within	the	relational
database	environment	is	:

Que.ry	 (n)	 :	 A	 query	 is	 a	 statement	 written	 in	 SQL,	 which	 may	 include
commands	and	actions,	written	to	solicit	an	answer	to	a	question	or	to	perform
an	action.

SQL	Server	is	the	name	of	a	relational	database	management	system	that	Microsoft	distributes.	SQL
is	 a	 language.	 Therefore,	 SQL	 Server	 is	 not	 SQL.	 If	 you’re	 unfamiliar	 with	 database	 systems	 and
languages,	it	can	be	easy	to	confuse	the	two	because	the	names	are	similar.

Most	 SQL	 queries	 are	 used	 to	 answer	 questions	 such	 as	 “What	 products
currently	held	in	inventory	are	priced	over	$100	and	what	is	the	quantity	on	hand
for	each	of	those	products?”	or	“How	many	employees	have	been	hired	by	each
of	 the	 company’s	 departments	 since	 November	 1,	 2004?”	We	 can	 think	 of	 a
query	 as	 a	 type	 of	 sentence,	 with	 nouns,	 verbs,	 clauses,	 and	 predicates.	 For
example,	let’s	turn	the	following	sentence	into	a	query:

“Show	me	all	the	employees	that	live	in	the	southwest	region.”

The	subject	 in	 this	 case	 is	 the	database,	 the	verb	 is,	 “show	me,”	 the	phrase
“all	 the	 employees”	 is	 a	 clause,	 and	 “that	 live	 in	 the	 southwest	 region”	 is	 a
predicate.	The	resulting	SQL	statement	resembles	the	following:

SELECT	*
FROM	Employees
WHERE	Region	=	“Southwest”

Processing	the	request	returns	a	table	of	data,	which	in	SQL	terms	is	called	a
view.	A	view	can	best	be	defined	as	a	virtual	table	based	on	the	parameters	you
passed	to	the	database	via	your	SQL	statement.

In	 summary,	 a	 relational	 database	 model	 contains	 tables,	 each	 of	 which
consists	of	a	set	of	data.	The	data	is	structured	into	rows	and	columns,	each	row
being	a	distinct	record.	To	access	the	records	in	these	tables	you	send	requests	to
the	 database	 in	 the	 form	 of	 “queries”	 that	 are	 written	 in	 Structured	 Query
Language	(SQL).	For	the	rest	of	this	book	you’ll	learn	the	basic	SQL	statements
and	syntax	that	you’ll	need	to	communicate	with	almost	any	relational	database.

Syntax	&	Structure
In	 spoken	 languages,	 syntax	 dictates	 grammar	 and	 sentence	 structure.

Similarly,	 in	 programming	 languages	 syntax	 dictates	 the	 structure	 and
terminology	 to	 be	 used	 when	 writing	 code.	 In	 SQL,	 syntax	 is	 used	 to	 create
statements	as	self-contained	actions.	Standard	SQL	is	simple	and	straightforward
as	 the	 bulk	 of	 the	 language	 is	 composed	 of	 commands,	 and	 learning	 how	 to
arrange	 those	 commands	 in	 the	 proper	 order	 is	 all	 you	 really	 have	 to	master.
Because	SQL’s	vocabulary	is	simple,	SQL	is	relatively	easy	to	learn	with	a	basic
command	 set	 vocabulary	 of	 less	 than	 100	 words.	 Also,	 as	 SQL	 is	 a
nonprocedural	language,	we	only	have	to	command	what	is	to	be	done	and	not
worry	about	how	it	is	going	to	be	done.

There	 are	 three	 categories	 of	 SQL	 syntax	 term:	 identifiers,	 literals,	 and
keywords.	 An	 identifier	 is	 a	 unique	 identifier	 for	 some	 element	 in	 a	 database
system,	 such	 as	 a	 table,	 or	 a	 field	 name.	 If	 you	 create	 a	 database	 table	 called
Customers,	 then	‘Customers’	 is	 the	 identifier.	A	 literal	would	be	an	actual	data

value	like	‘Edgar’,	‘32’,	‘September	17,	2014’.	A	keyword	is	something	that	has
meaning	 to	 the	database	 system	 itself.	 It	 is	 a	 call	 to	 action	with	each	keyword
following	its	own	rules	on	how	to	perform	the	action.

A	SQL	statement	can	be	as	simple	as:
SELECT	DateofBirth
FROM	Customers

The	 previous	 statement	 uses	 the	 keyword	 SELECT	 to	 select	 data	 from	 the
field	identified	by	the	‘DateofBirth’	name.	The	data	is	retrieved	FROM	the	table
identified	by	the	‘Customers’	name.

As	we	learn	new	keywords	we	will	also	learn	what	the	database	expects	as	a
minimum	and	what	options	can	be	added	to	form	a	more	prolific	statement.

Generally,	SQL	statements	may	be	divided	into	the	following	categories:
Data	Query	Language	 (DQL)	 :	Statements	 that	query	 the	database	but	do

not	 alter	 any	 data	 or	 database	 objects.	 This	 category	 contains	 the	 SELECT
statement.

Data	Manipulation	Language	(DML)	:	Statements	that	modify	data	stored	in
database	objects,	such	as	tables.	This	category	contains	the	INSERT,	UPDATE,
and	DELETE	statements.

Data	 Definition	 Language	 (DDL)	 :	 Statements	 that	 create	 and	 modify
database	objects.	Whereas	DML	and	DQL	work	with	the	data	in	the	database
objects,	 DDL	 works	 with	 the	 database	 objects	 themselves.	 This	 category
includes	the	CREATE,	ALTER	and	DROP	statements.

Data	 Control	 Language	 (DCL)	 :	 Statements	 that	 manage	 privileges	 that
database	users	have	regarding	the	database	objects.	This	category	includes	the
GRANT	and	REVOKE	statements.

The	 next	 chapter	 will	 present	 in	 detail	 how	 to	 use	 SQL	 as	 a	 data	 query
language	where	we	will	 learn	 the	 fundamentals	of	extracting	 information	 from
the	database.	Afterwards,	we	will	focus	on	SQL	as	a	data	manipulation	language

and	learn	how	to	insert,	modify	and	delete.	Finally,	we	will	emphasize	SQL	as	a
data	definition	language	as	we	delve	into	the	core	of	databases	and	manipulate
the	database	structure	itself	by	defining	and	managing	database	objects.

|	1	|	Retrieving	Data	with	SQL

SQL’s	most	powerful	 feature	 is	 its	ability	 to	extract	data.	At	a	basic	 level,	you
can	 extract	 data	 in	 the	 same	 form	 in	 which	 it	 was	 originally	 entered	 into	 the
database	 tables.	Alternatively,	you	can	query	 the	database	 to	obtain	answers	 to
questions	that	are	not	explicitly	stated	in	the	raw	data.	The	key	to	retrieving	data
from	 a	 database	 is	 the	 SELECT	 statement.	 In	 its	 basic	 form	 the	 SELECT
statement	 is	very	simple	and	easy	 to	use.	There	are,	however,	many	additional
options	that	can	make	return	more	customized	results.

The	SELECT	Statement
The	most	frequently	used	SQL	statement	is	the	SELECT	statement.	It	 is	the

workforce	of	the	entire	language.	The	SELECT	statement	retrieves	data	from	the
database	 for	 viewing	 in	 such	 a	 way	 so	 that	 it	 makes	 it	 easy	 to	 browse	 and
analyze	the	data.	Essentially,	the	SELECT	statement	is	used	to	retrieve	specific
column(s)	from	a	database	table(s).

The	 SELECT	 statement	 can	 combine	with	 five	 keyword	 clauses	 to	 specify
and	limit	how	the	data	from	the	table(s)	is	retrieved.	The	syntax	looks	something
like	this:

SELECT	ColumnNames
FROM	TableNames
[WHERE	Condition]
[GROUP	BY	Column]
[HAVING	Condition]
[ORDER	BY	Column][ASC	|	DESC]]

In	 this	 predefined	 syntax	 the	 FROM	 clause	 is	 the	 only	 keyword	 that	 is
mandatory	 to	 combine	 with	 SELECT	 in	 order	 to	 retrieve	 data.	 The	 FROM
statement	 is	 needed	 in	 order	 to	 specify	 to	 the	 database	 what	 tables	 in	 the

database	to	retrieve	the	data	from.
In	 the	 following	 examples	 we	 will	 start	 with	 the	 simplest	 form	 of	 the

SELECT	statement	and	add	keyword	clauses	and	literals	to	restrict	the	retrieval
and/or	presentation	of	the	data.	However,	before	we	continue	we	must	be	aware
of	the	general	format	conventions	for	SQL	statements:

Use	uppercase	for	all	keywords
Most	clauses	appear	on	individual	lines

In	its	simplest	form,	the	SELECT	statement	retrieves	all	the	columns	from	all
the	records	in	a	table	using	just	the	mandatory	FROM	clause.

SELECT	*
FROM	Customers

The	example	above	retrieves	all	the	columns	and	records	from	the	Customers
table	 in	 the	 sample	 database.	 The	 resulting	 table	 might	 look	 something	 like
Figure	2	:

fg.	2	:	Result	from	a	SELECT	*	statement

The	asterisk	 character	 (*)	 is	 used	 as	 an	 argument	 in	 the	SELECT	clause	 to
signify	 that	 all	 the	 columns	 from	 the	 underlying	 table	 must	 be	 retrieved.	We
should	 avoid	 using	 this	 shorthand	 unless	 we	 truly	 need	 all	 the	 columns;
otherwise	we	 are	 asking	 the	 database	 system	 to	 provide	 information	we	 don’t
need,	wasting	processor	power	 and	memory.	This	might	be	 insignificant	when
working	with	a	small	database	but	it	makes	a	huge	difference	when	many	people
are	simultaneously	accessing	a	large	database.

The	FROM	Clause
The	 FROM	 clause	 specifies	 the	 tables	 from	which	 the	 SELECT	 statement

will	retrieve	data.	This	clause	usually	refers	to	one	or	more	tables,	but	it	can	also
include	 other	 queries.	 The	 following	 example	 for	 the	 FROM	 clause	 retrieves
information	from	the	Products	table:

FROM	Products

If	you	need	to	include	information	from	more	than	one	table,	you	separate	the
table	names	with	commas:

FROM	Products,	Categories

If	the	table	name	consists	of	more	than	one	word,	then	it	has	to	be	included	in
brackets	([]):

FROM	Orders,	[Order	Details]

Limiting	Data	by	Specifying	Columns
The	initial	SELECT	statement	presented	in	this	section	used	the	asterisk	(*)

to	retrieve	all	the	data	from	the	Customers	table.	However,	we	will	seldom	want
to	work	with	all	 the	 table	data	at	one	 time.	The	 first	 step	 to	 limiting	data	 is	 to

limit	 the	 retrieved	 columns	 by	 identifying	 only	 the	 columns	 you	 need.	 The
syntax	follows:

SELECT	Column1,	Column2...

FROM	TableNames

When	using	this	syntax,	we	must	specify	at	least	one	column.	If	we	include	a
list	of	columns,	they	have	to	be	separated	with	a	comma	character	just	 like	the
table	names	 in	 the	FROM	clause.	The	 following	statement	 retrieves	only	 three
columns:	CustomerID,	ContactName	and	ContactTitle,	from	the	Customers	table
(Figure	3):

SELECT	CustomerID,	ContactName,	ContactTitle

FROM	Customers

The	 order	 in	 which	 the	 columns	 are	 listed	 in	 the	 SELECT	 statement
determines	the	order	in	which	the	columns	will	be	returned	as	results.	The	order
of	 the	 results	 themselves	 usually	 reflects	 the	 order	 in	 which	 the	 records	 were
entered	into	the	database.

fg.	3	:	SELECT	results	from	the	Customers	table

SQL	Predicates
You	can	use	predicates	in	combination	with	the	SELECT	statement	to	impose

some	 limitations	 on	 the	 number	 of	 retrieved	 records.	By	default,	 the	SELECT
statement	 returns	 all	 records	 because	 SQL	 assumes	 that	 the	 ALL	 predicate	 is
active.	Therefore,	using	the	statement:

SELECT	ALL	ContactName

FROM	Customers

Is	the	same	as	using	the	following	statement:

SELECT	ContactName

FROM	Customers

Returning	DISTINCT	rows
If	you	want	to	know	all	the	unique	values	in	a	record	and	eliminate	duplicate

rows,	you	must	use	the	DISTINCT	predicate	keyword.	The	DISTINCT	keyword
is	added	directly	after	the	SELECT	keyword	to	return	a	list	of	only	unique	data
entries.	For	example:

SELECT	DISTINCT	City
FROM	Customers

Will	 return	 a	 unique	 list	 of	 cities	 from	 the	 Customers	 table,	 omitting	 the
duplicates.	This	 is	 essentially	 an	answer	 to	 the	question:	 “How	many	different
cities	do	Customers	come	from?”

fg.	4	:	DISTINCT	cities	and	countries	for	customers

We	 are	 allowed	 to	 include	 additional	 columns	 in	 SELECT	 DISTINCT
statements.	While	the	additional	columns	will	be	considered,	the	elimination	of
duplicate	 values	 takes	 precedence	 from	 left	 to	 right.	 Therefore,	 additional
columns	will	rarely	have	an	effect	on	the	values	returned	from	the	first	column
and	should	be	used	only	if	additional	data	is	required,	for	example,	if	we	needed
to	know	the	countries	along	with	the	cities	(Figure	4).

SELECT	DISTINCT	City,	Country
FROM	Customers

In	 this	case,	 the	DISTINCT	predicate	discards	records	only	 if	 the	combined
values	create	a	duplicate	record.	Only	if	a	City	with	the	same	name	exists	in	two
countries	 will	 you	 get	 a	 duplicate	 value	 in	 the	 City	 field.	 Consequently,	 no
duplicate	 results	will	 be	 displayed	 if	 the	City	 and	 the	Country	 fields	 are	 both
identical.

TOP
Another	 optional	 predicate	 keyword	 in	 the	 SELECT	 statement	 is	 the	 TOP

keyword.	TOP	returns	the	top	‘n’	rows
or	 top	 ‘n’	 percent	 of	 records,	 based	 on	 the	 SELECT	 clause.	 This	 predicate	 is
useful	when	you	want	to	return	a	subset	of	records	that	meet	all	the	other	criteria.
SQL	processes	the	TOP	predicate	only	after	it	completes	all	other	criteria,	such
as	joins,	predicates,	grouping,	and	sorts.

The	TOP	predicate	uses	the	form:

TOP	n	[PERCENT]	column1	[,column2...]

And	can	be	combined	with	other	predicates	in	the	form:

SELECT	[ALL	|	DISTINCT][TOP	n
[PERCENT]column1[,column2...]]

Use	TOP	predicate	to	return	the	first	5	items	from	the	Products	table	(Figure
5):

SELECT	TOP	5	ProductID,	ProductName,	UnitPrice
FROM	Products

fg.	5	:	TOP	5	products	as	entered	in	the	Products	table

The	query	will	return	only	five	records.	If	instead	you	wanted	to	return	five
percent	of	the	most	expensive	items,	as	opposed	to	just	five	records,	you	could
use	the	following	statement	(Figure	6):

SELECT	TOP	5	PERCENT	ProductID,	ProductName,

UnitPrice	FROM	Products
ORDER	BY	UnitPrice	DESC

The	WHERE	Clause
We	will	seldom	have	to	select	all	of	the	records	in	a	table.	More	often	we	will

need	 to	 filter	 the	 results	 in	 order	 to	 obtain	 only	 the	 information	we	want.	 To
accomplish	this	we	can	use	the	WHERE	clause	keyword	in	combination	with	the
SELECT	 statement.	 Doing	 this,	 will	 set	 one	 or	 more	 conditions	 that	 must	 be
fulfilled	by	a	record	before	SQL	includes	that	record	in	its	results.	The	clause	is
used	in	the	following	syntax	form:

SELECT	data
FROM	datasource
WHERE	condition

The	 following	 statement	 returns	 only	 products	with	 a	 selling	 price	 of	 over
$10.	(Figure	7).

SELECT	ProductName,	UnitPrice
FROM	Products
WHERE	UnitPrice	>	10

fg.	7	:	List	of	products	costing	more	than	$10

fg.	6	:	TOP	5	most	expensive	products	as	entered	in	the	Products	table

When	working	with	percentages,	the	TOP	predicate	always	rounds	up	to	the
next	highest	integer.	Also,	if	the	TOP	predicate	finds	duplicate	records	that	meet
the	SELECT	statements	criteria,	 it	returns	both	records	and	includes	them	both
in	the	count.

Most	TOP	queries	simply	don’t	make	sense	without	the	ORDER	BY	clause,
since	SQL	 returns	what	may	 seem	 like	 a	meaningless	 set	 of	 records	 sorted	by
entry	order.	This	clause	will	be	reviewed	later	on.

Table.	1	:	List	of	conditional	operators

Comparison	Operators
The	 conditions	 we	 use	 to	 filter	 records	 from	 a	 table	 usually	 involve

comparing	the	values	of	an	attribute	to	some	constant	value.	We	can	ask	whether
the	value	of	 an	 attribute	 is	 the	 same,	different,	 less	 than,	 or	 greater	 than	 some
value.	 The	 response	 to	 the	 condition	 (ex.	 UnitPrice=10)	 is	 a	 statement	 or
expression	 that	 is	 either	 true	 or	 false.	 As	 such,	 comparisons	 are	 also	 called
Boolean	expressions.	The	common	comparison	operators	are	presented	in	Table
1.

The	syntax	for	the	TOP	predicate	varies	significantly	across	RDBMS.	The	examples	above	are	valid
only	for	Microsoft	SQL	Server	and	Microsoft	Access.

The	 condition	 argument	 is	 stated	 as	 a	 conditional	 expression	 and	 can	be	 as
simple	as	a	comparison	to	a	given	value	or	a	complex	expression.	Let’s	start	with
a	 simple	 example	 that	 compares	 the	 data	 to	 a	 given	 value.	 The	 following
statement	 returns	 only	 products	 that	 belong	 to	 the	 category	 with	 1	 as	 the	 ID
value,	the	Beverage	category.

Comparisons	 can	be	done	between	numbers	 (numerical),	 text	 (alphabetical)
and	 dates	 (chronological).	 Comparing	 numbers	 is	 straightforward,	 but	 when
comparing	 text	 attributes,	 the	values	have	 to	be	put	 in	 a	 character	 field	within
quotation	marks	(“”).	For	example,	the	following	query	will	return	all	companies
that	are	not	from	Berlin	(Figure	8).

SELECT	CompanyName
FROM	Customers
WHERE	City	<>	“Berlin”

Text	comparison	is	alphabetical,	meaning	that	“A”	comes	before	“Z”,	so	“A”
<	“Z”.	Putting	numbers	 in	a	character	 field	will	 filter	 the	results	alphabetically
“40”	 <	 “5”	 and	 vice	 versa,	 putting	 text	 in	 number	 fields	will	 filter	 the	 results
numerically.	We	have	 to	make	sure	we	are	using	 the	correct	 type,	or	we	might

end	up	with	some	surprising	query	results.
Comparison	 operators	 can	 also	 be	 used	 with	 date/time	 values.	 Instead	 of

using	 quotation	 marks,	 we	 enclose	 the	 date/time	 values	 in	 pound	 signs	 (##).
Table	 2	 gives	 a	 list	 of	 possible	 date	 conditions	 that	 can	 appear	 in	 a	WHERE
clause.	Comparison	 operators	 allow	 for	many	different	 queries	with	which	we
can	compare	a	value	of	an	identifier	with	a	literal	(ex.	Country	=	“Germany”).

fg.	8	:	List	of	companies	not	situated	in	Berlin

Table.	2	:	Using	conditional	operators	with	dates

The	NOT	operator	is	used	to	negate	the	result	of	a	conditional	expression.	In
SQL,	all	expressions	evaluate	to	true	and	false.	If	the	expression	is	true,	the	row
is	selected;	if	it	 is	false,	it	 is	discarded.	Therefore,	the	NOT	operator	is	used	to
find	 the	 rows	 that	do	not	match	 a	 certain	 condition.	 In	 essence,	 including	 the
NOT	operator	will	 cause	 the	query	 to	 return	 the	opposite	 results	of	 a	 standard
query	(Figure	10).	In	the	following	example,	the	query	selects	all	suppliers	that
come	neither	from	France	nor	the	USA:

SELECT	CompanyName,	Country
FROM	Suppliers
WHERE	NOT	Country	=	“France”
AND	NOT	Country	=	“USA”

fg.	9	:	List	of	products	costing	between	$10	and	$100

fg.	10	:	List	of	suppliers	that	exclude	France	and	USA

Logical	Operators
When	more	than	one	condition	needs	to	be	tested	in	a	WHERE	statement,	we

can	use	 the	NOT,	AND,	 and	OR	 logical	operators	 to	 link	 the	 conditions.	The
meaning	 of	 these	 operators	 is	 synonymous	 with	 their	 meaning	 in	 the	 English
language;	the	NOT	operator	means	that	the	condition(s)	must	be	false,	the	AND
operator	means	 that	 all	 listed	 conditions	 need	 to	 be	 true,	 and	 the	OR	operator
indicates	 that	 only	 one	 of	 the	 conditions	 needs	 to	 be	 true.	 Adding	 criteria
complicates	the	WHERE	clause	but	gives	us	more	control	over	the	results.

When	 comparing	 text,	 some	 implementations	 of	 SQL	 are	 case-sensitive	 while	 others	 are	 not.	 For
situations	 in	 which	 the	 SQL	 implementation	 is	 case-sensitive	 and	 you	 need	 to	 retrieve	 data	 by
disregarding	the	case	of	the	letters,	use	the	function	UPPER	to	turn	the	value	of	each	text	attribute
into	uppercase	before	the	comparison	takes	place	(ex.	WHERE	UPPER	(Country)	=	“GERMANY”).

As	 an	 example,	 the	 following	 query	will	 return	 all	 products	 that	 cost	more
than	$10	but	less	than	$100.(Figure	9).

SELECT	ProductName,	UnitPrice
FROM	Products
WHERE	UnitPrice	>=10
AND	UnitPrice	<=100

The	WHERE	 clause	 is	 flexible.	We	 can	 refer	 to	 columns	 that	 aren’t	 in	 the
SELECT	clause-as	 long,	as	 those	columns	are	present	 in	 the	 referenced	 tables.
For	example,	let’s	suppose	that	we	want	to	see	a	list	of	suppliers	that	are	either
from	Brazil	or	are	situated	in	Tokyo	(Figure	11).	The	following	statement	uses
an	 OR	 operator	 to	 include	 both	 conditions	 in	 one	 WHERE	 clause	 without
including	the	condition	columns	in	the	results.

SELECT	CompanyName
FROM	Suppliers
WHERE	Country	=	“Brazil”	OR	City	=	“Tokyo”

fg.	11	:	List	of	suppliers	coming	from	the	country	of	Brazil	or	the	city	of	Tokyo

The	case-sensitivity	of	some	SQL	implementations	are	also	present	when	using	the	LIKE	operator	(ex.
LIKE	M%	would	be	different	from	LIKE	m%).

Dealing	With	Ranges	&	Wildcards
The	BETWEEN	operator	allows	us	to	specify	a	range	between	one	value	and

another.	 In	a	previous	example,	 to	check	for	a	value	within	a	certain	 range	we
used	 the	 “greater	 than	 or	 equal	 to”	 (>=)	 and	 the	 “less	 than	 or	 equal	 to”	 (<=)
operators.	The	BETWEEN	operator	functions	in	exactly	the	same	way	with	the
end	points	of	the	range	included	in	the	condition.	So	instead	of	writing:

WHERE	UnitPrice	>=5
AND	<=100

You	can	write:

WHERE	UnitPrice
BETWEEN	5	AND	100

Microsoft	Access	uses	the	asterisk	(*)	instead	of	percentage	(%)	and	the	question	mark	(?)	instead	of
the	underscore	(_).

The	BETWEEN	operator	 can	be	used	 in	 conjunction	with	other	data	 types,
such	as	text	and	dates.

When	 searching	 for	partial	 values,	SQL	provides	 the	LIKE	operator,	which
compares	field	values	to	a	specified	pattern.	While	creating	the	pattern	you	can
use	 wildcard	 characters	 to	 replace	 unknown	 characters.	 A	 wildcard	 character
doesn’t	match	a	specific	character,	but	instead	matches	any	one	or	any	of	more
characters.	 The	 underscore	 (_)	 replaces	 one	 unknown	 value,	 while	 the
percentage	symbol	(%)	replaces	any	number	of	unknown	values.

The	following	example	lists	all	products	for	which	the	price	has	1	as	the	first
digit	and	any	other	number	as	a	second	digit	(Figure	12).

SELECT	ProductName,	UnitPrice
FROM	Products

WHERE	UnitPrice	LIKE	“1?”

fg.	12	:	List	of	products	costing	10	and	something	dollars

The	following	example	(Figure.	13)	displays	all	companies	that	come	from	a
country	beginning	with	the	letter	F.

SELECT	CompanyName
FROM	Customers

fg.	13	:	List	of	companies	in	countries	beginning	with	the	letter	F

WHERE	Country	LIKE	“F*”

Operator	Precedence
When	there	 is	more	 than	one	operator	 in	a	condition,	 there	are	certain	rules

that	 determine	 the	 order	 in	 which	 operators	 are	 evaluated.	 A	 hierarchy	 of
operators	 will	 determine	 which	 operator	 is	 evaluated	 first	 when	 the	 condition
contains	 multiple	 operators.	 The	 highest	 precedence	 is	 given	 to	 brackets	 ([]),
followed	 by	 the	 NOT	 operator,	 the	 AND	 operator	 and	 all	 of	 the	 following
operators	with	 the	 same	 precedence:	ALL,	ANY,	BETWEEN,	 IN,	 LIKE,	OR,
and	SOME.

Additionally:
If	the	operators	have	different	precedence,	then	the	highest	ones	are	evaluated

first,	then	the	next	highest,	and	so	on.
If	all	the	operators	have	equal	precedence,	then	the	conditions	are	interpreted

from	left	to	right.
Technically,	 the	 best	way	 to	 ensure	 operator	 precedence	 is	 to	 use	 brackets.

They	 can	 make	 the	 SQL	 easier	 to	 read	 because	 by	 making	 it	 clear	 which
conditions	 are	 evaluated	 first,	 which	 is	 quite	 helpful	 when	 the	 conditions	 are
complex.

The	ORDER	BY	Clause
Up	 to	 this	point	query	 results	have	come	 in	 the	order	 the	database	decides,

usually	based	on	the	order	in	which	the	data	was	entered	(except	for	the	example
used	in	the	TOP	keyword	description.)	Listing	query	results	in	a	specific	order	is
a	frequent	requirement,	which	in	SQL	is	specified	with	the	ORDER	BY	clause
keyword.	 The	 ORDER	 BY	 clause	 goes	 at	 the	 very	 end	 of	 the	 SELECT
statement,	 after	 the	 WHERE	 clause,	 and	 defines	 the	 column(s)	 that	 will
determine	either	the	ascending	or	the	descending	order	of	the	results.

The	 following	 example	 (Figure	 14)	 sorts	 customers	 by	 the	 name	 of	 the

company.	 SQL	will	 perform	 an	 alphabetic	 sort,	 since	CompanyName	 is	 a	 text
column.

SELECT	CompanyName,	ContactName,	ContactTitle,	City
FROM	Customers

fg.	14	:	Alphabetical	list	of	companies

ORDER	BY	CompanyName

ORDER	BY	will	 sort	 the	 records	 into	 ascending	order	by	default,	which	 is
evident	from	the	results	of	 the	preceding	SQL	sort	from	A	to	Z.	If	you	require
descending	order,	you	must	add	DESC	after	the	list	of	columns	in	the	ORDER
BY	clause.	For	example,	the	following	statement	sorts	the	results	of	the	query	in
a	descending	order	by	CompanyName.

SELECT	CompanyName,	ContactName,	ContactTitle,	City
FROM	Customers
ORDER	BY	CompanyName	DESC

fg.	15	:	Alphabetical	list	of	companies	presented	in	a	descending	order

Because	ascending	order	is	the	default	for	ORDER	BY,	specifying	ascending
order	is	not	necessary	in	the	SQL	query.	Additionally,	the	column	used	to	order
the	 results	 doesn’t	 have	 to	 form	 part	 of	 the	 results.	 Furthermore,	 we	 can	 use
more	than	one	column	to	sort	results	by	simply	listing	each	column	by	which	to
sort	 the	results	and	separating	each	column	with	a	comma.	The	order	 in	which
the	 columns	 are	defined	 in	 the	SELECT	statement	will	 determine	 the	order	of
priority	in	sorting.	For	example,	the	following	statement	sorts	the	results	of	the
query	 in	 a	 descending	 order	 by	 ContactTitle	 and	 then	 each	 group	 of	 records
containing	the	same	ContactTitle	is	further	sorted	by	city	in	an	ascending	order.
(Figure	16).

SELECT	CompanyName,	ContactName,	ContactTitle,	City
FROM	Customers
ORDER	BY	ContactTitle	DESC,	City

fg.	16	:	List	of	companies	ordered	by	multiple	columns

Using	Aliases	with	the	AS	Clause
When	retrieving	columns	from	the	database	tables,	you	are	not	limited	to	just

using	 column	 names.	 If	 necessary	 you	 can	 give	 column	 names	 aliases	 in	 the
results	 where	 the	 aliases	would	 simply	 be	 secondary	 names	 for	 collections	 of
data.	For	example,	 if	you	want	your	 results	 to	display	an	alias	called	Surname
instead	 of	 the	 predefined	 field	 name	 LastName,	 you	 can	 write	 the	 following
query.

SELECT	LastName	AS	Surname
FROM	Employees

Using	 an	 alias	 doesn’t	 change	 the	 results	 returned	 in	 any	way,	 nor	 does	 it
rename	 the	 LastName	 column	 from	 the	 Customers	 table.	 By	 combining	 the
SELECT	statement	with	an	AS	clause,	you	essentially	create	a	temporary	name
for	 a	 column	 or	 a	 group	 of	 columns.	 This	 clause	 is	 optional,	 and	 when	 it	 is
omitted,	SQL	uses	the	default	column’s	name.

With	aliases	you	can	also	combine	 the	data	from	two	or	more	columns	 into
one	 column,	with	 the	 resulting	 column	bearing	 the	 alias	 name.	The	 joining	 of
columns	is	also	known	as	concatenation,	which	as	an	approach	varies	depending
on	 the	 RDBMS.	 In	 Microsoft	 SQL	 Server	 and	 MS	 Access	 you	 use	 the
concatenation	operator,	which	is	the	plus	(+)	sign.

The	 following	 query	 (Figure	 17)	 will	 join	 the	 FirstName	 and	 LastName
columns	into	a	new	alias	column	called	FullName.

SELECT	FirstName	+	LastName	AS	FullName
FROM	Employees

fg.	17	:	Example	of	concatenating	columns	in	a	single	alias	column

fg.	18	:	Example	of	concatenating	columns	in	a	single	alias	column	with	space.

Obviously,	 the	 results	 are	 slightly	 lacking	 as	 our	 intent	was	 not	 to	 glue	 the
two	columns	 together,	but	 to	have	 them	as	 two	separate	words	placed	 into	one
column.	 (Figure	18)	 Hence,	we	 need	 to	 include	 the	 empty	 space	 between	 the
concatenated	columns	 in	 the	SQL	query	 itself.	Hence,	our	statement	should	be
structured	as	follows:

SELECT	FirstName	+	"	"	+	LastName	AS	FullName
FROM	Employees

Selecting	Records	from	Multiple	Tables
Until	this	point	the	SQL	queries	we	used	were	extracting	data	from	only	one

database	 table.	This	 is	quite	 limiting,	 as	answers	usually	 require	 the	 joining	of
data	from	more	than	one	table.	To	understand	why	joins	are	useful,	let’s	suppose
that	we	want	a	list	of	products	from	the	“Beverages”	category	(Figure	19).	If	we
just	use	the	following	statement:

SELECT	Products.ProductName,	Categories.CategoryName
FROM	Categories,	Products

fg.	19	:	Retrieving	products	results	from	2	tables

The	SQL	query	will	return	all	the	possible	combinations	of	records	from	the
Categories	and	Products	tables,	which	is	obviously	not	the	required	result.	If	we
take	a	closer	look	at	the	Products	table	we	will	see	that	there	is	only	a	numerical
value	for	CategoryID,	while	the	name	corresponding	to	that	numerical	value	has
to	 be	 looked	 up	 in	 the	 Categories	 table.	 However,	 in	 SQL	 the	 tables	 are
combined	using	the	join	operation.	If	SQL	didn’t	support	joins,	we	would	have
to	 first	determine	 that	 the	CategoryID	value	 for	“Beverages”	 is	1	and	 then	use
this	information	in	the	WHERE	clause.

Since	the	query	retrieves	data	from	multiple	tables,	the	field	name	in	the	SELECT	statement	must	be
preceded	with	the	table	name.	Otherwise,	there	would	be	no	way	of	distinguishing	between	two	fields
from	different	tables	if	those	filed	share	the	same	name.

In	the	example	above,	since	it	was	not	explicitly	stated,	the	join	operation	was
performed	on	all	fields,	because	there	were	no	guidelines	as	to	how	to	combine
the	two	tables.	As	the	link	has	been	identified,	we	will	use	what	is	known	as	an
inner	join	to	combine	the	two	tables.	The	inner	join	will	allow	us	to	specify	the
columns	and	the	originating	tables	that	form	the	join	and	under	what	conditions.
For	example,	we	can	specify	a	condition	that	says	the	CategoryID	field	from	the
Categories	 table	 is	 equivalent	 to	 the	CategoryID	 field	 from	 the	Products	 table.
Only	records	with	a	matching	CategoryID	in	both	tables	will	be	included	in	the
final	results.

The	syntax	for	inner	join	follows	the	following	structure:

Table1	INNER	JOIN	table2	ON	column_from_table1	=
column_from_table2

Only	Microsoft	Access	requires	the	INNER	keyword	when	performing	a	join.	For	other	RDBM’s	the
INNER	keyword	is	omitted	and	only	the	JOIN…	ON	syntax	is	used.

The	SELECT	statement	expectantly	begins	with	a	list	of	the	columns	required
to	form	the	results.	The	FROM	line	doesn’t	just	list	the	tables	used	in	the	query,
but	 this	 time	 the	 INNER	 JOIN	keyword	 is	 used	 to	 specify	 that	 the	 two	 tables

should	be	joined.	The	ON	keyword	that	follows	specifies	what	joins	the	tables,
which	 in	 this	 case	 is	 the	 CategoryID	 field	 from	 both	 tables	 (Figure	 20).
Applying	the	syntax	to	our	situation	yields	the	following	code:

SELECT	Products.ProductName,	Categories.
CategoryName
FROM	Categories	INNER	JOIN	Products	ON	Categories.
CategoryID=Products.CategoryID
WHERE	Categories.CategoryName	=	“Beverages”

fg.	20	:	Retrieving	products	results	from	inner	joined	tables

Using	INNER	JOIN	or	JOIN	to	create	an	inner	join	between	tables	is	not	the
only	way	to	join	tables.	An	alternative	way	to	define	a	relationship	between	the
tables	by	connecting	the	contents	of	two	fields	is	simply	to	specify	the	link	in	the
WHERE	clause.	This	would	restructure	the	previous	SQL	statement	as	follows:

SELECT	Products.ProductName,	Categories.
CategoryName
FROM	Categories,	Products
WHERE	Categories.CategoryID=Products.CategoryID
AND	Categories.CategoryName	=	“Beverages”

In	this	case	the	WHERE	clause	specifies	that	Categories.	CategoryID	should
equal	Products.	CategoryID,	which	creates	 the	 join.	Technically,	 this	yields	 the
same	 results	 as	 INNER	 JOIN.	 However,	 it	 is	 considered	 that	 INNER	 JOIN
makes	an	explicit	statement	as	to	which	tables	are	joined	making	the	SQL	easier
to	 read	 and	 understand.	 When	 using	 joins	 we	 are	 not	 limited	 to	 joining	 two
tables.	 It	 is	possible	 to	 join	as	many	tables	as	 the	desired	 information	requires.
For	example,	let’s	suppose	we	want	a	list	of	suppliers	of	beverage	products	with
each	product	listed	along	with	the	product	price.	When	we	want	to	design	more
complex	queries,	we	first	have	to	work	out	what	information	is	required	and	how
it	 is	 connected	 across	 tables.	 If	 we	 look	 at	 the	 database	 tables	 it	 is	 easy	 to
identify	 that	 we	 will	 need	 four	 data	 items:	 CompanyName,	 ProductName,
UnitPrice,	CategoryName	 from	 three	different	 tables:	Products,	Categories	and
Suppliers.	 We	 can	 also	 identify	 that	 the	 Categories	 and	 Products	 tables	 are
connected	by	 the	CategoryID	field	while	 the	Suppliers	and	Products	 tables	are
connected	 by	 the	 SupplierID	 field	 (Figure	 21).	 With	 this	 we	 have	 enough
information	to	construct	the	SQL	statement	as	follows.

SELECT	Products.ProductName,	Categories.
CategoryName,	Products.UnitPrice,	Suppliers.
CompanyName
FROM	Categories	INNER	JOIN	Products	ON	Categories.

CategoryID=Products.CategoryID	INNER	JOIN
Suppliers	ON	Products.SupplierID=Suppliers.
SupplierID
WHERE	Categories.CategoryName	=	“Beverages”

fg.	21	:	Retrieving	products	results	from	multiple	inner	joined	tables

Including	Excluded	Data	with	OUTER
JOIN

In	some	occasions,	situations	arise	in	which	the	INNER	JOIN	examples	from
the	 previous	 section	 would	 discard	 potentially	 useful	 data.	 For	 instance,	 if	 a
product	has	no	category	assigned	to	it,	then	it	would	never	be	returned	as	a	valid
result	 since	 the	 condition	 Category.CategoryID=Products.CategoryID	 is	 not
fulfilled.	This	kind	of	 loss	 is	not	always	desirable,	so	 there	 is	a	special	 type	of
join	called	an	outer	 join	 to	deal	with	 these	 situations.	Before	we	explain	outer
joins,	let’s	give	them	a	different	perspective	in	order	to	understand	joins	better.

With	trickier	queries,	especially	those	involving	more	than	one	table,	thinking
in	terms	of	sets	of	records	can	be	helpful.	Let’s	view	each	table	in	the	database
as	a	set	of	records.	When	we	run	a	SQL	query,	the	results	can	also	be	viewed	as	a
set	of	records.	Hence,	the	following	two	queries	will	result	into	two	different	sets
of	records	that	contain	all	records	from	their	respective	tables.	(Figure	22	&	23).

SELECT	Products.ProductName,	UnitPrice
FROM	Products
SELECT	Categories.CategoryName
FROM	Categories

fg.	22	:	Presenting	table	data	as	sets

When	we	 join	 these	 sets	 of	 records	with	 an	 INNER	 JOIN	 (Figure	23),	 we
essentially	include	only	those	records	in	which	there	is	an	overlap	as	defined	by
the	ON	clause.

fg.	23	:	Overlapping	sets	with	INNER	JOIN

An	 inner	 join	 requires	 that	both	sets	of	 records	 involved	 in	 the	 join	 include
matching	records.	If	we	want	to	include	records	from	either	side	of	the	sets	that
are	not	overlapping,	we	need	to	use	an	outer	join.	An	outer	join	doesn’t	require	a
match	 on	 both	 sides,	 as	we	 can	 specify	which	 table	will	 always	 return	 results
regardless	 of	 the	 conditions	 in	 the	 ON	 clause.	 There	 are	 three	 types	 of	 outer
joins:	left	outer	join,	right	outer	join,	and	full	outer	join.	The	syntax	is	identical
to	that	for	inner	joins;	the	only	change	is	the	OUTER	JOIN	keyword.

In	 a	 left	 outer	 join,	 all	 the	 records	 from	 the	 table	 named	 on	 the	 left	 of	 the
OUTER	JOIN	statement	are	returned,	regardless	of	whether	there	is	a	matching
record	 in	 the	 table	 on	 the	 right	 of	 the	 OUTER	 JOIN	 statement.	 For	 example
(Figure	24),	the	following	query:

SELECT	Products.ProductName,	Categories.
CategoryName
FROM	Categories	LEFT	OUTER	JOIN	Products
ON	Categories.CategoryID=Products.CategoryID

fg.	24	:	Product	results	from	a	LEFT	OUTER	JOIN	example

Will	also	return	categories	for	which	no	products	are	defined.	Conversely,	in
a	 right	 outer	 join,	 all	 the	 records	 from	 the	 table	 named	 on	 the	 right	 of	 the
OUTER	JOIN	statement	are	returned,	regardless	of	whether	there	is	a	matching
record	 in	 the	 table	on	 the	 left	of	 the	OUTER	JOIN	statement	 (Figure	25).	 For
example,	the	following	query:

SELECT	Products.ProductName,	Categories.
CategoryName
FROM	Categories	RIGHT	OUTER	JOIN	Products
ON	Categories.CategoryID=Products.CategoryID

Will	also	return	products	that	don’t	have	a	category	assigned	to	them.	The	full
outer	join	is	essentially	a	combination	of	left	and	right	outer	joins.	Records	from
both	 the	 table	on	 the	 left	 and	 right	 are	 included	even	 if	 there	 are	no	matching
records.	Many	database	systems	don’t	support	this	join,	and	neither	MS	Access
nor	MySQL	offer	any	alternatives.

fg.	25	:	Products	results	from	a	RIGHT	OUTER	JOIN	example

NULL	Values
What	values	are	contained	in	fields	in	which	no	value	is	specified?	Logically,

database	fields	with	no	values	are	empty	fields,	but	SQL	doesn’t	allow	for	data
to	 hold	 no	 value.	 As	 a	 matter	 of	 fact,	 fields	 with	 no	 specified	 value	 are
considered	NULL.	NULL	is	not	the	same	as	nothing;	it	represents	the	unknown.
When	we	 don’t	 enter	 data	 into	 a	 database	 cell,	 SQL	 considers	 that	 there	 is	 a
value	that	one	day	might	be	known	and	stored	in	this	field,	but	at	this	moment
that	value	is	unknown.	That	is	where	NULL	comes	into	the	picture.

Why	 should	we	 care	 about	 all	 this?	Well,	 unknown	values,	 or	NULLs,	 can
lead	to	unexpected	and	overlooked	results.	For	example,	you	might	consider	that
the	following	SQL	would	return	all	the	records	from	the	Employees	table:

SELECT	FirstName,	LastName,	BirthDate
FROM	Employees
WHERE	BirthDate	>=	#1800-01-01#

However,	if	there	is	an	employee	for	whom	the	BirthDate	field	was	omitted
during	data	 entry,	 the	name	of	 that	 employee	will	 not	 appear	 in	 the	 results.	 In
order	 to	 check	 for	NULL	values,	we	must	 use	 the	 IS	NULL	operator	 (Figure
26).

SELECT	FirstName,	LastName,	BirthDate
FROM	Employees
WHERE	BirthDate	>=	#1800-01-01#	OR	BirthDate
IS	NULL

fg.	26	:	Querying	null	data

Generally,	 it	 is	 better	 to	 avoid	 the	 NULL	 value	 whenever	 possible	 and,	 if
possible,	assign	a	default	value	to	the	field	during	data	entry.

Table	3	:	SQL	built-in	functions

COUNT
The	COUNT	function	is	used	to	count	the	number	of	records	that	are	returned

as	a	result	of	a	query.	It	is	used	in	the	SELECT	statement	along	with	the	column
name	for	which	the	counting	is	to	take	place.	The	value	returned	in	the	results	set
is	 the	 number	 of	 non-empty	 values	 in	 that	 column.	Alternatively,	 instead	 of	 a
column	name	you	 can	 insert	 an	 asterisk	 (*),	 in	which	 case	 all	 columns	 for	 all
records	in	the	results	will	be	counted.

For	example,	(Figure	27),	if	we	want	to	count	the	number	of	Products	in	our
database,	we	use	the	following	query:

SELECT	COUNT(*)
FROM	Products

Or

SELECT	COUNT(ProductID)
FROM	Products

|	2	|	Built-In	Functions	&
Calculations

The	SQL	queries	we	have	used	so	far	return	results	as	a	set	of	individual	records.
If	 instead	we	want	 to	summarize	 the	records’	data	 (ex.	 find	 the	average	price),
we	 need	 to	 provide	 an	 aggregation	 of	 results.	 SQL	 has	 many	 aggregate
functions	 for	manipulating	 numbers	 and	 text,	 both	 basic	 and	 advanced,	 and	 it
allows	for	calculations	of	values	based	on	table	data	(Table	3).	SQL	includes	five
built-in	functions:

fg.	27	:	Counting	products

fg.	28	:	Counting	more	than	one	column

In	the	COUNT	function	the	actual	column	name	is	not	as	important	as	long	as
it	 is	 a	 field	 that	 can	 be	 counted	 towards	 the	 requested	 result.	 Usually,	 the
smartest	 approach	 is	 to	 count	 the	 ID	 fields	 in	 a	 table,	 as	 these	 fields	 are	 least
likely	to	be	empty.

It	 is	 possible	 to	 include	more	 than	 one	 function	 in	 the	 SELECT	 statement
(Figure	28).	For	 example,	 the	 following	 statement	 returns	 the	number	of	non-
empty	CompanyName	fields	and	non-empty	Fax	fields.

SELECT	COUNT	(CompanyName),	COUNT	(Fax)
FROM	Customers

However,	combining	a	function	with	a	regular	column	will	result	in	an	error
(ex.	SELECT	Phone,	COUNT(CompanyName).	In	these	cases	the	identifier	will
return	more	 than	one	row	of	results,	whereas	COUNT	always	returns	only	one
row.

In	the	above	COUNT	example,	(Figure	28),	it	is	noticeable	that	the	retrieved
result	 is	 placed	 inside	 a	 column	 with	 a	 system-generated	 name.	 To	 define	 a
column	name	we	can	use	alias	names	with	the	AS	clause	(Figure	29).

SELECT	COUNT(ProductID)AS	NumberOfProducts
FROM	Products

fg.	29	:	Counting	with	alias	column	names

SUM
The	SUM	function	adds	up	all	the	values	for	the	expression	passed	to	it	as	an

argument.	The	expression	itself	can	be	a	column	name	or	a	calculation	and	can
only	be	performed	with	numerical	 fields.	As	 an	 example	 let’s	 use	 a	numerical
column	to	calculate	the	total	items	we	have	in	stock.

SELECT	SUM(UnitsInStock)
FROM	Products

Another	more	logical	example	would	be	to	calculate	the	total	income	from	all
items	 sold	 (Figure	30).	 For	 this	 query	we	 need	 to	 use	 the	Order	Details	 table
from	which	we	will	calculate	the	sum	of	UnitPrice*Quantity*Discount.

SELECT	SUM(UnitPrice	*	Quantity	*	Discount)
FROM	[Order	Details]

fg.	30	:	Summing	data	from	multiple	column	expressions

Just	 like	 with	 the	 COUNT	 example,	 the	 retrieved	 result	 is	 placed	 inside	 a
system-generated	column.	To	define	a	column	name	we	can	define	an	alias	with
the	AS	keyword.

SELECT	SUM(UnitPrice	*	Quantity	*	Discount)
AS	TotalIncome
FROM	[Order	Details]

Other	Functions
The	AVG	function	takes	the	total	sum	of	values	in	the	expression	and	divides

that	 value	 by	 the	 number	 of	 rows.	 The	 expression,	 whether	 it	 is	 a	 specific
column	or	 a	 calculation,	must	 have	 a	 numeric	 value	 in	 order	 to	 return	 a	 valid
result.	For	example,	let’s	say	that	we	want	to	check	the	average	product	price	in
our	store	database:

SELECT	AVG	(UnitPrice)
FROM	Products

Of	course,	as	with	other	functions	and	queries,	we	can	use	alias	columns	and
aggregate	data	from	multiple	tables	(Figure	31).	The	following	query	calculates
the	average	price	of	beverage	products.

SELECT	AVG	(UnitPrice)	AS	AverageBeveragePrice
FROM	Products	INNER	JOIN	Categories
ON	Products.CategoryID=Categories.CategoryID
WHERE	CategoryName	=	“Beverages”

fg.	31	:	Average	price	for	beverages

The	MAX	and	MIN	 functions	 return	 the	highest	 and	 the	 lowest	values	 that
can	be	found	in	the	resulting	record	set.	These	functions	can	be	used	with	non-
numeric	data	 types,	unlike	 the	SUM	and	AVG	functions.	For	example,	we	can
use	MAX	and	MIN	to	 find	 the	youngest	and	oldest	employees	by	determining
the	earliest	and	latest	dates	of	birth.	(Figure	32).

SELECT	MAX(BirthDate),	MIN(BirthDate)
FROM	Employees

fg.	32	:	Oldest	and	youngest	employees

Additionally,	 we	 can	 also	 calculate	 the	 largest	 and	 smallest	 value	 in	 a
character	field.	This	means	that	MAX	will	return	the	alphabetically	largest	value,
as	 close	 to	 the	 letter	 Z	 as	 possible,	 while	 MIN	 will	 return	 the	 alphabetically
lowest	value	closest	to	the	letter	A.

SELECT	MAX(LastName),	MIN(LastName)
FROM	Employees

Grouping	Data	with	the	GROUP	BY
Clause

Now	that	we	have	started	summarizing	the	data,	we	can	start	using	groups	in
order	to	provide	more	detailed	and	refined	data	aggregation.	With	grouping	we
can	 find	 out	 more	 information	 about	 a	 particular	 record	 in	 accordance	 with
specific	parameters.

The	GROUP	BY	 clause	 defines	 groups	 that	 you	might	want	 to	 evaluate	 in
some	calculation	as	a	whole.	Used	in	conjunction	with	the	SELECT	statement,
the	GROUP	BY	clause	allows	us	to	group	identical	data	into	one	subset	instead
of	 listing	 each	 individual	 record.	 From	 a	 syntax	 perspective,	 the	 GROUP	BY
clause	 always	 goes	 after	 any	 FROM	 or	 WHERE	 clauses	 in	 the	 SELECT
statement,	with	all	 the	columns	we	want	 to	be	grouped	included	in	 the	column
list.

Let’s	 say	 that	we	want	 to	 find	 out	 the	 countries	 from	which	 our	 customers
come.	Using	the	GROUP	BY	clause,	we	would	write	the	following	query:

SELECT	Country
FROM	Customers
GROUP	BY	Country

As	the	answer	doesn’t	require	a	list	of	every	member	and	the	state	in	which
each	member	lives,	with	the	GROUP	BY	clause	we	simply	ask	SQL	to	treat	the
customers	who	come	from	the	same	state	as	one	data	instance.

If	we	want	to	include	more	than	one	column	in	the	GROUP	BY	clause,	then
we	 separate	 the	 columns	with	 commas,	 the	 same	way	we	 separate	 columns	 in
other	clauses.	Following	on	the	previous	example,	if	we	also	want	to	know	the
cities	in	which	our	customers	live,	we	will	use	the	following	query:

SELECT	City,	Country
FROM	Customers
GROUP	BY	City,	Country

fg.	33	:	Results	for	cities	from	the	GROUP	BY	example	query

fg.	34	:	Counting	customers	per	country	with	a	GROUP	BY	clause

Notice	 that	Figure	 33	&	Figure	 34	 include	 the	 same	 columns	 both	 in	 the
SELECT	statement	and	 the	GROUP	BY	clause.	Most	RDBMSs	will	not	allow
the	columns	to	be	different,	because	if	we	don’t	specify	a	group	for	a	column	in
the	SELECT	statement,	then	there	is	no	way	of	deciding	which	value	to	include
for	 a	 particular	 group.	 The	 results	 can	 include	 only	 one	 identical	 record	 per
group,	 and	 each	 row	 represents	 the	 results	 from	 a	 group	 of	 records,	 not	 the
individual	records	themselves.	Including	an	ungrouped	column	will	create	more
than	one	row	for	each	group,	which	isn’t	allowed.	The	GROUP	BY	clause	is	at
its	 most	 powerful	 when	 combined	 with	 SQL’s	 summarizing	 and	 aggregating
functions.	 As	 the	 GROUP	 BY	 clause	 doesn’t	 actually	 summarize	 data,	 any
calculations	for	summarizing	that	data	must	be	provided	in	the	form	of	built-in
functions.

If	we	 build	 on	 the	 previous	 example,	 and	 instead	 of	 a	 list	 of	 countries	we
want	 to	 know	 how	 many	 customers	 come	 from	 each	 country	 based	 on	 the
information	from	the	Customers	table,	we	can	use	the	following	query:

SELECT	Country,
COUNT(CustomerID)
FROM	Customers
GROUP	BY	Country

Going	 back	 to	 our	 first	 COUNT	 example,	 we	 counted	 the	 total	 number	 of
items	in	the	Products	table.	With	the	GROUP	BY	clause	we	can	now	identify	the
number	of	products	per	category.	As	we	will	be	retrieving	data	from	more	than
one	table,	we	will	also	use	a	join	as	well	as	an	alias	for	the	results	of	the	COUNT
function.

SELECT	Categories.
CategoryName,
COUNT	(Products.ProductID)
AS	NumberOfProducts

FROM	Categories
INNER	JOIN	Products
ON	Categories.CategoryID=
Products.CategoryID
GROUP	BY	Categories.
CategoryName

In	this	example	(Figure	35)	the	GROUP	BY	clause	actually	gives	instructions	as
to	how	to	group	the	COUNT	function,	which	in	a	previous	example	returned	a
single	value.	We	can	use	the	GROUP	BY	clause	with	any	other	built-in	function.

fg.	35	:	Counting	products	by	categories	with	alias	columns

For	example,	the	following	query	will	retrieve	the	average	product	price	for
each	category	of	products:

SELECT	Categories.CategoryName,
AVG	(Products.UnitPrice)	AS	AveragePrice
FROM	Categories	INNER	JOIN	Products
ON	Categories.CategoryID=Products.ProductID
GROUP	BY	Categories.CategoryName

Limiting	Group	Results	with	HAVING
It	 is	 possible	 to	 further	 limit	 the	 results	 of	 a	 grouped	 query.	 The	HAVING

clause	 enables	 us	 to	 specify	 conditions	 that	 will	 filter	 the	 group	 results	 that
appear	in	the	final	record	set.	By	essentially	eliminating	records	from	the	group,
the	HAVING	clause	resembles	the	behavior	of	the	WHERE	clause,	which	in	turn
limits	 the	 results	 of	 the	 SELECT	 statement.	 The	 HAVING	 clause	 is	 applied
immediately	after	 the	GROUP	BY	statement	and	usually	includes	an	aggregate
function.	This	 is	 especially	useful	when	we	 filter	 data	based	on	 a	 summarized
evaluation	for	each	group.	For	example	(Figure	36),	the	following	query	creates
a	list	of	countries	from	which	we	have	more	than	5	customers:

SELECT	Country
FROM	Customers
GROUP	BY	Country
HAVING	COUNT(CustomerID)	>=	5

fg.	36	:	Limiting	group	results	with	the	HAVING	clause

The	HAVING	clause	applies	on	a	per-group	basis,	filtering	out	those	groups
that	don’t	match	the	condition.	In	comparison,	the	WHERE	clause	applies	on	a
per-record	 basis,	 filtering	 out	 records.	 Therefore,	 while	 the	 WHERE	 clause
restricts	 the	record	set	with	which	the	GROUP	BY	clause	works,	 the	HAVING
clause	affects	only	 the	display	of	 the	final	 results.	The	HAVING	condition	can
have	more	than	one	expression	combined	with	any	logical	operators.

|	3	|	Entering	&	Modifying	Data

Now	that	we	have	examined	how	to	extract	 information	from	the	database,	 the
next	 step	 is	 to	 learn	 how	 to	 enter	 new	 data	 as	 well	 as	 modify	 existing
information	 via	 SQL.	 Most	 RDBMSs	 provide	 tools	 that	 allow	 us	 to	 view
database	 tables	 as	well	 as	 add,	modify	and	delete	 the	data	within	 those	 tables.
While	 these	 tools	 are	 convenient	 when	we	work	 with	 small	 amounts	 of	 data,
entering	 large	 amounts	 of	 data	 requires	 a	 different	 approach.	 Therefore,	 SQL
offers	 three	statements,	INSERT	INTO,	UPDATE	and	DELETE,	which	will	be
the	focus	of	 this	 final	section.	As	each	statement	name	suggests,	 they	are	used
for	inserting,	updating	and	deleting	database	data.

INSERT	Information	INTO	the	Database
The	INSERT	INTO	statement	provides	us	with	an	easy	way	to	insert	new	data

into	an	existing	database.	In	the	statement	we	first	need	to	specify	the	table	into
which	we	want	to	insert	data,	followed	by	the	columns	into	which	data	is	to	be
inserted,	and	 finally	 the	actual	data	 that	needs	 to	be	 inserted.	The	basic	syntax
for	this	statement	is	as	follows:

INSERT	INTO	tableName	(columnName1,
columnName2...)
VALUES	(dataValue1,	dataValue2,...)

The	column	names	are	separated	by	commas	and	placed	in	brackets	after	the
table	name.	After	this	expression	comes	the	VALUES	statement	and	a	comma-
separated	 list	of	each	data	 item	 that	will	be	placed	 into	 the	 respective	column.
Character	and	date	data	must	be	placed	in	single	quotes,	while	delimiters	are	not
necessary	for	numerical	values.

For	 example,	 the	 following	 statement	 adds	 an	 additional	 record	 to	 the
Categories	table,	specifically	the	category	“Vegetables.”

INSERT	INTO	Categories	(CategoryID,
CategoryName,	Description)
VALUES	(9,	‘Vegetables’,	‘Seasoned	vegetables’)

We	 can	 specify	 the	 column	 names	 in	 any	 order	 we	 prefer.	 Regardless	 of
column	 order,	 SQL	will	 perform	 in	 the	 same	way	 as	 long	 as	 the	 order	 of	 the
column	names	set	matches	the	data	set.	Conversely,	the	following	SQL	will	also
be	valid:

INSERT	INTO	Categories	(CategoryName,
CategoryID,	Description)
VALUES	(‘Vegetables’,	9,	‘Seasoned	vegetables’)

If	we	insert	the	data	in	the	same	order	as	column	names,	it	is	also	possible	to
completely	 leave	out	column	names.	The	RDBMS	will	 interpret	 the	query	 just
like	its	extended	version.

INSERT	INTO	Categories
VALUES	(9,	‘Vegetables’,	‘Seasoned	vegetables’)

The	 advantage	 of	 not	 naming	 columns	 in	 the	 INSERT	 statement	 is	 that	 it
saves	typing	and	makes	shorter	SQL	statements.	The	obvious	disadvantage	is	the
difficulty	 in	 seeing	 which	 data	 goes	 into	 which	 columns.	 After	 any	 of	 these
statements,	 checking	 the	 Categories	 table	 with	 a	 properly	 structured	 SELECT
statement	will	provide	the	following	results	(Figure	37):

Updating	Data
Besides	 adding	new	 records,	we	will	 eventually	 need	 to	 change	 the	data	 in

existing	records.	For	this	purpose	we	will	use	the	UPDATE	statement.	Although
similar,	 the	main	 difference	 between	 inserting	 new	 data	 and	 updating	 existing
data	is	the	specification	of	the	records	that	need	to	be	changed.	The	records	to	be
changed	 are	 defined	with	 the	WHERE	 clause,	 which	will	 allow	 us	 to	 specify
only	those	records	that	satisfy	a	certain	condition.	The	SET	clause	will	specify
the	 exact	 columns	 in	 which	 data	 will	 be	 changed,	 separating	 multiple
columns/value	 pairs	with	 a	 comma.	 The	 generic	 syntax	 of	 the	 statement	 is	 as
follows:

UPDATE	tableName
SET	columnName	=	value
WHERE	condition

For	 example,	 let	 us	 say	 that	 one	 of	 our	 suppliers	 has	 changed	 the	 contact
person	 responsible	 and	 has	 provided	 us	with	 new	 data	 about	 the	 replacement.
First,	we	need	to	identify	the	SupplierID,	as	this	is	the	unique	value	that	can	be
used	in	the	WHERE	clause	to	tell	the	database	which	specific	records	to	update.
However,	it	is	not	necessary	to	update	every	field	in	the	record;	it	is	sufficient	to
provide	 data	 only	 for	 the	 fields	 that	 are	 actually	 changing.	 The	 UPDATE
statement	 allows	 us	 to	 define	 both	 the	 fields	 and	 the	 data	 that	 needs	 to	 be
updated.

UPDATE	Suppliers
SET
ContactName=’Selene	Pereira’,
ContactTitle=’Marketing	Manager’,
Phone=’(172)	555	5345’
WHERE	SupplierID=10

We	 need	 to	 consider	 that	 for	 situations	 in	 which	 the	 condition	 from	 the

WHERE	clause	matches	more	than	one	record,	all	of	the	matching	records	will
be	changed	in	accordance	with	the	instructions	in	the	UPDATE	statement.

Deleting	Data	from	Tables
Deleting	database	data	 is	easy.	 It	 is	 sufficient	 to	 first	 specify	 the	 table	 from

which	you	will	delete	records,	and	then,	if	necessary,	to	add	a	WHERE	clause	to
define	the	actual	records	to	delete.	Conversely,	if	we	want	to	completely	delete
all	records	from	a	table,	we	can	simply	write	the	following	SQL	statement:

DELETE	FROM	Products;

If	 we	 execute	 the	 above	 statement,	 we	 will	 delete	 all	 the	 data	 from	 your
Products	 table.	To	 limit	 the	deletion	 to	only	 specific	 records,	we	can	write	 the
following	query:

DELETE	FROM	Products
WHERE	ProductID	=	10

This	 SQL	 will	 delete	 all	 records	 from	 the	 Products	 table	 in	 which	 the
ProductID	has	a	value	of	10.	As	this	is	a	unique	value,	only	one	record	will	be
deleted	 since	 there	 is	 only	one	product	whose	ProductID	 is	 ten.	 If	we	want	 to
delete	a	range	of	records,	we	just	need	to	modify	the	WHERE	clause.

DELETE	FROM	Products
WHERE	ProductID	>	=10	AND	ProductID	<	20

Nevertheless,	deleting	a	record	doesn’t	delete	the	references	to	that	record	in
other	tables.	For	example,	although	the	Order	Details	table	refers	to	products	in
the	Products	table,	deleting	a	product	from	the	Products	table	doesn’t	delete	its
respective	reference	in	the	Order	Details	table.	This	has	to	be	executed	with	an
additional	SQL	statement:

DELETE	FROM	[Order	Details]
WHERE	ProductID=10

If	we	are	using	ranges,	then	we	modify	the	statement	as	follows:

DELETE	FROM	[Order	Details]
WHERE	ProductID	>	=10	AND	ProductID	<	20

|	4	|	Defining	Databases

The	 SQL	 language	 is	 not	 just	 limited	 to	 query	 and	 manipulation.	 It	 can	 also
manipulate	 database	 objects	 starting	 from	 database	 creation.	 Many	 RDBMSs
come	 with	 an	 easy-to-use	 interface	 that	 makes	 the	 task	 of	 creating	 new	 and
manipulating	 existing	 database	 objects	 very	 simple	 and	 intuitive.	 With	 a	 few
mouse	 clicks,	 and	 by	 entering	 a	 name,	 systems	 such	 as	 Access,	 SQL	 Server,
Oracle,	 etc.,	 allow	 us	 to	 create	 database	 objects	 without	 bothering	 with	 SQL
syntax.

Creating/Deleting	a	Database
Before	we	can	start	working	with	a	database,	we	need	to	actually	create	the

database.	There	are	plenty	of	options	to	achieve	this	goal,	but	we	will	focus	only
on	the	default,	which	in	SQL	is	as	easy	as	running	the	following	statement:

CREATE	DATABASE	NorthWind

We	use	 the	CREATE	DATABASE	command	 followed	by	a	database	name,
and	we	are	all	set.	We	have	to	mind	how	we	name	database	objects,	as	different
RDBMSs	have	different	rules.	The	general	guidelines	for	all	systems	are	to	use
letters,	 numbers	 and	 the	 underscore	 character	 avoiding	 all	 other	 special
characters,	punctuation	or	spaces.	Although	they	accept	numbers,	some	systems
don’t	allow	the	number	 to	be	 the	first	character	 in	 the	name,	so	we	need	 to	be
mindful	 never	 to	 use	 names	 such	 as	 1Customers.	 Finally,	 the	 names	 of	 all
database	 objects	 have	 to	 be	 unique,	 as	 we	 cannot	 have	 two	 databases	 or	 two
tables	from	the	same	database	share	a	common	name.

Deleting	 the	 database	 is	 as	 easy	 as	 creating	 the	 database.	Nevertheless,	we
have	to	be	mindful	of	the	data	that	already	exists	in	the	database,	as	deleting	the
database	will	also	delete	all	data	it	contains.	Like	the	CREATE	command,	most
RDBMSs	have	 an	 easy-to-use	 user	 interface	 that	 allows	us	 to	 drop	 a	 database

using	SQL.
We	use	the	DROP	DATABASE	command	followed	by	the	database	name:

DROP	DATABASE	NorthWind

After	creating	a	database	the	next	step	is	adding	tables.	However,	before	we
add	any	tables,	we	will	look	at	the	concept	of	data	types.

Data	Types
In	the	outside	world	we	naturally	categorize	information	into	different	types.

When	thinking	of	a	price	or	the	distance	between	two	points,	we	think	in	terms
of	numbers.	When	looking	up	directions	to	a	specific	location,	we	expect	textual
information.	The	data	type	is	determined	based	on	its	intended	use.	In	databases,
this	classification	helps	the	system	to	make	more	sense	of	its	values.	It	is	similar
to	what	we	naturally	do	in	the	real	world,	but	in	databases	we	categorize	the	data
more	formally.

Defining	data	types	across	RDBMSs	has	slight	variations.	The	approach	presented	in	this	book	is	in
accordance	 with	 the	 SQL:2008	 standard;	 for	 individual	 implementation	 please	 check	 the	 product
documentation	accordingly.

Although	we	could	treat	all	data	as	text	and	develop	the	database	and	future
applications	 accordingly,	 the	 main	 reason	 for	 storing	 data	 with	 different	 data
types	is	efficiency.	Speed	of	access	improves	and	storage	space	decreases	when
the	 database	 knows	 the	 type	 of	 data	 it	 has	 to	 process.	 For	 example,	 a	 large
number	such	as	48903928	can	be	stored	in	4	bytes	of	computer	memory	if	it	is
treated	 as	 a	 numerical	 value,	while	 storing	 the	 same	 number	 as	 character	 data
will	 occupy	 twice	 as	 much	 space.	 Furthermore,	 the	 data	 type	 also	 tells	 the
RDBMS	what	the	user	is	expected	to	do	with	the	data	itself

Table	 4	 contains	 a	 small	 subset	 of	 the	 more	 commonly-used	 data	 types,
which	is	more	than	enough	to	get	us	started.	It	briefly	describes	each	data	type
followed	by	an	example	of	how	 it	 is	used	 in	 syntax	 form.	The	data	 categories
themselves	are	explained	in	more	detail	in	the	following	section.

Table.	4	:	Fundamental	data	types

Characters
When	we	want	 to	store	text	 in	a	database	field,	we	use	one	of	 the	character

data	 types.	 There	 are	 four	 possible	 variations,	 albeit	 we	 will	 only	 focus	 our
explanation	on	two:	fixed	length	and	variable	length.	For	example,	if	we	use	the
code	char(220),	the	RDBMS	allocates	enough	memory	to	store	220	characters.	If
we	 store	 only	 20	 characters,	 the	 other	 200	 allocated	 places	will	 be	 filled	with
empty	 spaces,	 which	 is	 rather	 wasteful.	 We	 might	 consider	 storing	 only	 20
characters	 with	 char(20),	 but	 what	 happens	 when	 we	 need	 to	 store	 more,	 or
maybe	 fewer?	The	 alternative	 is	 the	 code	varchar(220),	 as	 it	will	 only	use	 the
actual	amount	of	memory	without	pre-allocation.

The	char	and	varchar	data	types	are	limited	to	a	maximum	character	storage	of	255.	For	larger	text
we	will	need	to	use	the	memo	(or	text	for	MySQL)	data	type,	which	can	store	up	to	65535	characters.
We	don’t	need	to	specify	the	actual	number	of	characters	this	data	type	can	hold.	It	is	preset	by	the
database	system	itself.

Generally	speaking,	if	the	text	data	is	expected	to	be	of	an	approximate	fixed
length,	 then	 we	 will	 use	 the	 char	 data	 type	 as	 it	 allows	 for	 quick	 entry	 and
manipulation.	When	the	text	data	is	of	a	variable	length	with	a	great	scope,	then
we	will	use	varchar.

Numerical	Data
Integers,	 also	 known	 as	 whole	 numbers,	 are	 the	 easiest	 numbers	 to

understand.	 In	 databases,	 the	 two	most	 common	 integer	 data	 types	 are	 int	 and
smallint.	The	difference	between	the	two	types	is	the	size	of	the	number	they	can
store	and	 the	memory	allocation	needed	to	store	 the	number.	The	smallint	data
type	deals	with	a	range	between	–32,768	and	32,767,	whereas	the	int	data	type
can	handle	a	range	between	–2,147,483,648	and	2,147,483,647.

Floating	 numbers,	 also	 known	 as	 decimal	 numbers,	 can	 store	 the	 fractional
parts	 of	 numbers.	 The	 two	 most	 common	 floating	 data	 types	 are	 real	 and
decimal,	for	which,	as	with	integers,	the	difference	is	number	size	and	memory
allocation.	The	real	data	type	can	store	a	range	of	numbers	between	–3.40E+38

and	 3.40E+38	with	 a	 limit	 of	 8	 decimal	 places.	 This	 data	 type	 is	 very	 useful
when	 we	 have	 huge	 numbers,	 but	 we	 are	 not	 too	 concerned	 about	 precision.
When	the	number	is	too	large	to	store	precisely	as	a	real	data	type,	the	database
system	converts	it	to	the	scientific	notation	with	some	loss	of	accuracy	because
of	the	dropped	decimals.	The	decimal	data	type	is	similar	to	real,	but	it	stores	all
the	 digits	 it	 can	 hold.	 Unlike	 with	 the	 real	 data	 type,	 storing	 a	 number	 that
exceeds	 the	 capacity	 of	 the	 decimal	 data	 type	 will	 round	 of	 the	 number	 off
instead	of	just	dropping	the	digits.	Due	to	this	accuracy,	knowing	the	flexibility
of	the	decimal	data	type	is	important	when	we	need	to	specify	how	many	digits
we	want	to	store.

Date	&	Time
Time	 is	 a	 fairly	 easy	 data	 value	 to	 store.	We	 need	 the	 hours,	 minutes	 and

seconds,	and	we	can	store	 the	 time	in	 the	several	formats	such	as	HH:MM:SS,
AM/PM,	24-hour,	etc.	On	the	other	hand,	dates	have	many	possible	variations,
all	 of	 which	 depend	 on	 several	 inconsistent	 factors.	 For	 example,	 all	 of	 the
following	dates	are	valid:	8	Jun	2012,	Jun	8,	2012,	12	June	2012,	12/06/2012,
06/12/2012,	and	12-6-2012.	In	these	examples	the	biggest	problem	arises	when
we	 specify	 the	month	 by	 number	 instead	 of	 name.	 In	America	 this	 data	 value
would	 read	 as	 month/day,	 while	 in	 the	 EU	 this	 data	 value	 would	 be	 red	 as
day/month.	 Therefore,	 it	 is	 advisable	 to	 avoid	 the	 date	 number	 format,	 and
instead	use	the	month’s	name	or	at	least	the	abbreviation	of	its	name.

In	some	cases	RDBMSs	don’t	keep	date	and	time	as	separate	values,	but	store
them	in	one	field.	The	date	usually	goes	first,	followed	by	the	time	in	one	of	the
aforementioned	formats.

Defining	Tables
Now	that	we	have	learned	about	creating	databases	and	defining	data	types,

we	will	finish	this	book	by	discussing	how	to	create	a	new	table,	alter	existing
tables	and	delete	tables	that	are	no	longer	necessary.

There	are	additional	table	options	that	can	be	managed	in	this	statement,	such	as	constraints,	which
are	outside	of	the	scope	of	this	book.

To	create	a	table	we	use	the	CREATE	TABLE	statement.	In	this	statement	we
have	to	give	the	table	a	name	and	define	each	table	column	with	a	name	and	a
data	type.	The	basic	syntax	is	as	follows:

CREATE	TABLE	tableName
(
columnName1	datatype
columnName2	datatype
columnName3	datatype
...
)

First	we	write	 the	CREATE	TABLE	statement,	 then	the	unique	name	of	 the
table.	 In	 the	 next	 line	we	 create	 a	 list	 defining	 each	 column	 in	 brackets.	Each
column	definition	is	placed	on	its	own	line	separated	by	a	comma.	If	we	were	to
create	the	Categories	table,	this	would	be	the	actual	code:

CREATE	TABLE	Categories
(
CategoryID	int,
CategoryName	varchar	(40),
Description	varchar	(255)
)

To	change	 the	properties	of	 an	 existing	 table,	we	need	 the	ALTER	TABLE
statement.	 With	 this	 statement	 we	 can	 modify	 table	 columns	 and,	 in	 some
RDBMSs,	even	change	the	data	type	of	an	existing	column.	The	basic	syntax	is
shown	below:

ALTER	TABLE	tableName
ADD	columnName	datatype
DROP	COLUMN	columnName

MS	SQL	Server	uses	datetime	as	data	type,	while	Oracle	stores	both	date	and	time	into	the	date	data
type.

After	 the	ALTER	TABLE	 keyword,	which	 essentially	 notifies	 the	 database
system	 what	 is	 to	 happen,	 we	 provide	 the	 name	 of	 the	 table	 to	 be	 altered.
Afterwards,	when	we	want	 to	add	a	new	column,	we	continue	 the	syntax	with
the	ADD	command	and	provide	a	column	name	with	a	data	type,	just	like	when
we	create	a	table.	Deleting	a	column	has	a	similar	syntax,	except	we	now	tell	the
database	which	column	to	delete.	The	following	example	will	add	an	ExpiryDate
column	to	the	Categories	table:

ALTER	TABLE	Categories
ADD	ExpiryDate	date

As	this	column	is	unnecessary	in	the	Categories	table,	we	will	delete	it	with
the	following	statement:

ALTER	TABLE	Categories
DROP	COLUMN	ExpiryDate

We	need	to	remember	that	dropping	a	column	will	permanently	erase	all	data
previously	entered	in	that	column.

We	follow	this	pattern	when	we	use	the	DROP	TABLE	statement	for	deleting
tables.	The	basic	syntax	is	as	follows

DROP	TABLE	tableName

To	delete	the	Categories	table	we	would	simply	write:

DROP	TABLE	Categories

However,	dropping	a	table	is	not	a	light	task	to	perform.	Obviously,	the	data
in	the	table	will	be	deleted	along	with	the	table	itself.	What	is	not	so	obvious	is
that	potential	complications	arise	with	related	data	in	other	tables.

Conclusion

This	 book	 covered	 a	 wide	 array	 of	 topics,	 but	 they	 all	 dealt	 with	 how	 to	 get
information	from	a	database.	Initially,	we	were	introduced	to	SQL,	the	language
for	 communicating	 with	 a	 database.	 The	 focus	 was	 on	 using	 SQL	 as	 a	 query
language,	while	the	other	aspects	of	the	language	were	omitted.

We	 learned	 that	 the	 key	 to	 extracting	 data	 with	 SQL	 is	 the	 SELECT
statement,	 which	 allows	 us	 to	 select	 the	 columns	 and	 tables	 from	 which	 to
extract	data.	We	now	know	how	to	filter	with	the	WHERE	clause	by	specifying
any	number	 of	 conditions	 in	 order	 to	 obtain	 the	 results	 that	 suit	 our	 particular
needs.	We	were	introduced	to	logical	and	comparison	operators	in	order	to	better
manage	situational	data	conditions.	We	also	learned	how	to	manage	the	order	of
results	in	ascending	or	descending	order,	based	on	one	or	more	columns	with	the
ORDER	BY	clause.

By	using	the	JOIN	statements	we	tackled	the	slightly	tricky	topic	of	selecting
data	from	more	than	one	table.	We	managed	to	link	two	or	more	tables	to	form	a
new	results	set,	and	we	learned	the	importance	of	the	unknown	(NULL)	value.

We	then	summarized	and	aggregated	data	rather	than	getting	results	based	on
individual	records.	Central	to	this	concept	was	the	GROUP	BY	statement,	which
enables	 results	 to	 be	 based	 on	 groups	 of	 common	 data.	 In	 conjunction	 with
SQL’s	 aggregate	 functions	 such	 as	COUNT,	 SUM,	AVG,	MAX,	 and	MIN	we
learned	how	to	manipulate	data	and	calculate	specific	values.	We	also	explored
the	 HAVING	 clause,	 which	 filters	 out	 the	 result	 of	 groups	 using	 various
conditions,	 much	 like	 a	 WHERE	 clause	 does	 for	 a	 SELECT	 statement.
Conversely,	we	learned	how	to	add	new	records	to	a	database	using	the	INSERT
INTO	statement,	updated	already	existing	data	with	the	UPDATE	statement,	and
learned	about	 the	DELETE	statement,	which	allows	us	 to	delete	all	or	specific
records	from	a	table.

Finally,	we	 learned	 how	 to	 use	SQL	 to	 define	 the	 structure	 of	 the	 database
itself.	We	 used	 the	CREATE	DATABASE	 statement	 to	 create	 a	 new	 database
from	 scratch.	 We	 also	 learned	 about	 CREATE/ALTER/DROP	 TABLE
commands	to	successfully	manipulate	the	structures	of	tables.

Thank	you	for	choosing	ClydeBank	Media	as	your	source	for	information.	We
hope	 you	 enjoyed	 the	 book	 and	 that	 you	 have	 found	 it	 a	 valuable	 aid	 in	 your
education.

Our	 company	 survives	 based	 on	 feedback	 from	 customers	 like	 you.	 Your
feedback	helps	inform	the	purchasing	decision	of	customers	who	come	after	you
and	most	importantly,	allows	us	to	constantly	improve	our	products.

If	you	have	any	questions	or	need	support	for	your	order,	please	contact	us	at
support@clydebankmedia.com

https://tinyurl.com/y9by7w29
mailto:support%40clydebankmedia.com?subject=

Glossary

Aggregate	Function	-	A	function	that	produces	a	single	result	based	on	the	contents	of	an	entire	set	of
table	rows.

Alias	-A	short	substitute	or	nickname	for	a	table/column	name.Column	-
A	table	component	that	holds	a	single	attribute	of	the	table.

Comparison	Operators	-Used	to	compare	between	values

Data	Type	-A	set	of	representable	values.

Database	-A	self-describing	collection	of	records.

RDBMS	-A	relational	database	management	system.

Index	-A	table	of	pointers	used	to	locate	rows	rapidly	in	a	data	table.

Join	-	A	relational	operator	that	combines	data	from	multiple	tables	into	a	single	result	table.

Logical	Operators	 -	Used	 to	 connect	 or	 change	 the	 truth-value	 of	 predicates	 to	 produce	more	 complex
predicates.

Metadata	-	Data	about	the	structure	of	the	data	in	a	database.

Predicate	-A	statement	that	may	be	either	logically	true	or	logically	false.

Query	-	A	question	you	ask	about	the	data	in	a	database.

Record	-A	representation	of	some	physical	or	conceptual	object.

Row	-	Another	representation	of	a	record.

SQL	 -	An	 industry	 standard	 data	 sublanguage,	 specifically	 designed	 to	 create,	 manipulate,	 and	 control
relational	databases.

Table	-	A	relation	of	data.

About
ClydeBank
Media
We	are	 a	multi-media	 publishing	 company	 that	 provides	 reliable,	 high-quality
and	easily	accessible	information	to	a	global	customer	base.	Developed	out	of	the
need	for	beginner-friendly	content	that	is	accessible	across	multiple	formats,	we
deliver	 reliable,	 up-to-date,	 high-quality	 information	 through	 our	 multiple
product	offerings.

Through	our	strategic	partnerships	with	some	of	the	world’s	 largest	retailers,
we	 are	 able	 to	 simplify	 the	 learning	 process	 for	 customers	 around	 the	 world,
providing	them	with	an	authoritative	source	of	information	for	the	subjects	that
matter	 to	 them.	Our	 end-user	 focused	 philosophy	 puts	 the	 satisfaction	 of	 our
customers	at	the	forefront	of	our	mission.	We	are	committed	to	creating	multi-
media	 products	 that	 allow	 our	 customers	 to	 learn	what	 they	want,	 when	 they
want	and	how	they	want.

ClydeBank	 Technology	 is	 a	 division	 of	 the	 multimedia-publishing	 firm
ClydeBank	 Media	 LLC.	 ClydeBank	 Media’s	 goal	 is	 to	 provide	 affordable,
accessible	information	to	a	global	market	through	different	forms	of	media	such
as	eBooks,	paperback	books	and	audio	books.	Company	divisions	are	based	on
subject	matter,	each	consisting	of	a	dedicated	team	of	researchers,	writers,	editors
and	designers.

For	more	information,	please	visit	us	at:

www.clydebankmedia.com

or	contact	info@clydebankmedia.com

http://www.clydebankmedia.com
mailto:info@clydebankmedia.com

REMEMBER	TO	DOWNLOAD

YOUR	FREE	DIGITAL	ASSETS!

Visit	the	URL	below	to	access	your	free	Digital	Asset	files	that	are	included	with	the

purchase	of	this	book.

DOWNLOAD	YOURS	HERE:

www.clydebankmedia.com/sql-assets

https://www.clydebankmedia.com/sql-assets

Explore	the	World	of

TECHNOLOGY

TO	EXPLORE	ALL	TITLES,	VISIT:

www.clydebankmedia.com/shop

https://www.clydebankmedia.com/shop

Get	titles	like	this	absolutely	free:

To	get	your	FREE	audiobook,	visit:

www.clydebankmedia.com/free-audiobook

https://www.clydebankmedia.com/free-audiobook

ClydeBank	Media	is	a	Proud	Sponsor	of

AdoptAClassroom.org	 empowers	 teachers	 by	 providing	 the	 classroom	 supplies
and	materials	 needed	 to	 help	 their	 students	 learn	 and	 succeed.	 As	 an	 award-
winning	 501(c)(3),	 AdoptAClassroom.org	makes	 it	 easy	 for	 individual	 donors
and	corporate	sponsors	to	donate	funds	to	K-12	classrooms	in	public,	private	and
charter	schools	throughout	the	U.S.

On	average,	 teachers	 spend	$600	of	 their	 own	money	 each	 year	 to	 equip	 their
classrooms	 –	 20%	 of	 teachers	 spend	 more	 than	 $1000	 annually.	 Since	 1998

AdoptAClassroom.org	 has	 raised	 more	 than	 $30	 million	 and	 benefited	 more
than	 4.25	 million	 students.	 AdoptAClassroom.org	 holds	 a	 4-star	 rating	 from
Charity	Navigator.

TO	LEARN	MORE,	VISIT	ADOPTACLASSROOM.ORG

https://www.adoptaclassroom.org/

Copyright	2016	by	ClydeBank	Media	-	All	Rights	Reserved.
This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the	topic	and	issue
covered.	The	publication	is	sold	with	the	idea	that	the	publisher	is	not	required	to	render	accounting,
officially	permitted,	or	otherwise,	qualified	services.
If	advice	is	necessary,	legal	or	professional,	a	practiced	individual	in	the	profession	should	be	ordered.
From	a	Declaration	of	Principles	which	was	accepted	and	approved	equally	by	a	Committee	of	the
American	Bar	Association	and	a	Committee	of	Publishers	and	Associations.	In	no	way	is	it	legal	to
reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either	electronic	means	or	in	printed	format.
Recording	of	this	publication	is	strictly	prohibited	and	any	storage	of	this	document	is	not	allowed	unless
with	written	permission	from	the	publisher.
The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,	in	terms	of
inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or	directions	contained	within	is
the	solitary	and	utter	responsibility	of	the	recipient	reader.	Under	no	circumstances	will	any	legal
responsibility	or	blame	be	held	against	the	publisher	for	any	reparation,	damages,	or	monetary	loss	due	to
the	information	herein,	either	directly	or	indirectly.	Respective	authors	own	all	copyrights	not	held	by	the
publisher.	The	information	herein	is	offered	for	informational	purposes	solely,	and	is	universal	as	so.	The
presentation	of	the	information	is	without	contract	or	any	type	of	guarantee	assurance.
Trademarks:	All	trademarks	are	the	property	of	their	respective	owners.	The	trademarks	that	are	used	are
without	any	consent,	and	the	publication	of	the	trademark	is	without	permission	or	backing	by	the
trademark	owner.	All	trademarks	and	brands	within	this	book	are	for	clarifying	purposes	only	and	are
owned	by	the	owners	themselves,	not	affiliated	with	this	document.
ClydeBank	Media	LLC	is	not	associated	with	any	organization,	product	or	service	discussed	in	this	book.
The	publisher	has	made	every	effort	to	ensure	that	the	information	presented	in	this	book	was	accurate	at
time	of	publication.	All	precautions	have	been	taken	in	the	preparation	of	this	book.	The	publisher,	author,
editor	and	designer	assume	no	responsibility	for	any	loss,	damage,	or	disruption	caused	by	errors	or
omissions	from	this	book,	whether	such	errors	or	omissions	result	from	negligence,	accident,	or	any	other
cause.
Edition	#	1	–	Updated	:	April	28,	2016
Cover	Illustration	and	Design:	Katie	Poorman,	Copyright	©	2016	by	ClydeBank	Media	LLC
Interior	Design:	Katie	Poorman,	Copyright	©	2016	by	ClydeBank	Media	LLC

ClydeBank	Media	LLC
P.O	Box	6561

Albany,	NY	12206

Copyright	©	2016
ClydeBank	Media	LLC

www.clydebankmedia.com
All	Rights	Reserved

e-ISBN:	:	978-1-945051-54-8

	Contents
	Access Your Free Digital Assets
	Overview
	Sample Database

	Introduction
	What Is SQL?
	Syntax & Structure

	| 1 | Retrieving Data with SQL
	The SELECT Statement
	The FROM Clause
	Limiting Data by Specifying Columns
	SQL Predicates
	Returning DISTINCT rows
	TOP
	The WHERE Clause
	Table. 1 : List of conditional operators
	Comparison Operators
	Logical Operators
	fg. 11 : List of suppliers coming from the country of Brazil or the city of Tokyo
	Dealing With Ranges & Wildcards
	Operator Precedence
	The ORDER BY Clause
	fg. 16 : List of companies ordered by multiple columns
	Using Aliases with the AS Clause
	Selecting Records from Multiple Tables
	Including Excluded Data with OUTER JOIN
	fg. 25 : Products results from a RIGHT OUTER JOIN example
	NULL Values
	Table 3 : SQL built-in functions
	COUNT

	| 2 | Built-In Functions & Calculations
	SUM
	Other Functions
	Grouping Data with the GROUP BY Clause
	Limiting Group Results with HAVING

	| 3 | Entering & Modifying Data
	INSERT Information INTO the Database
	Updating Data
	Deleting Data from Tables

	| 4 | Defining Databases
	Creating/Deleting a Database
	Data Types
	Table. 4 : Fundamental data types
	Characters
	Numerical Data
	Date & Time
	Defining Tables

	Conclusion
	Glossary
	About Clydebank

